Elite.Parts chervon right Manufacturers chervon right R chervon right RABBIT SEMICONDUCTOR chervon right 101-0547
About product Features Datasheet FAQ

RABBIT SEMICONDUCTOR 101-0547

Image of RABBIT SEMICONDUCTOR 101-0547

Description

Rabbit Semiconductor 101-0547 CPU Board. C-Programmable Single Board Computer w/ Ethernet and Operator Interface | Smartcat BL2130 | Friction-Lock

Part Number

101-0547

Price

Request Quote

Manufacturer

RABBIT SEMICONDUCTOR

Lead Time

Request Quote

Category

PRODUCTS - 1

Features

Datasheet

pdf file

Rabbit Semiconductor 101-0547-datasheet1-1530372779.pdf

2077 KiB

Extracted Text

Smartcat (BL2100) C-Programmable Single-Board Computer with Ethernet and Operator Interface User’s Manual 019–0103_M Smartcat (BL2100) User’s Manual Part Number 019-0103 • Printed in U.S.A. ©2001–2010 Digi International Inc. • All rights reserved. Digi International reserves the right to make changes and improvements to its products without providing notice. Trademarks Rabbit, RabbitCore, and Dynamic C are registered trademarks of Digi International Inc. Rabbit 2000 is a trademark of Digi International Inc. The latest revision of this manual is available on the Rabbit Web site, www.rabbit.com, for free, unregistered download. Digi8 International Inc. www.rabbit.com Smartcat (BL2100) TABLE OF CONTENTS Chapter 1. Introduction 1 1.1 BL2100 Description..............................................................................................................................1 1.2 BL2100 Features...................................................................................................................................1 1.2.1 Connector Options ........................................................................................................................2 1.3 Optional Add-Ons.................................................................................................................................3 1.4 Development and Evaluation Tools......................................................................................................4 1.4.1 Tool Kit.........................................................................................................................................4 1.4.2 Software ........................................................................................................................................5 1.4.3 Online Documentation ..................................................................................................................5 1.5 CE Compliance .....................................................................................................................................6 1.5.1 Design Guidelines .........................................................................................................................7 1.5.2 Interfacing the BL2100 to Other Devices .....................................................................................7 Chapter 2. Getting Started 9 2.1 BL2100 Connections ............................................................................................................................9 2.2 Installing Dynamic C ..........................................................................................................................14 2.3 Starting Dynamic C ............................................................................................................................15 2.4 Run a Sample Program .......................................................................................................................15 2.4.1 Troubleshooting ..........................................................................................................................15 2.5 Where Do I Go From Here? ...............................................................................................................16 2.5.1 Technical Support .......................................................................................................................16 Chapter 3. Subsystems 17 3.1 BL2100 Pinouts ..................................................................................................................................18 3.1.1 Headers and Screw Terminals.....................................................................................................19 3.2 Digital I/O ...........................................................................................................................................20 3.2.1 Digital Inputs...............................................................................................................................20 3.2.2 Digital Outputs............................................................................................................................21 3.3 Serial Communication ........................................................................................................................23 3.3.1 RS-232 ........................................................................................................................................23 3.3.2 RS-485 ........................................................................................................................................23 3.3.3 Ethernet Port ...............................................................................................................................26 3.3.4 Programming Port.......................................................................................................................27 3.4 Programming Cable ............................................................................................................................28 3.4.1 Changing Between Program Mode and Run Mode ....................................................................28 3.5 A/D Converter Inputs..........................................................................................................................29 3.6 D/A Converter Outputs.......................................................................................................................30 3.7 Analog Reference Voltage Circuit......................................................................................................31 3.8 Memory...............................................................................................................................................32 3.8.1 SRAM .........................................................................................................................................32 3.8.2 Flash Memory .............................................................................................................................32 3.9 Other Hardware...................................................................................................................................33 3.9.1 External Interrupts.......................................................................................................................33 3.9.2 Clock Doubler .............................................................................................................................34 3.9.3 Spectrum Spreader ......................................................................................................................34 User’s Manual Chapter 4. Software 35 4.1 Running Dynamic C........................................................................................................................... 35 4.1.1 Upgrading Dynamic C................................................................................................................ 37 4.1.2 Extras.......................................................................................................................................... 37 4.2 Sample Programs................................................................................................................................ 38 4.2.1 Digital I/O................................................................................................................................... 38 4.2.2 Serial Communication................................................................................................................ 38 4.2.3 A/D Converter Inputs ................................................................................................................. 39 4.2.4 D/A Converter Outputs............................................................................................................... 39 4.2.5 Using Calibration Constants....................................................................................................... 40 4.2.6 Real-Time Clock ........................................................................................................................ 40 4.2.7 TCP/IP Sample Programs........................................................................................................... 40 4.2.8 LCD/Keypad Module Sample Programs.................................................................................... 40 4.3 BL2100 Libraries ............................................................................................................................... 41 4.4 BL2100 Function APIs....................................................................................................................... 42 4.4.1 Board Initialization..................................................................................................................... 42 4.4.2 Digital I/O................................................................................................................................... 43 4.4.3 Serial Communication................................................................................................................ 45 4.4.4 A/D Converter Inputs ................................................................................................................. 46 4.4.5 D/A Converter Outputs............................................................................................................... 50 Chapter 5. Using the TCP/IP Features 55 5.1 TCP/IP Connections........................................................................................................................... 55 5.2 TCP/IP Sample Programs................................................................................................................... 57 5.2.1 How to Set IP Addresses in the Sample Programs..................................................................... 57 5.2.2 How to Set Up Your Computer for Direct Connect................................................................... 58 5.2.3 Run the PINGME.C Demo...................................................................................................... 59 5.2.4 Running More Demo Programs With a Direct Connection ....................................................... 60 5.3 Where Do I Go From Here?............................................................................................................... 60 Appendix A. Specifications 61 A.1 Electrical and Mechanical Specifications.......................................................................................... 62 A.1.1 Exclusion Zone.......................................................................................................................... 64 A.1.2 Headers ...................................................................................................................................... 65 A.2 Conformal Coating............................................................................................................................ 66 A.3 Jumper Configurations ...................................................................................................................... 67 A.4 Use of Rabbit 2000 Parallel Ports ..................................................................................................... 69 A.5 I/O Address Assignments.................................................................................................................. 71 Appendix B. Power Supply 73 B.1 Power Supplies .................................................................................................................................. 73 B.1.1 Power for Analog Circuits ......................................................................................................... 73 B.2 Batteries and External Battery Connections...................................................................................... 74 B.2.1 Replacing the Backup Battery ................................................................................................... 75 B.2.2 Battery-Backup Circuit.............................................................................................................. 75 B.2.3 Power to VRAM Switch............................................................................................................ 76 B.2.4 Reset Generator.......................................................................................................................... 76 B.3 Chip Select Circuit............................................................................................................................. 77 Appendix C. LCD/Keypad Module 79 C.1 Specifications..................................................................................................................................... 79 C.2 Contrast Adjustments for All Boards ................................................................................................ 81 C.3 Keypad Labeling................................................................................................................................ 82 C.4 Header Pinouts................................................................................................................................... 83 C.4.1 I/O Address Assignments .......................................................................................................... 83 C.5 Mounting LCD/Keypad Module on the BL2100 .............................................................................. 84 C.5.1 Programming Cable Tips........................................................................................................... 85 C.6 Bezel-Mount Installation ................................................................................................................... 87 C.6.1 Connect the LCD/Keypad Module to Your BL2100................................................................. 89 Smartcat (BL2100) C.7 Sample Programs ...............................................................................................................................90 C.8 LCD/Keypad Module Function Calls ................................................................................................92 C.8.1 LEDs...........................................................................................................................................92 C.8.2 LCD Display...............................................................................................................................93 C.8.3 Keypad......................................................................................................................................109 Appendix D. Plastic Enclosure 113 D.1 Assembly Instructions......................................................................................................................114 D.2 Dimensions ......................................................................................................................................116 Appendix E. Demonstration Board 119 E.1 Connecting Demonstration Board ....................................................................................................119 Index 123 Schematics 127 User’s Manual Smartcat (BL2100) 1. INTRODUCTION The BL2100 is a high-performance, C-programmable single- board computer that offers built-in digital and analog I/O com- bined with Ethernet connectivity in a compact form factor. A ® Rabbit 2000 microprocessor operating at 22.1 MHz provides fast data processing. An optional plastic enclosure and LCD/keypad module are available, and may be wall-mounted. 1.1 BL2100 Description The BL2100 is an advanced single-board computer that incorporates the powerful Rabbit 2000 microprocessor, flash memory, static RAM, digital I/O ports, A/D converter inputs, D/A converter outputs, RS-232/RS-485 serial ports, and a 10Base-T Ethernet port. 1.2 BL2100 Features ® • Rabbit 2000 microprocessor operating at 22.1 MHz. • 128K static RAM and 256K flash memory standard, may be increased to 512K SRAM and 512K flash memory. • 40 digital I/O: 24 protected digital inputs and 16 high-current digital outputs provide sinking and sourcing outputs. • 15 analog channels: eleven 12-bit A/D converter inputs, four 12-bit D/A converter 0–10 V outputs (selected models). • One RJ-45 Ethernet port compliant with IEEE 802.3 standard for 10Base-T Ethernet protocol (selected models). • Two Ethernet status LEDs (selected models). • Four serial ports (2 RS-232 or 1 RS-232 with RTS/CTS, 1 RS-485, and 1 CMOS-com- patible programming port). • Battery-backed real-time clock. • Watchdog supervisor. • Optional backlit 122 × 32 graphic display/keypad module. • Remote program downloading and debugging capability via RabbitLink. • Boards with the CE mark on their RabbitCore module are CE-compliant. User’s Manual 1 Four BL2100 models are available. Their standard features are summarized in Table 1. Table 1. BL2100 Models Feature BL2100 BL2110 BL2120 BL2130 Microprocessor Rabbit 2000 running at 22.1 MHz Static RAM 128K Flash Memory 256K RJ-45 Ethernet Connector, Yes No Filter Capacitors, and LEDs A/D Converter Inputs Yes No Yes No (-10 V to + 10 V) D/A Converter Outputs Yes No Yes No (0 V to +10 V) RabbitCore Module Used RCM2200 RCM2300 Additional 512K flash/512K SRAM memory options are available for custom orders involving nominal lead times. Contact your Rabbit sales representative or authorized distributor for more information. Appendix A provides detailed specifications. 1.2.1 Connector Options In addition to the standard screw-terminal connectors supplied on BL2100 boards, IDC headers, bottom-mount sockets, and polarized friction-lock terminals may be factory- installed instead. Visit our Web site at www.rabbit.com or contact your Rabbit sales representative or authorized distributor for further information. Standard screw terminals, accept Bottom-mount socket, 0.1" pitch 2 up to 14 AWG (1.5 mm ) wire Polarized friction-lock terminals, IDC headers, 0.1" pitch 0.1" pitch 2 Smartcat (BL2100) 1.3 Optional Add-Ons • Plastic enclosure (can be wall-mounted or panel-mounted) with LCD/keypad module that comprises a 122 × 32 LCD graphic display, 7- key keypad, and seven LEDs. The plastic enclosure consists of a base and a cover for an assembly made up of the BL2100 with the LCD/keypad module plugged in. • Plastic enclosure base. • LCD/keypad module. One enclosure base is included with the Tool Kit. Further details on these add-ons are provided in Appendix C and in Appendix D. Visit our Web site for up-to-date information about additional add-ons and features as they become available. The Web site also has the latest revision of this user’s manual. User’s Manual 3 1.4 Development and Evaluation Tools 1.4.1 Tool Kit A Tool Kit contains the hardware essentials you will need to use your own BL2100 single- board computer. The items in the Tool Kit and their use are as follows. • BL2100 Getting Started instructions. • Dynamic C CD-ROM, with complete product documentation on disk. • Programming cable, used to connect your PC serial port to the BL2100. • Universal AC adapter, 12 V DC, 1 A (includes Canada/Japan/U.S., Australia/N.Z., U.K., and European style plugs). • Demonstration Board with pushbutton switches and LEDs. The Demonstration Board can be hooked up to the BL2100 to demonstrate the I/O. • Wire assembly to connect Demonstration Board to BL2100. • Plastic enclosure base with mounting screws. • Screwdriver. • Rabbit 2000 Processor Easy Reference poster. • Registration card. Figure 1. BL2100 Tool Kit 4 Smartcat (BL2100) 1.4.2 Software The BL2100 is programmed using version 7.06 or later of Rabbit’s Dynamic C. A compatible version is included on the Tool Kit CD-ROM. Dynamic C v. 9.60 includes the popular µC/OS- II real-time operating system, point-to-point protocol (PPP), FAT file system, RabbitWeb, and other select libraries that were previously sold as individual Dynamic C modules. Rabbit also offers for purchase the Rabbit Embedded Security Pack featuring the Secure Sockets Layer (SSL) and a specific Advanced Encryption Standard (AES) library. In addi- tion to the Web-based technical support included at no extra charge, a one-year telephone- based technical support subscription is also available for purchase. Visit our Web site at www.rabbit.com for further information and complete documentation, or contact your Rabbit sales representative or authorized distributor. 1.4.3 Online Documentation The online documentation is installed along with Dynamic C, and an icon for the docu- mentation menu is placed on the workstation’s desktop. Double-click this icon to reach the menu. If the icon is missing, use your browser to find and load default.htm in the docs folder, found in the Dynamic C installation folder. The latest versions of all documents are always available for free, unregistered download from our Web sites as well. User’s Manual 5 1.5 CE Compliance Equipment is generally divided into two classes. CLASS A CLASS B Digital equipment meant for light industrial use Digital equipment meant for home use Less restrictive emissions requirement: More restrictive emissions requirement: less than 40 dB µV/m at 10 m 30 dB µV/m at 10 m or 100 µV/m (40 dB relative to 1 µV/m) or 300 µV/m These limits apply over the range of 30–230 MHz. The limits are 7 dB higher for frequencies above 230 MHz. Although the test range goes to 1 GHz, the emissions from Rabbit-based systems at frequencies above 300 MHz are generally well below background noise levels. The BL2100 single-board computer has been tested and was found to be in conformity with the following applicable immunity and emission standards. The BL2110, BL2120, and BL2130 single-board computers are also CE qualified as they are sub-versions of the BL2100 single- board computer. Boards that are CE-compliant have the CE mark. Immunity The BL2100 series of single-board computers meets the following EN55024/1998 immu- nity standards. • EN61000-4-3 (Radiated Immunity) • EN61000-4-4 (EFT) • EN61000-4-6 (Conducted Immunity) Additional shielding or filtering may be required for a heavy industrial environment. Emissions The BL2100 series of single-board computers meets the following emission standards with the Rabbit 2000 spectrum spreader turned on and set to the normal mode. The spectrum spreader is only available with Rev. C or higher of the Rabbit 2000 microprocessor. This microprocessor is used in all BL2100 series boards that carry the CE mark. • EN55022:1998 Class A • FCC Part 15 Class A NOTE: The BL2100 satisfied the Class A limits but not the Class B limits. Such equip- ment need not be restricted in its sale, but the following warning must be included in the instructions for its use. Warning This is a Class A product. In a domestic environment this product may cause radio interference, in which case the user may be required to take adequate measures. Additional shielding or filtering may be needed to meet Class B emissions standards. 6 Smartcat (BL2100) 1.5.1 Design Guidelines Note the following requirements for incorporating a BL2100 series single-board computer into your application to comply with CE requirements. General • The power supply provided with the Tool Kit is for development purposes only. It is the customer’s responsibility to provide a CE-compliant power supply for the end-product application. • When connecting the BL2100 single-board computer to outdoor cables, the customer is responsible for providing CE-approved surge/lighting protection. • Rabbit recommends placing digital I/O or analog cables that are 3 m or longer in a metal conduit to assist in maintaining CE compliance and to conform to good cable design practices. • When installing or servicing the BL2100, it is the responsibility of the end-user to use proper ESD precautions to prevent ESD damage to the BL2100. Safety • All inputs and outputs to and from the BL2100 single-board computer must not be con- nected to voltages exceeding SELV levels (42.4 V AC peak, or 60 V DC). • The lithium backup battery circuit on the BL2100 single-board computer has been designed to protect the battery from hazardous conditions such as reverse charging and excessive current flows. Do not disable the safety features of the design. 1.5.2 Interfacing the BL2100 to Other Devices There are two versions of the LCD/keypad module that may be used with the BL2100: a plug-in version (Part No. 101-0465), and a remote panel-mounted version with bezel (Part No. 101-0502). The BL2100 with the LCD/keypad module plugged in may be regarded as a “maintenance unit” that conforms to the same CE standards as does the BL2100 alone, where the entire assembly is mounted inside an enclosure, and the enclosure is only opened to “tune up” the system. In addition, the cable for a panel-mounted LCD/keypad module should be less than 30 cm (12") to maintain CE compliance. Appendix C provides complete information for mounting and using the LCD/keypad module. Since the BL2100 single-board computers are designed to be connected to other devices, good EMC practices should be followed to ensure compliance. CE compliance is ulti- mately the responsibility of the integrator. Additional information, tips, and technical assistance are available from your authorized Rabbit distributor, and are also available on our Web site at www.rabbit.com. User’s Manual 7 8 Smartcat (BL2100) ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� �� ��� ��� �#$$%&’ ���� ��� ���� ��� ���� ��� ��� ���� ��� ���� ���� ���� ���� ���� ���� ���� ��� �� ��� ���� ��� ���� ���� ��� �� �������������������������������������������������������!������!�����!������!������!���������������������������������������������� ��� 2. GETTING STARTED Chapter 2 explains how to connect the programming cable and power supply to the BL2100. 2.1 BL2100 Connections 1. Remove the RabbitCore module from the BL2100 main board, and set the module aside. The module is removed to allow access to the mounting holes on the main BL2100 board, and will be plugged back in to the main board later. NOTE: If you are working with more than one BL2100 at a time, take care to keep the BL2100 main boards and their corresponding RabbitCore modules paired since the Rab- bitCore modules store calibration constants specific to the BL2100 main board to which they are plugged in. ���������������������� �� ��� ����������������� ����� �� ����� �� �� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ���� ���� ��� �� ���� �� ���� ��� �� ��� ���� ���� �� ���� ���� ���� ���� �� ���� �� ��� ���� ��� ��� �� ��� ��� ���� �� �� ��� ���� ��� �� ��� ��� ��� ���� ���� ��� ��� ��� ���� ���� ��� ���� ���� ��� ��� ��� ��� ��� ���� ���� �������� �� ��� ���� ��� ���� ��� ��� ��� ���� ��� ��� ��� ���� �� ���� ��� ��� ���� ��� ��� ��� �� ��� ��� ��� ��� �� ���� ��� �� �� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Figure 2. Remove RabbitCore Module from BL2100 Main Board User’s Manual 9 ���� ��� ���� ��� ��� ���� ���� ���� ���� �� �� �� (� �� �� �� �� �� �� �� �� �� (� �� �� �� ��� ��� ��� ��� �� �� �� ��� �� �� �� ��� ��� ������ ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ���� �� �� (� �� !�� �� � ��������� ���������������������������������������������������������������������������������������������������������!"������������������������������������������������������������������������������������������������ ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� �� ��� ��� �#$$%&’ ���� ��� ���� ��� ���� ��� ��� ���� ��� ���� ���� ���� ���� ���� ���� ���� ��� �� ��� ���� ��� ���� ���� ��� �� �������������������������������������������������������!������!�����!������!������!���������������������������������������������� ��� 2. Attach the BL2100 main board to the plastic enclosure base. Position the BL2100 main board over the plastic enclosure base as shown below in Figure 3. Attach the BL2100 to the base using the four 4-40 × ¼ screws supplied with the enclosure base. �� �� �� �� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� �� ���� �� ���� �� ��� ��� ���� ���� ���� ���� ���� ���� �� ���� �� ��� ��� ��� ���� �� ��� ��� ���� �� �� ��� ���� ��� ��� �� ���� ���� ��� ��� ��� ���� ���� ��� ���� ���� ��� ��� ��� ���� ���� ��� ��� �������� �� ��� ���� ��� ���� ��� ��� ��� ���� ��� ��� ��� ���� �� ���� ��� ��� ���� ��� ��� ��� �� ��� ��� ��� ��� �� ���� ��� �� ��� ��� �� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Figure 3. Attach BL2100 Main Board to Plastic Enclosure Base The plastic enclosure base facilitates handling the BL2100 during development, and pro- vides an attractive mounting alternative. Alternatively, you may wish to use standoffs to protect the components on the other side of the board. The plastic enclosure base is offered as a separate option when individual BL2100 boards are purchased. NOTE: Appendix D, “Plastic Enclosure,” provides additional information and specifications for the plastic enclosure. 10 Smartcat (BL2100) ���� ��� ���� ��� ��� ���� ���� ���� ���� �� � ��������� ���������������������������������������������������������������������������������������������������������!"������������������������������������������������������������������������������������������������ ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� �� ��� ��� �#$$%&’ ���� ��� ���� ��� ���� ��� ��� ���� ��� ���� ���� ���� ���� ���� ���� ���� ��� �� ��� ���� ��� ���� ���� ��� �� �������������������������������������������������������!������!�����!������!������!���������������������������������������������� ��� 3. Reconnect the RabbitCore module to headers J16 and J17 on the BL2100 main board it was removed from earlier as shown in Figure 4. Be careful to align the pins over the headers, and do not bend them as you press down to mate the module with the BL2100 main board. NOTE: If you are working with more than one BL2100 at a time, take care to keep the BL2100 main boards and their corresponding RabbitCore modules paired since the Rab- bitCore modules store calibration constants specific to the BL2100 main board to which they are plugged in. �� ��� ����� ����� �� �� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ���� ���� ��� �� ���� �� ���� �� ��� ��� �� ���� ���� ���� ���� ���� ���� �� ���� �� ��� ���� ��� ��� ��� �� ��� ���� �� �� ��� ��� ���� �� ��� ��� ��� ���� ���� ��� ��� ��� ���� ���� ��� ���� ���� ��� ��� ��� ��� ��� ���� ���� ���� ���� �� ��� ���� ��� ���� ��� ��� ��� ���� ��� ��� ��� ��� ��� ���� �� ���� ��� ��� ���� ��� ��� ��� �� ��� ��� ��� ��� �� ���� ��� �� �� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Figure 4. Reconnect RabbitCore Module to BL2100 Main Board User’s Manual 11 ���� ��� ���� ��� ��� ���� ���� ���� ���� �� �� (� �� �� �� �� �� �� �� �� �� �� (� �� �� �� ��� ��� ��� ��� �� �� �� ��� �� �� ��� �� ��� ������ ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ���� �� �� �� (� !�� �� � ��������� ���������������������������������������������������������������������������������������������������������!"������������������������������������������������������������������������������������������������ ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� �� ��� ��� �#$$%&’ ���� ��� ���� ��� ���� ��� ��� ���� ��� ���� ���� ���� ���� ���� ���� ���� ��� �� ��� ���� ��� ���� ���� ��� �� �������������������������������������������������������!������!�����!������!������!���������������������������������������������� ��� 4. Connect the programming cable to download programs from your PC and to program and debug the BL2100. Connect the 10-pin PROG connector of the programming cable to header J1 on the BL2100 RabbitCore module. Ensure that the colored edge lines up with pin 1 as shown. (Do not use the DIAG connector, which is used for a nonprogramming serial connection.) Connect the other end of the programming cable to a COM port on your PC. Make a note of the port to which you connect the cable, as Dynamic C will need to have this parameter configured. Note that COM1 on the PC is the default COM port used by Dynamic C. �� �� �� �� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� �� ������ �� ���� ��� �� ��� ���� ���� ���� ���� ���� ���� �� �� ���� �� ��� ��� ���� ��� ��� �� ��� ��� ���� �� �� ��� ��� ���� ����� �� ��� ����� ���� ���� ��� ��� ��� ��� ���� ���� ��� ���� ��� ���� ���� ��� ��� ��� ��� ��� ��� ���� ���� ��� �������� �� ��� ��� ���� ��� ��� ���� ��� ��� ��� ��� ���� ��� ��� �� ��� ���� �� ���� ��� ��� ���� ��� ��� ��� �� ��� ��� ��� ��� �� ��� ���� ���� ��� �� �� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ��!� �)*)&%+�%+,% �%+ ./&012�3&#- ����������������� �) �������-)&$ Figure 5. Programming Cable Connections NOTE: Never disconnect the programming cable by pulling on the ribbon cable. Carefully pull on the connector to remove it from the header. NOTE: Some PCs now come equipped only with a USB port. It may be possible to use an RS-232/USB converter with the programming cable supplied with the Tool Kit. An RS- 232/USB converter (part number 20-151-0178) is available through the Web store. Note that not all RS-232/USB converters work with Dynamic C. 12 Smartcat (BL2100) ���� ��� ���� ��� ��� ���� ���� ���� ���� �� �� (� �� �� �� �� �� �� �� �� �� �� (� �� �� �� ��� ��� ��� ��� �� �� �� ��� �� �� �� ��� ��� ������ ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ���� (� �� �� �� !�� �� � ��������� ���������������������������������������������������������������������������������������������������������!"������������������������������������������������������������������������������������������������ 5. Connect the power supply. First, prepare the AC adapter for the country where it will be used by selecting the plug. The BL2100 Tool Kit presently includes Canada/Japan/U.S., Australia/N.Z., U.K., and European style plugs. Snap in the top of the plug assembly into the slot at the top of the AC adapter as shown in Figure 5, then press down on the spring-loaded clip below the plug assembly to allow the plug assembly to click into place. Connect the bare ends of the power supply to the +RAW and GND positions on screw- terminal header J5 (IDC header J4) as shown in Figure 6. Figure 6. Power Supply Connections 6. Apply power. Plug in the AC adapter. If you are using your own power supply, it must provide 9 to 36 V DC (13 to 36 V DC if you intend to use the full range of the D/A converter outputs)—voltages outside this range could damage the BL2100. CAUTION: Unplug the power supply while you make or otherwise work with the connections to the headers. This will protect your BL2100 from inadvertent shorts or power spikes. NOTE: A hardware RESET is done by unplugging the AC adapter, then plugging it back in. User’s Manual 13 2.2 Installing Dynamic C If you have not yet installed Dynamic C version 7.06 (or a later version), do so now by inserting the Dynamic C CD in your PC’s CD-ROM drive. The CD will auto-install unless you have disabled auto-install on your PC. If the CD does not auto-install, click Start > Run from the Windows Start button and browse for the Dynamic C setup.exe file on your CD drive. Click OK to begin the installation once you have selected the setup.exe file. The installation program will guide you through the installation process. Most steps of the process are self-explanatory. Dynamic C uses a COM (serial) port to communicate with the target development system. The installation allows you to choose the COM port that will be used. The default selec- tion is COM1. You may select any available port for Dynamic C’s use. If you are not cer- tain which port is available, select COM1. This selection can be changed later within Dynamic C. Once your installation is complete, you will have up to three icons on your PC desktop. One icon is for Dynamic C, one opens the documentation menu, and the third is for the Rabbit Field Utility, a tool used to download precompiled software to a target system. If you have purchased the optional Dynamic C Rabbit Embedded Security Pack, install it after installing Dynamic C. You must install the Rabbit Embedded Security Pack in the same directory where Dynamic C was installed. The Dynamic C User’s Manual provides detailed instructions for the installation of Dynamic C and any future upgrades. NOTE: If you have an earlier version of Dynamic C already installed, the default installation of the later version will be in a different folder, and a separate icon will appear on your desk- top. 14 Smartcat (BL2100) 2.3 Starting Dynamic C Once the BL2100 is connected to your PC and to a power source, start Dynamic C by double- clicking on the Dynamic C icon on your desktop or in your Start menu. If you are using a USB port to connect your computer to the BL2100, choose Options > Project Options and select “Use USB to Serial Converter” under the Communications tab. Click OK. 2.4 Run a Sample Program Use the File menu to open the sample program PONG.C, which is in the Dynamic C SAMPLES folder. Press function key F9 to compile and run the program. The STDIO window will open on your PC and will display a small square bouncing around in a box. This program shows that the CPU is working. The sample program described in Section 5.2.3, “Run the PINGME.C Demo,” tests the TCP/IP portion of the board. 2.4.1 Troubleshooting If Dynamic C cannot find the target system (error message "No Rabbit Processor Detected."): • Check that the BL2100 is powered correctly — the AC adapter should be plugged in to the +RAW and GND positions on screw-terminal header J5 (IDC header J4). • Check both ends of the programming cable to ensure that they are firmly plugged into the PC and the PROG connector, not the DIAG connector, is plugged in to the program- ming port on the RabbitCore module with the marked (colored) edge of the program- ming cable towards pin 1 of the programming header. • Ensure that the RabbitCore module is firmly and correctly installed in its connectors on the BL2100 main board. • Dynamic C uses the COM port specified during installation. Select a different COM port within Dynamic C. From the Options menu, select Project Options, then select Communications. Select another COM port from the list, then click OK. Press to force Dynamic C to recompile the BIOS. If Dynamic C still reports it is unable to locate the target system, repeat the above steps until you locate the COM port used by the programming cable. If Dynamic C appears to compile the BIOS successfully, but you then receive a communi- cation error message when you compile and load a sample program, it is possible that your PC cannot handle the higher program-loading baud rate. Try changing the maximum download rate to a slower baud rate as follows. • Locate the Serial Options dialog in the Dynamic C Options > Communications menu. Select a slower Max download baud rate. User’s Manual 15 If a program compiles and loads, but then loses target communication before you can begin debugging, it is possible that your PC cannot handle the default debugging baud rate. Try lowering the debugging baud rate as follows. • Locate the Serial Options dialog in the Dynamic C Options > Communications menu. Choose a lower debug baud rate. 2.5 Where Do I Go From Here? If the sample program ran fine, you are now ready to go on to other sample programs and to develop your own applications. The source code for the sample programs is provided to allow you to modify them for your own use. The BL2100 User’s Manual also provides complete hardware reference information and describes the software function calls for the BL2100 and the optional LCD/keypad module. For advanced development topics, refer to the Dynamic C User’s Manual and the Dynamic C TCP/IP User’s Manual, also in the online documentation set. 2.5.1 Technical Support NOTE: If you purchased your BL2100 through a distributor or Rabbit partner, contact the distributor or partner first for technical support. If there are any problems at this point: • Use the Dynamic C Help menu to get further assistance with Dynamic C. • Check the Rabbit Technical Bulletin Board and forums at www.rabbit.com/support/bb/ and at www.rabbit.com/forums/. • Use the Technical Support e-mail form at www.rabbit.com/support/. If the sample program ran fine, you are now ready to go on to explore other BL2100 fea- tures and develop your own applications. Chapter 3, “Subsystems,” provides a description of the BL2100’s features, Chapter 4, “Software,” describes the Dynamic C software libraries and introduces some sample pro- grams, and Chapter 5, “Using the TCP/IP Features,” explains the TCP/IP features. 16 Smartcat (BL2100) 3. SUBSYSTEMS Chapter 3 describes the principal subsystems for the BL2100. •Digital I/O •Serial Communication •A/D Converter Inputs •D/A Converter Outputs •Analog Reference Voltage Circuit •Memory •External Interrupts Figure 7 shows these Rabbit-based subsystems designed into the BL2100. ��)��� ���� �.-.��� ������ ������ ��-.���� !�’(� ��� ��� ��)*+, ���� �.-.��� ���� ������� ������ ��-.���� �(�’(� ������ ���� ����� �$� ��/����� �������� !����"��� �� �$� # �$%�&’�� ���(�� ����������������� ��/����� Figure 7. BL2100 Subsystems User’s Manual 17 �� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� 3.1 BL2100 Pinouts The BL2100 pinouts are shown in Figure 8(a) and Figure 8(b). ������ #��$��% ������ ������ ������ +����� ��$��% ��$��% �����������������������������������������������!������!������!��������!��������!���������������������������������������������������������� ���� ���� ���� ���� �������������������������������������������������������������������������������������������������� ���� ���� �� "������ ���� ���� "������ ��$��% ���� ���� ��$��% ���� ���� ���� ���� ���� ��� �� ���� �4� ������� �&’! � ������6 �4� �&’��� ���6��� �4�5��� �4�5��� ��� ��!" ���� ��(�� ���� ��� &�$$�) �#$$%&’ ���� ����� � ��! "������ ���� ����� �� ��$��% �� �� �� �� �� (� �� �� ���� ����� �� �� �� ���� ����� �� �� (� �� �� ��� ��� ���� ����� "������ ��� ��� �� �� ���� ����� #��$��% ����� ����� �� ����� ����� ��� �� �� ��� �� ��� "������ ����� ������ ����� ��� ��� #��$��% ����� ����� ��� ��� ��� ��� ��� ��� ����� � � ��� * �� ��� ��� ��� ��� ��� ��� ����� ��� ��� ���� � � �� (� �� �� !�� Figure 8(a). BL2100 Pinouts (screw-terminal headers) NOTE: Screw-terminal header J2 and the associated analog I/O are not available on the BL2110 and the BL2130. 18 Smartcat (BL2100) ����� ����� �� � � �� �� � �� � � � � � � � � � � � � �� � �� � �� � � �� � �� � �� � �� � �� � � � � � � � � �� � �� � �� � �� � �� � �� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� 3.1.1 Headers and Screw Terminals Standard BL2100 models are equipped with two 1 × 12 screw-terminal strips (J8 and J14), and two 1 × 14 screw-terminal strips (J5 and J11). The BL2100 and BL2110 also have the RJ-45 Ethernet jack and one 1 × 16 screw-terminal strip (J2). There is provision on the circuit board to accommodate one of the following types of connectors instead of the screw-terminal strips. • 2 × 17, 2 × 20, and 2 × 25 IDC headers with a pitch of 0.1". • 1 × 17, 1 × 20, and 1 × 25 friction-lock connectors with a pitch of 0.1". The holes used by the friction-lock connectors are on the “outside” edges of the connector locations. • 1 × 17, 1 × 20, and 1 × 25 bottom-mount sockets with a pitch of 0.1". The holes for the bottom-mount sockets are on the “outside” edges of the connector locations The pinouts for these connectors are shown in Figure 8(b). ������ #��$��% ������ ������ ������ +����� ��$��% ��$��% ���� ���� � �� ���� � �� ���� �������������������������������������������������������������������������������� � �� � �� ���� ���� � ���� ���� �� �� "������ "������ �� �� ��$��% ���� �� �� ���� ��$��% ���� �� �� ���� �� �� �� ���� ���� �� ���� ���� �� �� ��� �! �� �� ������� �� �� �4� �&’! � �� �� �4� ������6 �� �� �&’��� �4�5��� ���6��� �� � ��� �� � �4�5��� �� � �� � ��!" ���� ��(�� �� ��� ���� � &�$$�) �#$$%&’ ���� � �� ����� �, ��� "������ ���� � �� ����� � �� �� ��$��% �� �� �� �� �� (� �� �� �� ���� � �� ����� �� ���� � �� �� ����� �� �� (� �� �� �� �� ��� ��� "������ ���� �� �� ����� ��� ��� �� �� ���� �� ����� �� #��$��% �� �� �� ����� �� �� ����� ����� �� �� ����� ��� �� �� �� �� ��� �� ��� "������ ������ ����� �� ����� � ��� ��� #��$��% ����� �� � ����� ��� ��� ��� ��� �� � ��� ��� ��� ����� �� � � � * �� ��� ��� ��� ��� ����� �� ��� ��� � � � ��� ��� ���� �� (� �� �� !�� Figure 8(b). BL2100 Pinouts (other 0.1" connectors) NOTE: Header J1 and the associated analog I/O are not available on the BL2110 and the BL2130. User’s Manual 19 !���� !���� !���� !���� !���� �!�� �!�� !��� �!�� �!�� ����� ����� !���� !���� !���� !���� !���� !���� �� 3.2 Digital I/O 3.2.1 Digital Inputs The BL2100 has 24 digital inputs, IN00–IN23, each of which is protected over a range of –36 V to +36 V. The inputs are factory-configured to be pulled up to +5 V, but they can also be pulled up to +K2 or down to 0 V in banks of eight by changing a surface-mounted 0 resistor as shown in Figure 9. � � -�.���) �88 "�/���� ��� ���2� ����2� 2 ��00.���111 ��17 �.���’�������� ��� Figure 9. BL2100 Digital Inputs [Pulled Up—Factory Default] NOTE: If the inputs are pulled up to +K2, the voltage range over which the digital inputs are protected changes to K2 – 36 V to +36 V. The actual switching threshold is approximately 2.40 V. Anything below this value is a logic 0, and anything above is a logic 1. The digital inputs are each fully protected over a 0������&(��.1��� range of -36 V to +36 V, and can handle short ��2��% spikes of ±40 V. &$�3�% ����� &$�3�% ����� ��9��� 6���� &$�3�% Figure 10. BL2100 Digital Input Protected Range 20 Smartcat (BL2100) "���������$���4������ 3.2.2 Digital Outputs The BL2100 has 16 digital outputs, OUT00–OUT15, which can each sink or source up to 200 mA. Figure 11 shows a wiring diagram for using the digital outputs in a sinking or a souring configuration. All the digital outputs sink and source actively. They can be used as high-side drivers, low-side drivers, or as an H-bridge driver. When the BL2100 is first powered up or reset, all the outputs are disabled, that is, at a high-impedance status, until the digoutConfig software function call is made. The digoutConfig call sets the initial state of each digi- tal output according to the configuration specified by the user, and enables the digital out- puts to their initial status. &�0*�0+�#5��5� ��)&� � ����7 �����:;�6��< ���0+�#5��5� ��)&� � ����7 �����:;�6��< Figure 11. BL2100 Digital Outputs OUT00–OUT07 are powered by to +K1, and OUT08–OUT15 are powered by +K2. K1 and K2 can each be up to 36 V. They don't have to be same. All the sinking current, which could be up to 3.2 A, is returned through the GND pins. Be sure to use a suitably sized GND and keep the distance to the power supply as short as possible. Since there are two GND terminals (header J5/J4, and header J11/J10), it is User’s Manual 21 highly recommend that you split the GND returns according to the two banks of digital outputs. � � � 3 For the H bridge, which is shown in Figure 12, K1 and K2 should be the same if two digital out- ��!� puts used for the H bridge are on different banks. 3 � Figure 12. H Bridge 22 Smartcat (BL2100) 3.3 Serial Communication The BL2100 has two RS-232 serial ports, which can be configured as one RS-232 serial channel (with RTS/CTS) or as two RS-232 (3-wire) channels using the serMode software function call. Table 2 summarizes the options. Table 2. Serial Communication Configurations Serial Port Mode B C D 0 RS-232, 3-wire RS-232, 3-wire RS-485 1 RS-232, 5-wire CTS/RTS RS-485 The BL2100 also has one RS-485 serial channel and one CMOS serial channel that serves as the programming port. All four serial ports operate in an asynchronous mode. An asynchronous port can handle 7 or 8 data bits. A 9th bit address scheme, where an additional bit is sent to mark the first byte of a message, is also supported. Serial Port A, the programming port, can be operated alternately in the clocked serial mode. In this mode, a clock line synchronously clocks the data in or out. Either of the two communicating devices can supply the clock. The BL2100 boards typically use all four ports in the asynchronous serial mode. Serial Ports B and C are used for RS-232 communication, and Serial Port D is used for RS-485 communica- tion. The BL2100 uses an 11.0592 MHz crystal, which is doubled to 22.1184 MHz. At this frequency, the BL2100 supports standard asynchronous baud rates up to a maximum of 230,400 bps. 3.3.1 RS-232 The BL2100 RS-232 serial communication is supported by an RS-232 transceiver. This transceiver provides the voltage output, slew rate, and input voltage immunity required to meet the RS-232 serial communication protocol. Basically, the chip translates the Rabbit 2000’s CMOS/TTL signals to RS-232 signal levels. Note that the polarity is reversed in an RS-232 circuit so that a +5 V output becomes approximately -10 V and 0 V is output as +10 V. The RS-232 transceiver also provides the proper line loading for reliable commu- nication. RS-232 can be used effectively at the BL2100’s maximum baud rate for distances of up to 15 m. 3.3.2 RS-485 The BL2100 has one RS-485 serial channel, which is connected to the Rabbit 2000 Serial Port D through an RS-485 transceiver. The half-duplex communication uses the Rabbit 2000’s PB6 pin to control the transmit enable on the communication line. User’s Manual 23 The BL2100 can be used in an RS-485 multidrop network. Connect the 485+ to 485+ and 485– to 485– using single twisted-pair wires (nonstranded, tinned) as shown in Figure 13. Note that a common ground is recommended. �&)=1+�&%8)>>%1+%+ ��� ���� ��� ��������������� ��� ���� ��� ��� ��������������� ��� �� ��� �� ������� �� ���6 � ���� � ���� ��� � ���� ��� ���� ��������������� ��� Figure 13. BL2100 Multidrop Network 24 Smartcat (BL2100) ��� ��� ��� ���� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ���� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ��� ���� ��� ���� ��� ���� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� �� ��� ��� �#$$%&’ ���� ��� ���� ��� ��� ���� ��� ���� ��� ���� ���� ���� ���� ���� ���� ���� ��� �� ��� ���� ��� ���� ���� ��� �� �������������������������������������������������������!������!�����!������!������!���������������������������������������������� ��� The BL2100 comes with a 220  termination resistor and two 681  bias resistors installed and enabled with jumpers across pins 1–2 and 5–6 on header JP1, as shown in Figure 14. �� ���� �� �� �� ��� ��� ��� ��� ��� ��� ��� ���� ��� ��� �� ����� ���� � � ���� � ���� �� ���� �� ���� ��� �� ��� ���� ���� ��� ������ ���� ���� ���� ���� ������ �� �� ����� � � ���� � �� ��� ��� ���� ��� ��� ��� ��� �� ���� ��� ���� �� �� ��� ���� ��� ����� �� ����� ��� ����� ���� ���� ��� ��� ��� � � � ���6 ��� ���� ���� ��� -�.���) ��� ���� ���� ��� ��� ��� ��� ��� ��� ���� ���� ��� �������� �� ������ ��� ��� ���� "�/���� ��� ��� ���� ��� ��� ��� ��� ���� ��� ��� �� ��� ���� �� ���� � � � ��� ��� ���� ��� ��� ��� �� ��� ��� ��� ��� �� ��� ���� ��� �� �� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Figure 14. RS-485 Termination and Bias Resistors For best performance, the bias and termination resistors in a multidrop network should only be enabled on both end nodes of the network. Disable the termination and bias resis- tors on any intervening BL2100 units in the network by removing both jumpers from header JP1. TIP: Save the jumpers for possible future use by “parking” them across pins 1–3 and 4–6 of header JP1. Pins 3 and 4 are not otherwise connected to the BL2100. User’s Manual 25 ���� ��� ���� ��� ��� ���� ���� ���� ���� �� �� (� �� �� �� �� �� �� �� �� �� �� (� �� �� �� ��� ��� ��� ��� �� �� �� ��� �� �� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ���� �� �� (� �� !�� �� � ��������� ���������������������������������������������������������������������������������������������������������!"������������������������������������������������������������������������������������������������ 3.3.3 Ethernet Port Figure 15 shows the pinout for the Ethernet port (J2 on the BL2100 module). Note that there are two standards for numbering the pins on this connector—the convention used here, and numbering in reverse to that shown. Regardless of the numbering convention followed, the pin positions relative to the spring tab position (located at the bottom of the RJ-45 jack in Figure 15) are always absolute, and the RJ-45 connector will work properly with off-the-shelf Ethernet cables. ��?����� � � �9���:�@� �9���:�@6 �9���:�@� �9���:�@6 ��’!������ ��’!����.3 Figure 15. RJ-45 Ethernet Port Pinout RJ-45 pinouts are sometimes numbered opposite to the way shown in Figure 15. Two LEDs are placed next to the RJ-45 Ethernet jack, one to indicate an Ethernet link (LNK) and one to indicate Ethernet activity (ACT). The transformer/connector assembly ground is connected to the BL2100 module printed circuit board digital ground via a 0  resistor “jumper,” R29, as shown in Figure 16. ������������������� ��� ����� ������� ������ ������ Figure 16. Isolation Resistor R29 The factory default is for the 0  resistor “jumper” at R29 to be installed. In high-noise environments, remove R29 and ground the transformer/connector assembly directly through the chassis ground. This will be especially helpful to minimize ESD and/or EMI problems. 26 Smartcat (BL2100) 3.3.4 Programming Port The RabbitCore module on the BL2100 has a 10-pin programming header. The program- ming port uses the Rabbit 2000’s Serial Port A for communication. Dynamic C uses the programming port to download and debug programs. The programming port is also used for the following operations. • Cold-boot the Rabbit 2000 on the RabbitCore module after a reset. • Remotely download and debug a program over an Ethernet connection using the RabbitLink EG2110. • Fast copy designated portions of flash memory from one Rabbit-based board (the master) to another (the slave) using the Rabbit Cloning Board. In addition to Serial Port A, the Rabbit 2000 startup-mode (SMODE0, SMODE1), status, and reset pins are available on the serial programming port. The two startup mode pins determine what happens after a reset—the Rabbit 2000 is either cold-booted or the program begins executing at address 0x0000. The status pin is used by Dynamic C to determine whether a Rabbit microprocessor is present. The status output has three different programmable functions: 1. It can be driven low on the first op code fetch cycle. 2. It can be driven low during an interrupt acknowledge cycle. 3. It can also serve as a general-purpose output. The /RESET_IN pin is an external input that is used to reset the Rabbit 2000 and the onboard peripheral circuits on the RabbitCore module. The serial programming port can be used to force a hard reset on the RabbitCore module by asserting the /RESET_IN signal. Alternate Uses of the Serial Programming Port All three clocked Serial Port A signals are available as • a synchronous serial port • an asynchronous serial port, with the clock line usable as a general CMOS input The programming port may also be used as a serial port once the application is running. The SMODE pins may then be used as inputs and the status pin may be used as an output. Refer to the Rabbit 2000 Microprocessor User’s Manual for more information. User’s Manual 27 ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� �� ��� ��� ��� �#$$%&’ ���� ��� ���� ��� ���� ��� ��� ���� ��� ���� ���� ���� ���� ���� ���� ���� ��� �� ��� ���� ��� ���� ���� ��� �� �������������������������������������������������������!������!�����!������!������!���������������������������������������������� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� �� ��� ��� �#$$%&’ ���� ��� ���� ��� ���� ��� ��� ���� ��� ���� ���� ���� ���� ��� ���� ���� ���� �� ��� ���� ��� ���� ���� ��� �� ��� �������������������������������������������������������!������!�����!������!������!���������������������������������������������� 3.4 Programming Cable The programming cable is used to connect the programming port of the RabbitCore module to a PC serial COM port. The programming cable converts the RS-232 voltage levels used by the PC serial port to the TTL voltage levels used by the Rabbit 2000. When the PROG connector on the programming cable is connected to the RabbitCore module’s programming header, programs can be downloaded and debugged over the serial interface. The DIAG connector of the programming cable may be used on the programming header of the RabbitCore module with the module operating in the Run Mode. This allows the pro- gramming port to be used as a regular serial port. 3.4.1 Changing Between Program Mode and Run Mode The BL2100 is automatically in Program Mode when the PROG connector on the pro- gramming cable is attached to the RabbitCore module, and is automatically in Run Mode when no programming cable is attached. When the Rabbit 2000 is reset, the operating mode is determined by the status of the SMODE pins. When the programming cable’s PROG connector is attached, the SMODE pins are pulled high, placing the Rabbit 2000 in the Program Mode. When the programming cable’s PROG connector is not attached, the SMODE pins are pulled low, causing the Rabbit 2000 to operate in the Run Mode. ������������ �������� ��5�� ��5�� �� �� �� �� �� �� ��� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ���� �� ���� ���� �� ���� ���� ��� ���� �� �� �� ���� �� ��� ��� ��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� �� ���� ���� �� �� ���� ���� �� ��� �� ��� ��� ���� ��� ��� ���� �� ��� �� ��� ��� ��� ��� ��� ���� ���� �� �� ��� ���� �� �� ��� ��� ����� ��� ���� �� �� ��� ����� ��� ���� ���� ��� ��� ���� ���� ��� ��� ��� ��� ��� ���� ���� ���� ���� ��� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ���� �������� ���� ���� �������� �� ��� �� ��� ���� ��� ��� ���� ��� ���� ��� ��� ��� ��� ���� ��� ��� ��� ���� ��� ���� ��� ��� ��� ��� �� ��� ���� ��� ���� �� �� ���� ���� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� �� ��� �� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� �� ���� ��� �� ���� ���� ��� �� ��� �� �� ��� ��� ��� ��� ��� ��� ���� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ��� ��� ���� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ��!� �%+ �)*)&%+�%+,% ./&012�3&#- ����������������� �) �������-)&$ ����4�3#��11�5��������-.�-�6���7 �������������� !�� �"������6�/.�-����������.�-�’��-��66.�-���0��8 Figure 17. BL2100 Program Mode and Run Mode Set-Up A program “runs” in either mode, but can only be downloaded and debugged when the BL2100 is in the Program Mode. Refer to the Rabbit 2000 Microprocessor User’s Manual for more information on the pro- gramming port and the programming cable. 28 Smartcat (BL2100) ���� ��� ���� ��� ��� ���� ���� ���� ���� �� �� �� �� �� �� (� �� �� �� �� �� �� (� �� �� �� ��� ��� ��� ��� �� �� �� ��� �� �� ��� �� ��� ������ ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ���� �� �� �� (� !�� ���� ��� ���� ��� ��� ���� ���� ���� ���� �� �� � ��������� ���������������������������������������������������������������������������������������������������������!"������������������������������������������������������������������������������������������������ � ��������� ���������������������������������������������������������������������������������������������������������!"������������������������������������������������������������������������������������������������ 3.5 A/D Converter Inputs The single 14-channel A/D converter chip used in the BL2100 has a resolution of 12 bits (models BL2100 and BL2120 only). Eleven of the 14 channels are available externally, and three are used internally for the reference voltages: 4.096 V (V ), 2.048 V (V /2), ref ref and Analog Ground. These internal voltages can be used to check the functioning of the A/D converter chip. The A/D converter chip only measures voltages between 0 V and the applied reference voltage. Therefore, each external input has circuitry that provides scaling and buffering. All 11 external inputs are scaled and buffered to provide the user with an input impedance of 1 M and a range of -10.24 V to +10.24 V. Figure 18 shows the buffered A/D converter inputs. ����17 ��� ����2� � �� !����� �)�!�� !����� ��A� !���7 ��17 !��� Figure 18. Buffered A/D Converter Inputs The op-amp is powered from the +V supply. The 1 M and 200 k resistors set the gain (scale factor), which is 0.2 in this case. This results in a dynamic input range of 0.2 × 20.48 V or 4.096 V. The center point of this range is set by the 1.707 V reference voltage. With the reference set to 1.707 V, the center point is at 0 V and the input voltage can range from -10.24 V to +10.24 V. To maintain the best accuracy, the input range should be limited to -10.0 V to +10.0 V. The A/D converter inputs are factory-calibrated and the calibration constants are stored in flash memory. You may calibrate the A/D converter inputs at a later time using the software functions described in Section 4.4.4, “A/D Converter Inputs.” The GETCALIB.C and the SAVECALIB.C sample programs in the Dynamic C SAMPLES\BL2100\ Calib_Save_Retrieve folder illustrate how to retrieve and save calibration data. User’s Manual 29 3.6 D/A Converter Outputs Only the BL2100 and the BL2120 models are stuffed with D/A converters. The D/A con- verter outputs are buffered and scaled to provide an output from 0 V to +10 V. NOTE: The D/A converter output voltage depends on the original power-supply voltage, +RAW, so if +RAW < 13 V, the maximum D/A converter output will be +RAW – 3 V. Figure 19 shows the D/A converter outputs. ����17 ����2� ����2� �!� �!��� ��9��2� �!��� !���7 !��� Figure 19. D/A Converter Outputs To stay within the maximum power dissipation of the D/A converter circuit, the maximum D/A converter output current is 10 mA per channel for a power-supply voltage, +RAW, up to 15 V, and drops to 2 mA per channel for a power-supply voltage of 36 V. �� � �� �� � �)3%&��=--*’��)*$#,%E���!"�C�D Figure 20. Maximum D/A Converter Output Current vs. Power-Supply Voltage The D/A converter inputs are factory-calibrated and the calibration constants are stored in flash memory. You may calibrate the A/D converter inputs at a later time using the software functions described in Section 4.4.5, “D/A Converter Outputs.” The GETCALIB.C and the SAVECALIB.C sample programs in the Dynamic C SAMPLES\BL2100\ Calib_Save_Retrieve folder illustrate how to retrieve and save calibration data. 30 Smartcat (BL2100) �5!��)1B%&$%&��=$-=$ �=&&%1$�C>!D 3.7 Analog Reference Voltage Circuit Figure 21 shows the analog voltage reference circuit. �� ����� ������� ����17 ���2� ��9��2� ��9��2� ����� ������� ������� ������� ���2� ����17 ��9��2� ����17 ��9��2� ����17 Figure 21. Analog Reference Voltages This circuit generates the 4.096 V reference voltage, which is used by the A/D converter and by the D/A converters. This sets the operating range of the A/D converter and the D/A converters (0–10 V). To use the full accuracy of the A/D converter and the D/A convert- ers, this voltage must be accurate to the same degree. The reference zener diode in combination with the 300  resistor form a shunt regulator. The 4.096 V reference voltage then feeds the A/D converter, the D/A converters, and the voltage divider composed of the 10 k and the 14 k resistors. The voltage divider gener- ates a second reference voltage of 1.707 V to feed the four op-amps for the buffered A/D converter inputs. The 2.048 V reference voltage is also used to generate the 2.5 V reference for D-REF used in the digital output circuit. User’s Manual 31 �9����� &%F�+0)+% 3.8 Memory 3.8.1 SRAM The BL2100 module is designed to accept 128K to 512K of SRAM packaged in an SOIC case. The standard BL2100 modules come with 128K of SRAM. 3.8.2 Flash Memory The BL2100 is also designed to accept 128K to 512K of flash memory packaged in a TSOP case. The standard BL2100 modules comes with one 256K flash memory. NOTE: Rabbit recommends that any customer applications should not be constrained by the sector size of the flash memory since it may be necessary to change the sector size in the future. A Flash Memory Bank Select jumper configuration option based on 0  surface-mounted resistors exists at header JP2 on the RabbitCore module. This option, used in conjunction with some configuration macros, allows Dynamic C to compile two different co-resident programs for the upper and lower halves of the 256K flash in such a way that both pro- grams start at logical address 0000. This is useful for applications that require a resident download manager and a separate downloaded program. See Technical Note 218, Imple- menting a Serial Download Manager for a 256K Flash, for details. 32 Smartcat (BL2100) 3.9 Other Hardware 3.9.1 External Interrupts The BL2100 is already configured to support external interrupts on pin 11 of screw-terminal header J11. The external interrupt circuit is shown in Figure 22. ��� �@$%&1#*��1$%&&=-$ �� �%G=%.$ ����� �� �� �1$%&&=-$��%G=%.$�H� �� �� ��� ��2� �+,% �%$%8$)&. ����� �� �1$%&&=-$��%G=%.$�H� �� &�����’�������$����6��%� Figure 22. Use of Rabbit 2000 External Interrupt In addition to its primary use as an external interrupt, pin 11 of screw-terminal header J11 may also be used as a CMOS-level digital input or output, or to generate a PWM signal. When using pin 11 as a CMOS-level digital input or output, use the standard Rabbit 2000 register function configuration for PE5 (on Parallel Port E) to set this pin up for your intended use. Be aware that there is no provision for protection against voltage spikes while PE5 is pulled up to Vcc with a 27 k pull-up resistor. The sample program PWM.C in the Dynamic C SAMPLES/BL2100 directory illustrates how to use pin 11 of screw-terminal header J11 to generate a PWM signal. User’s Manual 33 3.9.2 Clock Doubler The BL2100 takes advantage of the Rabbit 2000 microprocessor’s internal clock doubler. A built-in clock doubler allows half-frequency crystals to be used to reduce radiated emis- sions. The 22.1 MHz frequency is generated using an 11.0592 MHz crystal. The clock doubler is disabled automatically in the BIOS for crystals with a frequency above 12.9 MHz. The clock doubler may be disabled if 22.1 MHz clock speeds are not required. Disabling the Rabbit 2000 microprocessor’s internal clock doubler will reduce power consumption and further reduce radiated emissions. The clock doubler is disabled with a simple config- uration macro as shown below. 1. Select the “Defines” tab from the Dynamic C Options > Project Options menu. 2. Add the line CLOCK_DOUBLED=0 to always disable the clock doubler. The clock doubler is enabled by default, and usually no entry is needed. If you need to specify to always enable that the clock doubler is always enabled, add the line CLOCK_DOUBLED=1 the clock doubler. The clock speed will be doubled as long as the crystal frequency is less than or equal to 26.7264 MHz. 3. Click OK to save the macro. The clock doubler will now remain off whenever you are in the project file where you defined the macro. 3.9.3 Spectrum Spreader BL2100 boards that carry the CE mark on their RabbitCore module have a Rabbit 2000 microprocessor that features a spectrum spreader, which helps to mitigate EMI problems. By default, the spectrum spreader is on automatically for BL2100 boards that carry the CE mark when used with Dynamic C 7.30 or later versions, but the spectrum spreader may also be turned off or set to a stronger setting. The means for doing so is through a simple configuration macro as shown below. . 1. Select the “Defines” tab from the Dynamic C Options > Project Options menu. 2. Normal spreading is the default, and usually no entry is needed. If you need to specify normal spreading, add the line ENABLE_SPREADER=1 For strong spreading, add the line ENABLE_SPREADER=2 To disable the spectrum spreader, add the line ENABLE_SPREADER=0 NOTE: The strong spectrum-spreading setting is unnecessary for the BL2000. 3. Click OK to save the macro. The spectrum spreader will now be set to the state specified by the macro value whenever you are in the project file where you defined the macro. There is no spectrum spreader functionality for BL2100 boards that do not carry the CE mark on their RabbitCore module or when using any BL2100 with a version of Dynamic C prior to 7.30. 34 Smartcat (BL2100) 4. SOFTWARE Dynamic C is an integrated development system for writing embedded software. It runs on an IBM-compatible PC and is designed for use with single-board computers and other devices based on the Rabbit microprocessor. Chapter 4 provides the libraries, function calls, and sample pro- grams related to the BL2100. 4.1 Running Dynamic C You have a choice of doing your software development in the flash memory or in the static RAM included on the BL2100. The flash memory and SRAM options are selected with the Options > Compiler menu. The advantage of working in RAM is to save wear on the flash memory, which is limited to about 100,000 write cycles. The disadvantage is that the code and data might not both fit in RAM. NOTE: An application can be developed in RAM, but cannot run standalone from RAM after the programming cable is disconnected. Standalone applications can only run from flash memory. NOTE: Do not depend on the flash memory sector size or type. Due to the volatility of the flash memory market, the BL2100 and Dynamic C were designed to accommodate flash devices with various sector sizes. BL2100s that are special-ordered with 512K flash/512K SRAM memory options have two 256K flash memories. By default, Dynamic C will use only the first flash memory for program code in these BL2100s. Uncomment the USE_2NDFLASH_CODE macro within the RABBITBIOS.C file in the Dynamic C BIOS folder to allow the second flash memory to hold any program code that is in excess of the available memory in the first flash. User’s Manual 35 Developing software with Dynamic C is simple. Users can write, compile, and test C and assembly code without leaving the Dynamic C development environment. Debugging occurs while the application runs on the target. Alternatively, users can compile a program to an image file for later loading. Dynamic C runs on PCs under Windows 2000 and ® ® later—see Rabbit’s Technical Note TN257, Running Dynamic C With Windows Vista , for additional information if you are using a Dynamic C release prior to v. 9.60 under Windows Vista. Programs can be downloaded at baud rates of up to 460,800 bps after the program compiles. Dynamic C has a number of standard features. • Full-feature source and/or assembly-level debugger, no in-circuit emulator required. • Royalty-free TCP/IP stack with source code and most common protocols. • Hundreds of functions in source-code libraries and sample programs:  Exceptionally fast support for floating-point arithmetic and transcendental functions.  RS-232 and RS-485 serial communication.  Analog and digital I/O drivers. 2  I C, SPI, GPS, file system.  LCD display and keypad drivers. • Powerful language extensions for cooperative or preemptive multitasking • Loader utility program to load binary images into Rabbit-based targets in the absence of Dynamic C. • Provision for customers to create their own source code libraries and augment on-line help by creating “function description” block comments using a special format for library functions. • Execution tracing and symbolic stack tracing. • Standard debugging features:  Breakpoints—Set breakpoints that can disable interrupts.  Single-stepping—Step into or over functions at a source or machine code level, µC/OS-II aware.  Code disassembly—The disassembly window displays addresses, opcodes, mnemonics, and machine cycle times. Switch between debugging at machine-code level and source-code level by simply opening or closing the disassembly window.  Watch expressions—Watch expressions are compiled when defined, so complex expressions including function calls may be placed into watch expressions. Watch expressions can be updated with or without stopping program execution.  Register window—All processor registers and flags are displayed. The contents of general registers may be modified in the window by the user.  Stack window—shows the contents of the top of the stack.  Hex memory dump—displays the contents of memory at any address.  STDIO window—printf outputs to this window and keyboard input on the host PC can be detected for debugging purposes. printf output may also be sent to a serial port or file. 36 Smartcat (BL2100) 4.1.1 Upgrading Dynamic C 4.1.1.1 Patches and Bug Fixes Dynamic C patches that focus on bug fixes are available from time to time. Check our Web site www.rabbit.com/support/ for the latest patches, workarounds, and bug fixes. The default installation of a patch or bug fix is to install the file in a directory (folder) dif- ferent from that of the original Dynamic C installation. Rabbit recommends using a differ- ent directory so that you can verify the operation of the patch without overwriting the existing Dynamic C installation. If you have made any changes to the BIOS or to libraries, or if you have programs in the old directory (folder), make these same changes to the BIOS or libraries in the new directory containing the patch. Do not simply copy over an entire file since you may overwrite a bug fix; of course, you may copy over any programs you have written. Once you are sure the new patch works entirely to your satisfaction, you may retire the existing installation, but keep it available to handle legacy applications. 4.1.2 Extras Dynamic C installations are designed for use with the board they are included with, and are included at no charge as part of our low-cost kits. Starting with Dynamic C version 9.60, Dynamic C includes the popular µC/OS-II real- time operating system, point-to-point protocol (PPP), FAT file system, RabbitWeb, and other select libraries. Rabbit also offers for purchase the Rabbit Embedded Security Pack featuring the Secure Sockets Layer (SSL) and a specific Advanced Encryption Standard (AES) library. In addition to the Web-based technical support included at no extra charge, a one-year telephone-based technical support subscription is also available for purchase. Visit our Web site at www.rabbit.com for further information and complete documentation. User’s Manual 37 4.2 Sample Programs Sample programs are provided in the Dynamic C Samples folder. The sample program PONG.C demonstrates the output to the STDIO window. The various directories in the Samples folder contain specific sample programs that illus- trate the use of the corresponding Dynamic C libraries. The BL2100 folder provides sample programs specific to the BL2100. Each sample pro- gram has comments that describe the purpose and function of the program. Follow the instructions at the beginning of the sample program. To run a sample program, open it with the File menu (if it is not still open), compile it using the Compile menu, and then run it by selecting Run in the Run menu. The BL2100 must be connected to a PC using the programming cable as described in Section 2.1, “BL2100 Connections.” More complete information on Dynamic C is provided in the Dynamic C User’s Manual. TCP/IP specific functions are described in the Dynamic C TCP/IP User’s Manual. Infor- mation on using the TCP/IP features and sample programs is provided in Section 5, “Using the TCP/IP Features.” 4.2.1 Digital I/O The following sample programs are found in the IO subdirectory in SAMPLES\BL2100. • DIGIN.C—Demonstrates the use of the digital inputs. Using the Demonstration Board, you can see an input channel toggle from HIGH to LOW when pressing a pushbutton on the Demonstration Board. See Appendix D for hookup instructions for the Demon- stration Board. DIGOUT.C—Demonstrates the use of the high-current outputs configured as either • sinking or sourcing outputs. Using the Demonstration Board, you can see an LED tog- gle on/off via a high-current output. See Appendix D for hookup instructions for the Demonstration Board. PWM.C—Demonstrates the use of Timer B to generate a PWM signal on PE5-INT • located on header J11/J10. The program generates a 42 Hz PWM signal with the duty cycle adjustable from 1 to 99%. 4.2.2 Serial Communication The following sample programs are found in the RS232 subdirectory in SAMPLES\BL2100. • PUTS.C—Transmits and then receives an ASCII string on Serial Ports B and C. It also displays the serial data received from both ports in the STDIO window. • RELAYCHR.C—This program echoes characters over Serial Port B to Serial Port C. It must be run with a serial utility such as Hyperterminal. 38 Smartcat (BL2100) The following sample programs are found in the RS485 subdirectory in SAMPLES\BL2100. • MASTER.C—This program demonstrates a simple RS-485 transmission of lower case letters to a slave BL2100. The slave will send back converted upper case letters back to the master BL2100 and display them in the STDIO window. Use SLAVE.C to program the slave BL2100. • SLAVE.C—This program demonstrates a simple RS-485 transmission of lower case letters to a slave BL2100. The slave will send back converted upper case letters back to the master BL2100 and display them in the STDIO window. Use MASTER.C to program the master BL2100. 4.2.3 A/D Converter Inputs The following sample programs are found in the ADC subdirectory in SAMPLES\BL2100. • AD_CALIB.C—Demonstrates how to recalibrate an A/D converter channel using two knownvoltages to generate two coefficients, gain and offset, which are rewritten into the user block data area. The voltage that is being monitored is displayed continuously. Make sure that you don't exceed the voltage range of the A/D converter input channel. NOTE: This sample program will overwrite the calibration constants set at the factory. • AD1.C—Demonstrates how to access the A/D internal test voltages in both the TLC2543 and TLC1543 A/D converter chips. The program reads the A/D internal volt- STDIO window to display the RAW data. ages and then uses the • AD2.C—Demonstrates how to access the A/D channels using the anaInVolt func- tion. The program uses the STDIO window to display the voltage that is being moni- tored. • AD3.C—Demonstrates how to access the A/D converter channels with the low-level A/D driver. The program uses the STDIO window to display the voltage that is being monitored on all the A/D channels using the low-level A/D driver. • AD4.C—Demonstrates how to use the A/D converter channels with the low-level A/D driver. The program uses the STDIO window to display the voltage (average of 10 sam- ples) that is being monitored on all the A/D converter channels using the low-level A/D driver. 4.2.4 D/A Converter Outputs The following sample programs are found in the DAC subdirectory in SAMPLES\BL2100. • DACAL.C—This program demonstrates how to recalibrate an D/A converter channel using two known voltages, and defines the two coefficients, gain and offset, that will be rewritten into the D/A converter's EEPROM simulated in flash memory. NOTE: This sample program will overwrite the calibration constants set at the factory. • DAOUT1.C—This program outputs a voltage that can be read with a voltmeter. The out- put voltage is computed using the calibration constants that are read from the EEPROM simulated in flash memory. User’s Manual 39 • DAOUT2.C—This program demonstrates the use of both the D/A and the A/D convert- ers. The user selects both the D/A converter and A/D channel to be used, then sets the D/A converter output voltage to be read by the A/D channel. All activity will be dis- played in the STDIO window. 4.2.5 Using Calibration Constants The following sample programs are found in the Calib_Save_Retrieve subdirectory in SAMPLES\BL2100. Note that both sample programs prompt you to use a serial number for the BL2100. This serial number can be any 5-digit number of your choice, and will be unique to a particular BL2100. Do not use the MAC address on the bar code label of the RabbitCore module attached to the BL2100 since you may at some later time use that par- ticular RabbitCore module on another BL2100, and the previously saved calibration data would no longer apply. • GETCALIB.C—This program demonstrates how to retrieve your analog calibration data to rewrite it back to the simulated EEPROM in flash with using a serial utility such as Tera Term. NOTE: Calibration data must be saved previously in a file by the sample program SAVECALIB.C. • SAVECALIB.C—This program demonstrates how to save your analog calibration coef- ficients using a serial port and a PC serial utility such as Tera Term. NOTE: Use the sample program GETCALIB.C to retrieve the data and rewrite it to the single-board computer. 4.2.6 Real-Time Clock If you plan to use the real-time clock functionality in your application, you will need to set the real-time clock. You may set the real-time clock using the SETRTCKB.C sample pro- gram from the Dynamic C SAMPLES\RTCLOCK folder. The RTC_TEST.C sample program in the Dynamic C SAMPLES\RTCLOCK folder provides additional examples of how to read and set the real-time clock 4.2.7 TCP/IP Sample Programs TCP/IP sample programs are described in Chapter 5. 4.2.8 LCD/Keypad Module Sample Programs Sample programs for the LCD/keypad module are described in Section C.7. 40 Smartcat (BL2100) 4.3 BL2100 Libraries Two library directories provide libraries of function calls that are used to develop applica- tions for the BL2100. • BL2100—libraries associated with features specific to the BL2100. The functions in the BL21xx.LIB library are described in Section 4.4, “BL2100 Function APIs,”. • TCPIP—libraries specific to using TCP/IP functions on the BL2100. Two other library directories provide libraries of function calls that are used to develop applications for the optional BL2100 LCD/keypad module. • DISPLAYS\GRAPHIC—libraries associated with LCD display. • KEYPADS–libraries associated with the keypad. The LCD/keypad module functions are described in Section C.8. Other generic functions applicable to all devices based on the Rabbit 2000 microprocessor are described in the Dynamic C Function Reference Manual. User’s Manual 41 4.4 BL2100 Function APIs 4.4.1 Board Initialization void brdInit (void); Call this function at the beginning of your program. This function initializes the system I/O ports and loads all the A/D converter and D/A converter calibration constants from flash memory into SRAM for use by your program. If the LCD/keypad module is installed, this function will turn off LED DS1 to indi- cate that the initialization was successful. The ports are initialized according to Table A-3. SEE ALSO digOut, digIn, serMode, anaOut, anaIn, anaInDriver, anaOutDriver 42 Smartcat (BL2100) 4.4.2 Digital I/O void digOutConfig(unsigned int outputMode); Each of the BL2100 high-current outputs (OUT00–OUT15) has the capability of being configured in software as either sinking or sourcing using the digOutConfig function. Execute digOutConfig at the start of your application to initially set OUT00–OUT15 to be OFF for the type of circuit that you have, either sinking or sourcing. To properly set the high-current outputs, you will need to decide for each channel whether the output is sinking or sourcing. The digOutConfig function will then ensure that each output remains OFF when the digital output control interface is initialized. The individual high-current outputs remain activated until you activate the desired output driver(s)/channel(s) using digOut. NOTE: The brdInit function must be executed before calling digOutConfig. NOTE: You must execute the digOutConfig function to set the high-current drivers to be either sinking or sourcing. A runtime error will occur in digOut if digOutConfig has not executed. NOTE: The extra digital outputs resulting from the reconfiguration of IN16–IN23 as digital out- puts are sinking outputs only and cannot be configured with digOutConfig. PARAMETER outputMode is a 16-bit parameter where each bit corresponds to one of the following high-current outputs. Bit 15 = high-current output channel OUT15 Bit 14 = high-current output channel OUT14 Bit 13 = high-current output channel OUT13 Bit 12 = high-current output channel OUT12 Bit 11 = high-current output channel OUT11 Bit 10 = high-current output channel OUT10 Bit 9 = high-current output channel OUT09 Bit 8 = high-current output channel OUT08 Bit 7 = high-current output channel OUT07 Bit 6 = high-current output channel OUT06 Bit 5 = high-current output channel OUT05 Bit 4 = high-current output channel OUT04 Bit 3 = high-current output channel OUT03 Bit 2 = high-current output channel OUT02 Bit 1 = high-current output channel OUT01 Bit 0 = high-current output channel OUT00 The high-current outputs can be configured to be sinking or sourcing outputs by setting the correspond- ing bit to an 0 or 1: 0 = sinking, 1 = sourcing. RETURN VALUE None. SEE ALSO brdInit, digOut EXAMPLE outputMode = 0x0ff1; // Outputs OUT15–OUT12 = Sinking // Outputs OUT11–OUT08 = Sourcing // Outputs OUT07–OUT04 = Sourcing // Outputs OUT03–OUT01 = Sinking // Output OUT00 = Sourcing User’s Manual 43 void digOut(int channel, int value); Sets the state of a digital output (OUT00–OUT15). Remember to call the brdInit and the digOutConfig functions before executing this function. A runtime error will occur for the following conditions: 1. channel or value out of range. 2. brdInit or digOutConfig was not executed before executing digOut. PARAMETERS channel is the output channel number (0–15, 0–23 if IN16–IN23 are configured as digital outputs). value is the output value (0 or 1). SEE ALSO brdInit, digIn, digOutConfig int digIn(int channel); Reads the state of an input channel. A run-time error will occur for the following conditions: 1. channel out of range. 2. brdInit was not executed before executing digIn. PARAMETER channel is the input channel number (0–23) RETURN VALUE The state of the input (0 or 1). SEE ALSO brdInit, digOut 44 Smartcat (BL2100) 4.4.3 Serial Communication Library files included with Dynamic C provide a full range of serial communications sup- port. The RS232.LIB library provides a set of circular-buffer-based serial functions. The PACKET.LIB library provides packet-based serial functions where packets can be delim- ited by the 9th bit, by transmission gaps, or with user-defined special characters. Both libraries provide blocking functions, which do not return until they are finished transmit- ting or receiving, and nonblocking functions, which must be called repeatedly until they are finished. For more information, see the Dynamic C User’s Manual and Technical Note 213, Rabbit Serial Port Software. Use the following function calls with the BL2100. int serMode(int mode); User interface to set up BL2100 serial communication lines. Call this function after serXOpen(). Whether you are opening one or multiple serial ports, this function must be executed after executing the last serXOpen function AND before you start using any of the serial ports. This function is non-reentrant. If Mode 1 is selected, CTS/RTS flow control is exercised using the serCflowcontrolOn and serCflowcontrolOff functions from the RS232.LIB library. PARAMETER mode is the defined serial port configuration. Serial Port Mode B C D 0 RS-232, 3-wire RS-232, 3-wire RS-485 1 RS-232, 5-wire CTS/RTS RS-485 RETURN VALUE 0 if valid mode, 1 if not. SEE ALSO ser485Tx, ser485Rx void ser485Tx(void); Sets pin 3 (DE) high to enable the RS-485 transmitter. SEE ALSO serMode, ser485Rx void ser485Rx(void); Resets pin 3 (DE) low to disable the RS-485 transmitter. SEE ALSO serMode, ser485Tx, serCflowcontrolOn, serCflowcontrolOff User’s Manual 45 4.4.4 A/D Converter Inputs The functions in this section apply only to the BL2100 and the BL2120 models. int anaInCalib(int channel, int value1, float volts1, int value2, float volts2); Calibrates the response of the A/D converter channel as a linear function using the two conversion points provided. Gain and offset constants are calculated and placed into global table _adcCalib. PARAMETERS channel is the A/D converter input channel (0–10). value1 is the first A/D converter channel value (0–4095). volts1 is the voltage corresponding to the first A/D converter channel value (-10 V to +10 V). value2 is the second A/D converter channel value (0–4095). volts2 is the voltage corresponding to the second A/D converter channel value (-10 V to +10 V). RETURN VALUE 0 if successful. -1 if not able to make calibration constants. SEE ALSO anaIn, anaInVolts, brdInit 46 Smartcat (BL2100) int anaInDriver(unsigned char cmd, char len); Reads the voltage of an analog input channel by serially clocking out an 8-bit command to the A/D con- verter. The driver has been designed for the Texas Instruments TLC2543 A/D converter used on the BL2100 and the BL2120. PARAMETERS cmd is formatted as follows. TLC2543 commands D7–D4 Channel 0–10 Channel 11 = (V - V )/2 ref+ ref- Channel 12 = V ref- Channel 13 = V ref+ Channel 14 = software powerdown D3–D2 Output data length: 01—8 bits 00—12 bits (normally used as default) 11—16 bits (not supported by driver) D1 Output data format 0—MSB first 1—LSB first (not supported by driver) D0 Mode of operation 0—Unipolar (normally used as default) 1—Bipolar len is the output data length: 0 = 12-bit mode 1 = 8-bit mode RETURN VALUE A value corresponding to the voltage on the A/D converter input channel, which will be: 0–4095 for 12-bit A/D conversions 0–255 for 8-bit A/D conversions SEE ALSO anaIn, anaInVolts, brdInit EXAMPLE Look at the sample programs in SAMPLES\BL2100\ADC. User’s Manual 47 int anaIn(unsigned int channel); Reads the state of an A/D converter input channel. PARAMETER channel is the A/D converter input channel (0–10) to read. RETURN VALUE A value corresponding to the voltage on the analog input channel (0–4095). SEE ALSO anaInVolts, anaInCalib, anaInfast, brdInit float anaInVolts(unsigned int channel); Reads the state of an A/D converter input channel and uses the previously set calibration constants to convert it to volts. PARAMETER channel is the A/D converter input channel (0–10). RETURN VALUE A voltage value corresponding to the voltage on the analog input channel. SEE ALSO anaIn, anaInCalib, brdInit int anaInEERd(unsigned int channel); Reads the calibration constants, gain, and offset from the simulated EEPROM in flash memory (located in reserved user block memory area 0x1C00–0x1FFF). PARAMETER channel is the A/D converter input channel (0–10). RETURN VALUE 0 if successful. -1 if address is invalid or out of range. SEE ALSO anaInEEWr, brdInit 48 Smartcat (BL2100) int anaInEEWr(unsigned int channel); Writes the calibration constants, gain, and offset to the simulated EEPROM in flash memory (located in reserved user block memory area 0x1C00–0x1FFF). PARAMETER channel is the A/D converter input channel (0–10) for which the calibration constants will be read. RETURN VALUE 0 if successful. -1 if address is invalid or out of range. SEE ALSO anaInEERd, brdInit User’s Manual 49 4.4.5 D/A Converter Outputs The functions in this section apply only to the BL2100 and the BL2120 models. int anaOutCalib(int channel, int value1, float volts1, int value2, float volts2); Calibrates the response of the D/A converter channel desired as a linear function using the two conver- sion points provided. Gain and offset constants are calculated and placed into global table _dacCalib. PARAMETERS channel is the D/A converter output channel (0–3). value1 is the first D/A converter value (0–4095). volts1 is the voltage corresponding to the first D/A converter value (0 V to +10 V). value2 is the second D/A converter value (0–4095). volts2 is the voltage corresponding to the second D/A converter value (0 V to +10 V). RETURN VALUE 0 if sucessful. -1 if not able to make calibration constants. SEE ALSO anaOut, anaOutVolts, brdInit 50 Smartcat (BL2100) void anaOutDriver(int power_control, int speed_control, int channel, unsigned int rawcount); Sets the voltage of a D/A converter output channel by serially clocking in 16 bits to a D/A converter using the following format: D15, D12 Register R1, Register R0 00—Write data to DAC OUTB 01—Write data to buffer 10—Write data to DAC OUTA 11—Reserved D14 Speed control 0—slow 1—fast (default) D13 Power control 0—normal (default) 1—powerdown D11–D0 Data bits, MSB–LSB (0–4095) PARAMETERS power_control is the D/A converter power control option (0—normal (default) or 1—powerdown). When the power-down mode is selected, the only other parameter that is used is the D/A converter chan- nel (channel). The values of the other parameters are not considered. Two D/A converter channels are affected when putting a D/A converter output in powerdown or normal mode. Powerdown Mode: When power_control equals 1 and channel is 0 or 1, then both D/A converter channels 0 and 1 are put in powerdown mode (channels 2 and 3 not affected). When power_control equals 1 and channel is 2 or 3, then both D/A converter channels 2 and 3 are put in powerdown mode (channels 0 and 1 not affected). Normal Mode: When power_control equals 1 and channel is 0 or 1, then both D/A converter channels 0 and 1 are put in normal mode. (channels 2 and 3 not affected). When power_control equals 1 and channel is 2 or 3, then both D/A converter channels 2 and 3 are put in normal mode (channels 0 and 1 not affected). User’s Manual 51 speed_control is the D/A converter power control option (0—slow or 1—fast (default)). Mode Speed vs. Power Dissipation 0—slow 12 µs access vs. 1 mA 1—fast (default) 3 µs access vs. 2.3 mA Test conditions from TI's data sheet (TLV5618A D/A converter) for the speed-control option: - No load. - All inputs are at GND or VDD. - D/A converter latch = 0x800. channel is the D/A converter output channel to write (0–3). rawcount is the data value corresponding to the desired voltage on the analog output channel (0–4095). RETURN VALUE None SEE ALSO anaOut, anaOutVolts, anaOutCalib void anaOut(unsigned int channel, unsigned int rawcount); Sets the voltage of a D/A converter output channel. PARAMETERS channel is the D/A converter output channel (0–3). rawcount is a data value corresponding to the voltage desired on the output channel (0–4095). RETURN VALUE 0 if sucessful. -1 if rawcount is more than 4095. SEE ALSO anaOutDriver, anaOutVolts, anaOutCalib void anaOutVolts(unsigned int ch, float voltage); Sets the voltage of a D/A converter output channel by using the previously set calibration constants to calculate the correct data values. PARAMETERS channel is the D/A converter output channel (0–3). voltage is the voltage desired on the output channel. RETURN VALUE None. SEE ALSO anaOut, anaOutCalib, brdInit 52 Smartcat (BL2100) int anaOutEERd(unsigned int channel); Reads the calibration constants, gain, and offset from the simulated EEPROM in flash memory (located in reserved user block memory area 0x1C00–0x1FFF). PARAMETER channel is the D/A converter output channel (0–3). RETURN VALUE 0 if successful. -1 if address or range is invalid. SEE ALSO anaOutEEWr, brdInit int anaOutEEWr(unsigned int channel); Writes the calibration constants, gain, and offset to the simulated EEPROM in flash memory (located in reserved user block memory area 0x1C00–0x1FFF). PARAMETER channel is the D/A converter output channel (0–3). RETURN VALUE 0 if successful. -1 if address or range is invalid. SEE ALSO anaOutEERd, brdInit User’s Manual 53 54 Smartcat (BL2100) 5. USING THE TCP/IP FEATURES Chapter 5 discusses using the TCP/IP features on the BL2100 and BL2110 boards. The TCP/IP feature is not available on BL2120 and BL2130 versions. 5.1 TCP/IP Connections Before proceeding you will need to have the following items. • If you don’t have Ethernet access, you will need at least a 10Base-T Ethernet card (available from your favorite computer supplier) installed in a PC. • Two RJ-45 straight through Ethernet cables and a hub, or an RJ-45 crossover Ethernet cable. The Ethernet cables and Ethernet hub are available from Rabbit in a TCP/IP tool kit. More information is available at www.rabbit.com. 1. Connect the AC adapter and the programming cable as shown in Chapter 2, “Getting Started.” 2. Ethernet Connections If you do not have access to an Ethernet network, use a crossover Ethernet cable to con- nect the BL2100 to a PC that at least has a 10Base-T Ethernet card. If you have Ethernet access, use a straight through Ethernet cable to establish an Ethernet connection to the BL2100 from an Ethernet hub. These connections are shown in Figure 23. BL2100 BL2100 Board Board User’s PC Ethernet cables Ethernet To additional crossover network cable Hub elements Direct Connection Direct Connection Using a Hub (Network of 2 computers) Figure 23. Ethernet Connections User’s Manual 55 The PC running Dynamic C through the serial programming port on the BL2100 does not need to be the PC with the Ethernet card. 3. Apply Power Plug in the AC adapter. The BL2100 is now ready to be used. NOTE: A hardware RESET is accomplished by unplugging the AC adapter, then plug- ging it back in, or by momentarily grounding the board reset input at pin 9 on screw- terminal header J2. When working with the BL2100, the green LNK light is on when a program is running and the board is properly connected either to an Ethernet hub or to an active Ethernet card. The orange ACT light flashes each time a packet is received. 56 Smartcat (BL2100) 5.2 TCP/IP Sample Programs We have provided a number of sample programs demonstrating various uses of TCP/IP for networking embedded systems. These programs require that you connect your PC and the BL2100 together on the same network. This network can be a local private network (pre- ferred for initial experimentation and debugging), or a connection via the Internet. 5.2.1 How to Set IP Addresses in the Sample Programs With the introduction of Dynamic C 7.30 we have taken steps to make it easier to run many of our sample programs. You will see a TCPCONFIG macro. This macro tells Dynamic C to select your configuration from a list of default configurations. You will have three choices when you encounter a sample program with the TCPCONFIG macro. 1. You can replace the TCPCONFIG macro with individual MY_IP_ADDRESS, MY_NETMASK, MY_GATEWAY, and MY_NAMESERVER macros in each program. 2. You can leave TCPCONFIG at the usual default of 1, which will set the IP configurations to 10.10.6.100, the netmask to 255.255.255.0, and the nameserver and gateway to 10.10.6.1. If you would like to change the default values, for example, to use an IP address of 10.1.1.2 for the BL2100 board, and 10.1.1.1 for your PC, you can edit the values in the section that directly follows the “General Configuration” comment in the TCP_CONFIG.LIB library. You will find this library in the LIB\TCPIP directory. 3. You can create a CUSTOM_CONFIG.LIB library and use a TCPCONFIG value greater than 100. Instructions for doing this are at the beginning of the TCP_CONFIG.LIB library in the LIB\TCPIP directory. There are some other “standard” configurations for TCPCONFIG that let you select differ- ent features such as DHCP. Their values are documented at the top of the TCP_CONFIG.LIB library in the LIB\TCPIP directory. More information is available in the Dynamic C TCP/IP User’s Manual. IP Addresses Before Dynamic C 7.30 Most of the sample programs use macros to define the IP address assigned to the board and the IP address of the gateway, if there is a gateway. Instead of the TCPCONFIG macro, you will see a MY_IP_ADDRESS macro and other macros. #define MY_IP_ADDRESS "10.10.6.170" #define MY_NETMASK "255.255.255.0" #define MY_GATEWAY "10.10.6.1" #define MY_NAMESERVER "10.10.6.1" In order to do a direct connection, the following IP addresses can be used for the BL2100: #define MY_IP_ADDRESS "10.1.1.2" #define MY_NETMASK "255.255.255.0" // #define MY_GATEWAY "10.10.6.1" // #define MY_NAMESERVER "10.10.6.1" In this case, the gateway and nameserver are not used, and are commented out. The IP address of the board is defined to be 10.1.1.2. The IP address of you PC can be defined as 10.1.1.1. User’s Manual 57 5.2.2 How to Set Up Your Computer for Direct Connect Follow these instructions to set up your PC or notebook. Check with your administrator if you are unable to change the settings as described here since you may need administrator privileges. The instructions are specifically for Windows 2000, but the interface is similar for other versions of Windows. TIP: If you are using a PC that is already on a network, you will disconnect the PC from that network to run these sample programs. Write down the existing settings before changing them to facilitate restoring them when you are finished with the sample pro- grams and reconnect your PC to the network. 1. Go to the control panel (Start > Settings > Control Panel), and then double-click the Network icon. 2. Select the network interface card used for the Ethernet interface you intend to use (e.g., TCP/IP Xircom Credit Card Network Adapter) and click on the “Properties” button. Depending on which version of Windows your PC is running, you may have to select the “Local Area Connection” first, and then click on the “Properties” button to bring up the Ethernet interface dialog. Then “Configure” your interface card for a “10Base-T Half-Duplex” or an “Auto-Negotiation” connection on the “Advanced” tab. NOTE: Your network interface card will likely have a different name. 3. Now select the IP Address tab, and check Specify an IP Address, or select TCP/IP and click on “Properties” to assign an IP address to your computer (this will disable “obtain an IP address automatically”): IP Address : 10.10.6.101 Netmask : 255.255.255.0 Default gateway : 10.10.6.1 4. Click or to exit the various dialog boxes. BL2100 IP 10.10.6.101 Board Netmask 255.255.255.0 User’s PC Ethernet crossover cable Direct Connection PC to BL2100 Board 58 Smartcat (BL2100) 5.2.3 Run the PINGME.C Demo Connect the crossover cable from your computer’s Ethernet port to the BL2100’s RJ-45 Ethernet connector. Open this sample program from the SAMPLES\TCPIP\ICMP folder, compile the program, and start it running under Dynamic C. When the program starts run- ning, the green LNK light on the BL2100 should be on to indicate an Ethernet connection is made. (Note: If the LNK light does not light, you may not have a crossover cable, or if you are using a hub perhaps the power is off on the hub.) The next step is to ping the board from your PC. This can be done by bringing up the MS- DOS window and running the ping program: ping 10.10.6.100 or by Start > Run and typing the command ping 10.10.6.100 Notice that the orange ACT light flashes on the BL2100 while the ping is taking place, and indicates the transfer of data. The ping routine will ping the board four times and write a summary message on the screen describing the operation. User’s Manual 59 5.2.4 Running More Demo Programs With a Direct Connection The program SSI.C (SAMPLES\BL2100\TCPIP\) demonstrates how to make the BL2100 a Web server. This program allows you to turn the LEDs on an attached Demon- stration Board from the Tool Kit on and off from a remote Web browser. LED0 and LED1 on the LCD/keypad module (LED1 and LED2 on the Demonstration Board) will match TCPCONFIG 1 macro in the those on the Web page. As long as you have not modified the sample program, enter the following server address in your Web browser to bring up the Web page served by the sample program. http://10.10.6.100. Otherwise use the TCP/IP settings you entered in the TCP_CONFIG.LIB library. The sample program SMTP.C (SAMPLES\BL2100\TCPIP\) allows you to send an E-mail when a switch on the Demonstration Board is pressed. Follow the instructions included with the sample program. The sample program TELNET.C (SAMPLES\BL2100\TCPIP\) allows you to communi- cate with the BL2100 using the Telnet protocol. This program takes anything that comes in on a port and sends it out Serial Port B. It uses digital input IN00 to indicate that the TCP/IP connection should be closed, and it uses high-current output OUT00 to indicate that there is an open connection. You may change the digital input and output to suit your application needs. Run the Telnet program on your PC (Start > Run telnet 10.10.6.100). As long as you have not modified the TCPCONFIG 1 macro in the sample program, the IP address is 10.10.6.100 as shown; otherwise use the TCP/IP settings you entered in the TCP_CONFIG.LIB library. Each character you type will be printed in Dynamic C's STDIO window, indicating that the board is receiving the characters typed via TCP/IP. 5.3 Where Do I Go From Here? NOTE: If you purchased your BL2100 through a distributor or Rabbit partner, contact the distributor or partner first for technical support. If there are any problems at this point: • Use the Dynamic C Help menu to get further assistance with Dynamic C. • Check the Rabbit Technical Bulletin Board and forums at www.rabbit.com/support/bb/ and at www.rabbit.com/forums/. • Use the Technical Support e-mail form at www.rabbit.com/support/. If the sample programs ran fine, you are now ready to go on. If the sample programs ran fine, you are now ready to go on. Additional sample programs are described in the Dynamic C TCP/IP User’s Manual. Refer to the Dynamic C TCP/IP User’s Manual to develop your own applications. An Introduction to TCP/IP provides background information on TCP/IP, and is available on our Web site. 60 Smartcat (BL2100) APPENDIX A. SPECIFICATIONS Appendix A provides the specifications for the BL2100 and describes the conformal coating. User’s Manual 61 A.1 Electrical and Mechanical Specifications Figure A-1 shows the mechanical dimensions for the BL2100. Figure A-1. BL2100 Dimensions NOTE: All measurements are in inches followed by millimeters enclosed in parentheses. All dimensions have a manufacturing tolerance of ±0.01" (0.25 mm). 62 Smartcat (BL2100) Table A-1 lists the electrical, mechanical, and environmental specifications for the BL2100 without the optional LCD/keypad module plugged in. Appendix C provides specifications for the LCD/keypad. Table A-1. BL2100 Specifications Feature BL2100 BL2110 BL2120 BL2130 ® Microprocessor Rabbit 2000 at 22.1 MHz Ethernet Port 10Base-T, LNK and ACT LEDs None Flash Memory 256K (standard) SRAM 128K (standard) Panasonic CR2330 or equivalent 3 V lithium coin type, 265 mA·h Backup Battery standard using onboard battery holder; optional 3 V, 950 mA·h solder-in battery available 24 inputs hardware-configurable pull-up or pull-down, Digital Inputs ± 36 V DC, switching threshold 2.4 V typical 16 outputs software toggled as sinking or sourcing, Digital Outputs +36 V DC, 200 mA maximum per channel Eleven 12-bit res., Eleven 12-bit res., ± 10 V DC, 1 M ± 10 V DC, 1 M Analog Inputs None None up to 4,100 up to 4,100 samples/s samples/s Four 12-bit res., Four 12-bit res., 0–10 V DC, Analog Outputs 0–10 V DC, None None update rate 12 kHz update rate 12 kHz 4 serial ports: • two RS-232 or one RS-232 (with CTS/RTS) Serial Ports • one RS-485, onboard network termination and bias resistors • one 5 V CMOS-compatible programming port Max. burst rate = CLK/32 Serial Rate Max. sustained rate = CLK/64 one RJ-45 (Ethernet) one 2 × 5, 2 mm pitch (serial programming port) one power jack for AC adapter Connectors 2 five screw-terminal connectors (accept up to 14 AWG/1.5 mm wire) (option for 0.1" IDC or friction-lock connectors) Real-Time Clock Yes Five 8-bit timers (four are cascadable from the first) and Timers one 10-bit timer with two match registers Watchdog/Supervisor Yes User’s Manual 63 Table A-1. BL2100 Specifications (continued) Feature BL2100 BL2110 BL2120 BL2130 * Power 9–36 V DC , 1.5 W max. (without display), 3 W max. (with display) Operating Temperature –40°C to +70°C Humidity 5–95%, noncondensing 3.41" × 4.14" × 0.93" Board Size (87 mm × 105 mm × 24 mm) * 13 V to 36 V DC supply voltage required to support full 0–10 V DC output range of D/A converter A.1.1 Exclusion Zone It is recommended that you allow for an “exclusion zone” of 0.25" (6 mm) around the BL2100 in all directions when the BL2100 is incorporated into an assembly that includes other components. This “exclusion zone” that you keep free of other components and boards will allow for sufficient air flow, and will help to minimize any electrical or EMI interference between adjacent boards. An “exclusion zone” of 0.12" (3 mm) is recom- mended below the BL2100. Figure A-2 shows this “exclusion zone.” �9�� C���D �9�� �9�� C�D C�D 78.��%��� 9��� �9�� �9�� �9�� C��D C�D C�D Figure A-2. BL2100 “Exclusion Zone” 64 Smartcat (BL2100) �9�� �9�� C�D C��D �9�� �9�� C��D C�D �9�� �9�� C�D C�D A.1.2 Headers The BL2100 has an option for 0.1" IDC headers, friction-lock connectors, or bottom- mount sockets at J1, J4, J7, J10, and J13 for physical connection to other boards or ribbon cables. The holes on the “outside” edges of the connector locations are the holes used by the friction-lock connectors and by the holes in the bottom-mount sockets. Figure A-3 shows the BL2100 footprint. These values are relative to one of the mounting holes. (Two other mounting holes are located under the RabbitCore module.) �9��� C��9�D �9��� �9��� C��9�D C��9�D �! �, �� ��� �� ��� ��� ����� ����� ��� ��� ��� ��� ��� ��� ��� �� ��� �9��� C�9�D ��� ��� ��� ��� �9��� �9��� C��9�D C�9�D �9��� C��9�D �9��� C��9�D �9��� C��9�D Figure A-3. User Board Footprint for BL2100 NOTE: The same footprint applies for the IDC header and bottom-mount socket options. Headers J21, J22, and J23 are used to mount the optional LCD/keypad module. User’s Manual 65 �9��� C��9�D �9��� C��9�D �9��� C��9�D �9��� C��9�D �9��� C��9�D �9��� C��9�D �� �� �� �� �� (� �� �� �� �� �� �� �� (� �� �� �� ��� ��� ��� ��� �� �� �� ��� �� �� ��� �� ��� ������ ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ���� �� �� �� (� !�� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� �� ��� ��� �#$$%&’ ���� ��� ���� ��� ���� ��� ��� ���� ��� ���� ���� ���� ���� ���� ���� ���� ��� �� ��� ���� ��� ���� ���� ��� �� �������������������������������������������������������!������!�����!������!������!���������������������������������������������� ��� A.2 Conformal Coating The areas around the crystal oscillator and the battery backup circuit on the BL2100 mod- ule have had the Dow Corning silicone-based 1-2620 conformal coating applied. The con- formally coated areas are shown in Figure A-4. The conformal coating protects these high-impedance circuits from the effects of moisture and contaminants over time. �� �� �� �� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� �� ���� �� ���� �� ��� ��� ���� ���� ���� ���� ���� ���� �� �� ���� �� ��� ��� ���� ��� ��� ��� �� ��� ���� �� �� ��� ���� ��� ����� �� ��� ����� ���� ���� ��� ��� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���/������) ��� ��� ���� ��� ��� ��� ���� �������� �� ��� ��� ���� ��� .���������� ��� ���� ��� ��� ��� ��� ���� ��� ��� �� ��� ���� �� ���� ��� ��� ���� ��� ��� ��� �� ��� ��� ��� ��� �� ��� ���� ��� �� �� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Figure A-4. BL2100 Areas Receiving Conformal Coating Any components in the conformally coated area may be replaced using standard soldering procedures for surface-mounted components. A new conformal coating should then be applied to offer continuing protection against the effects of moisture and contaminants. NOTE: For more information on conformal coatings, refer to Rabbit Technical Note TN303, Conformal Coatings, in the online documentation set. 66 Smartcat (BL2100) ���� ��� ���� ��� ��� ���� ���� ���� ���� �� �� �� �� �� �� (� �� �� �� �� �� �� (� �� �� �� ��� ��� ��� ��� �� �� �� ��� �� �� �� ��� ��� ������ ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ���� (� �� �� �� !�� �� � ��������� ���������������������������������������������������������������������������������������������������������!"������������������������������������������������������������������������������������������������ A.3 Jumper Configurations Figure A-5 shows the header locations used to configure the various BL2100 options via jumpers. ��$�&��� ��� ��� ��������� ��������� ��������� ��� �������&��� Figure A-5. Location of BL2100 Configurable Positions User’s Manual 67 Table A-2 lists the configuration options. Table A-2. BL2100 Jumper Configurations Factory Header Description Pins Connected Default 1–2 Bias and termination resistors × 5–6 connected RS-485 Bias and Termination JP1 Resistors Bias and termination resistors not 1–3 * 4–6 connected 1–2 Standard × Software I/O Configuration JP2 Option Custom (IN16–IN23 are config- 2–3 ured as digital sinking outputs) BL2100 1–2 Installed BL2120 JP3 Analog Circuit Option BL2110 2–3 Not installed BL2130 R56 Pulled up to Vcc × — IN00–IN07 R57 Pulled up to +K2 R54 Pulled down R60 Pulled up to Vcc × — IN08–IN15 R61 Pulled up to +K2 R59 Pulled down R69 Pulled up to Vcc × — IN16–IN23 R70 Pulled up to +K2 R71 Pulled down * Although pins 1–3 and 4–6 of header JP1 are shown “jumpered” for the termination and bias resistors not connected, pins 3 and 4 are not actually connected to anything, and this configuration is a “parking” configuration for the jumpers so that they will be readily available should you need to enable the termination and bias resistors in the future. 68 Smartcat (BL2100) A.4 Use of Rabbit 2000 Parallel Ports Figure A-6 shows the Rabbit 2000 parallel ports. ���E����E ���6���E �!�6�!� ���6��� ���E���� ��� ��� �����3 ������ ������ 9��&�������.��������3: 9����.��������3: ���6���E ���E���� ����� ��� ������ 9����.��������� �<��: ���6��� ���E���� ������ ���-��66.�- ��������>)&%�)=$-=$ ���� ��������#.��� !�6!� ���� ���E����E����:�� 9���.���������: ����>)&%�01-=$. ���� !$�� ������ ����)4.6�� ���� ��"� �������� ���$/%&1%$�.0,1#*. ;������- ���� ������)=$-=$. ��4.6��� �����#.��� ��6�� ���/������ 5����� �.��8�!$� �������(0��� 3���(’�3�����& ����� ��� �(’’��� Figure A-6. BL2100 Rabbit-Based Subsystems Table A-3 lists the Rabbit 2000 parallel ports and their use in the BL2100. Table A-3. Use of Rabbit 2000 Parallel Ports Port I/O Signal Output Function State PA0 Input IN16 Pulled up PA1 Input IN17 Pulled up PA2 Input IN18 Pulled up Pulled up PA3 Input IN19 Pulled up PA4 Input IN20 PA5 Input IN21 Pulled up PA6 Input IN22 Pulled up PA7 Input IN23 Pulled up PB0 Input DAC_ADC_SDO Pulled up PB1 Input Not Used Pulled up PB2 Input ADC_EOC Driven by A/D converter PB3 Input Not Used Pulled up User’s Manual 69 Table A-3. Use of Rabbit 2000 Parallel Ports (continued) Port I/O Signal Output Function State 1 = standard (JP2:1–2) I/O Configuration Option PB4 Input * (header JP2) 0 = custom (JP2:2–3) Analog Circuit Option 1 = BL2100/BL2120 (JP3:1–2) PB5 Input 0 = BL2110/BL2130 (JP3:2–3) (header JP3) PB6 Output Not Used Off PB7 Output DAC_ADC_SDI Inactive high PC0 Output TXD RS-485 Inactive high Serial Port D PC1 Input RXD RS-485 Inactive high PC2 Output RTS/TXC RS-232 Inactive high Serial Port C PC3 Input CTS/RXC RS-232 Inactive high PC4 Output TPOUT– (Realtek reset) Initialized by sock_init PC5 Input TPOUT+ (Realtek INT0) Pulled up PC6 Output TXA Programming Port Inactive high Serial Port A PC7 Input RXA Programming Port Inactive high PD0 Input Realtek CLK Initialized by sock_init PD1 Input Realtek SDO Initialized by sock_init PD2 Output Not used Inactive high PD3 Output DAC CLK Line Inactive high PD4 Output ATXB RS-232 Inactive high Serial Port B PD5 Input ARXB RS-232 Inactive high PD6 Output Not used Inactive high PD7 Output Not used Inactive high PE0 Output Digital I/O strobe Inactive high PE1 Output External I/O enable Inactive high PE2 N/A Realtek IORB strobe Initialized by sock_init PE3 N/A Realtek SDI line Initialized by sock_init PE4 Input INT0B Tied to PE5 by 1 k resistor † PE5 Input INT1B User interrupt input PE6 N/A Realtek IOWB strobe Initialized by sock_init PE7 Output LCD_KEYPAD strobe Inactive high * IN16–IN23 are sinking outputs in this custom configuration † PE5 is driven by PE4 if the interrupt is not being used. 70 Smartcat (BL2100) A.5 I/O Address Assignments Table A-4 lists the external I/O addresses for the digital inputs and outputs. Table A-4. Digital I/O Addresses External Name Function Address 0000 DIPA Digital inputs IN00–07, read only 0001 DOPA Digital outputs OUT00–OUT07, write only 0002 DIPB Digital inputs IN08–15, read only 0003 DOPB Digital outputs OUT08–OUT15, write only PE1 serves as a system-enable control. When PE1 is high or in a high-impedance status, all BL2100 outputs are disabled (digital outputs and analog outputs are disabled, and RS-485 is at listen status). PE0 is configured as a strobe and is used for digital inputs, digital outputs, and the control register. The control register is located at 0xx4–0xx7, write only. The function of each bit is listed in Table A-5. Table A-5. Control Register Bit Map (External 0x0004–0x007) Bit Name Function 0 485_SEND RS-485 send/receive 1 DO_CS0 Digital output 0–08, enable low active 2 DO_CS1 Digital output 09–16, enable low active 3 Not used Not used 4 AO_CS Analog output 00–04, enable low active 5 DAC_CS0 Chip select for analog ch 00 and 01 6 DAC_CS1 Chip select for analog ch 02 and 03 7 ADC_CS Chip select for A/D converter PA0–PA7 are used with IN16–IN23, which may be reconfigured as sinking digital outputs OUT16–OUT23 by installing/removing components as reflected in the schematic. All analog inputs and outputs are accessed by a series connection. PD3 is served as a clock line while PB0 and PB7 are used for data in and data out, respectively. PD4 and PD5 are used for RS-485 communication. The direction of the communication is controlled by the control register. PC0, PC1, and PC2, PC3 are used for RS-232 communi- cation. They can be used separately as two 3-wire RS-232, or they may be combined to work as a 5-wire RS-232 port. User’s Manual 71 72 Smartcat (BL2100) APPENDIX B. POWER SUPPLY Appendix B describes the power circuitry provided on the BL2100. B.1 Power Supplies Power is supplied to the BL2100 via header J5/J4. The BL2100 is protected against reverse polarity by a diode at D1 as shown in Figure B-1. ��!" �"���?������"��������!��� �88 ��5�� �� ��� �� � �� �� ��� �� ��� � � � ���I7 �� ����I? ����I7 � � � �� �� �A���� �� �� ������ Figure B-1. BL2100 Power Supply The input voltage range is from 9 V to 36 V. A switching power regulator is used to pro- vide a Vcc of +5 V for the BL2100 logic circuits. Vcc is not accessible to the user. The digital ground and the analog ground share a single split ground plane on the board, with the analog ground connected at a single point to the digital ground by a 0  resistor (R29). This is done to minimize digital noise in the analog circuits and to eliminate the possibility of ground loops. External connections to analog ground are made on header J2/J1, and external connections to digital ground are made on headers J5/J4 and J11/J10. B.1.1 Power for Analog Circuits Power to the analog circuits is provided by way of a two-stage low-pass filter, which iso- lates the analog section from digital noise generated by the other components. The analog power voltage +V powers the op-amp for the buffered A/D converter inputs, the A/D con- verter, the D/A converter, and the 4.096 V reference circuit. The maximum current draw on +V is less than 10 mA. +V is not accessible to the user. User’s Manual 73 ��"�� �� B.2 Batteries and External Battery Connections The SRAM and the real-time clock have battery backup. Power to the SRAM and the real- time clock (VRAM) is provided by two different sources, depending on whether the main part of the BL2100 is powered or not. When the BL2100 is powered normally, and Vcc is within operating limits, the SRAM and the real-time clock are powered from Vcc. If power to the board is lost or falls below 4.63 V, the VRAM and real-time clock power will come from the battery. The reset generator circuit controls the source of power by way of its /RESET output signal. A replaceable 265 mA·h lithium battery provides power to the real-time clock and SRAM when external power is removed from the circuit board. The drain on the battery is typically less than 10 µA when there is no external power applied to the BL2100, and so the expected shelf life of the battery is 265 mA·h ----------------------- -3 = .0 years. 10 µA The drain on the battery is typically less than 4 µA when external power is applied, and so the expected BL2100 battery in-service life is 265 mA·h ------------------------ = 7.5 years. 4 µA A long-life 950 mA·h solder-in battery is also provided for in the board layout. 74 Smartcat (BL2100) B.2.1 Replacing the Backup Battery The battery is user-replaceable, and is fitted in a battery holder. To replace the battery, lift up on the spring clip and slide out the old battery. Use only a Panasonic CR2330 or equiv- alent replacement battery, and insert it into the battery holder with the + side facing up. NOTE: The SRAM contents and the real-time clock settings will be lost if the battery is replaced with no power applied to the BL2100. Exercise care if you replace the battery while external power is applied to the BL2100. CAUTION: There is an explosion danger if the battery is short-circuited, recharged, or replaced incorrectly. Replace the battery only with the same type or an equivalent type recommended by the battery manufacturer. Dispose of used batteries according to the battery manufacturer’s instructions. B.2.2 Battery-Backup Circuit Figure B-2 shows the battery-backup circuit located on the BL2100 module. "��������������� ��� �� ��� ��!� ��!A ��2� ��� � ���������� ���2� ��� ���2� �88 ��� ���2� �� �� ��� ��� ��!� ���� ���2� ���2� ��� ��� ���17 ���17 Figure B-2. BL2100 Backup Battery Circuit The battery-backup circuit serves three purposes: • It reduces the battery voltage to the SRAM and to the real-time clock, thereby limiting the current consumed by the real-time clock and lengthening the battery life. • It ensures that current can flow only out of the battery to prevent charging the battery. • A voltage, VOSC, is supplied to U6, which keeps the 32.768 kHz oscillator working when the voltage begins to drop. VRAM and Vcc are nearly equal (<100 mV, typically 10 mV) when power is supplied to the BL2100. User’s Manual 75 B.2.3 Power to VRAM Switch The VRAM switch on the BL2100 module, shown in Figure B-3, allows the battery backup to provide power when the external power goes off. The switch provides an isola- tion between Vcc and the battery when Vcc goes low. This prevents the Vcc line from draining the battery. ��� ��!A ��� ��� �� 7������ ��� ���2� ��� �� 5����� AA������ ���2� Figure B-3. VRAM Switch Field-effect transistor Q5 is needed to provide a very small voltage drop between Vcc and VRAM (<100 mV, typically 10 mV) so that the board components powered by Vcc will not have a significantly different voltage than VRAM. When the BL2100 is not in reset, the /RESET line will be high. This turns on Q2, causing its collector to go low. This turns on Q5, allowing VRAM to nearly equal Vcc. When the BL2100 is in reset, the /RESET line will go low. This turns off Q2 and Q5, pro- viding an isolation between Vcc and VRAM. B.2.4 Reset Generator The BL2100 module uses a reset generator on the module, U1, to reset the Rabbit 2000 microprocessor when the voltage drops below the voltage necessary for reliable operation. The reset occurs between 4.50 V and 4.75 V, typically 4.63 V. 76 Smartcat (BL2100) B.3 Chip Select Circuit Figure B-4 shows a schematic of the chip select circuit located on the BL2100 module. ��!A ��� ����2� 5���!A �� 5��� �� ��!A �"���? : 5����� ��� Figure B-4. Chip Select Circuit The current drain on the battery in a battery-backed circuit must be kept at a minimum. When the BL2100 is not powered, the battery keeps the SRAM memory contents and the real-time clock (RTC) going. The SRAM has a powerdown mode that greatly reduces power consumption. This powerdown mode is activated by raising the chip select (CS) signal line. Normally the SRAM requires Vcc to operate. However, only 2 V is required for data retention in powerdown mode. Thus, when power is removed from the circuit, the battery voltage needs to be provided to both the SRAM power pin and to the CS signal line. The CS control circuit accomplishes this task for the SRAM’s chip select signal line. In a powered-up condition, the CS control circuit must allow the processor’s chip select signal /CS1 to control the SRAM’s CS signal /CSRAM. So, with power applied, /CSRAM must be the same signal as /CS1, and with power removed, /CSRAM must be held high (but only needs to be battery voltage high). Q3 and Q4 are MOSFET transistors with com- plementary polarity. They are both turned on when power is applied to the circuit. They allow the CS signal to pass from the processor to the SRAM so that the processor can peri- odically access the SRAM. When power is removed from the circuit, the transistors will turn off and isolate /CSRAM from the processor. The isolated /CSRAM line has a 100 k pullup resistor to VRAM (R28). This pullup resistor keeps /CSRAM at the VRAM voltage level (which under no power condition is the backup battery’s regulated voltage at a little more than 2 V). Transistors Q3 and Q4 are of opposite polarity so that a rail-to-rail voltage can be passed. When the /CS1 voltage is low, Q3 will conduct. When the /CS1 voltage is high, Q4 con- ducts. It takes time for the transistors to turn on, creating a propagation delay. This propa- gation delay is typically very small, about 10 ns to 15 ns. User’s Manual 77 78 Smartcat (BL2100) APPENDIX C. LCD/KEYPAD MODULE An optional LCD/keypad is available for the BL2100. Appendix C describes the LCD/keypad and provides the software APIs to make full use of the LCD/keypad. C.1 Specifications Two optional LCD/keypad modules—with or without a panel-mounted NEMA 4 water- resistant bezel—are available for use with the BL2100. They are shown in Figure C-1. ��"�*�)$���������% > = �1�)1*�� Figure C-1. LCD/Keypad Module Versions Only the version without the bezel can mount directly on the BL2100; either version can be installed at a remote location up to 60 cm (24") away. The version without a bezel is also sold with the enclosure described in Appendix D. Contact your Rabbit sales represen- tative or your authorized distributor for further assistance in purchasing an LCD/keypad module. Mounting hardware and a 12.5 cm (5") extension cable are also available for the LCD/ keypad module through your sales representative or authorized distributor. User’s Manual 79 Table C-1 lists the electrical, mechanical, and environmental specifications for the LCD/ keypad module. Table C-1. LCD/Keypad Specifications Parameter Specification 2.60" × 3.00" × 0.75" Board Size (66 mm × 76 mm × 19 mm) 4.50" × 3.60" × 0.30" Bezel Size (114 mm × 91 mm × 7.6 mm) Operating Range: 0°C to +50°C Temperature Storage Range: –40°C to +85°C Humidity 5% to 95%, noncondensing * Power Consumption 1.5 W maximum Connections Connects to high-rise header sockets on BL2100 LCD Panel Size 122 × 32 graphic display Keypad 7-key keypad LEDs Seven user-programmable LEDs * The backlight adds approximately 650 mW to the power consumption. The LCD/keypad module has 0.1" IDC header sockets at J1, J2, and J3 �9��� C�9�D for physical connection to other boards or ribbon cables. Figure C-2 shows the LCD/keypad module foot- �� print. These values are relative to one of the mounting holes. NOTE: All measurements are in inches followed by millimeters enclosed in parentheses. All dimen- �� �� sions have a manufacturing toler- ance of ±0.01" (0.25 mm). �9��� �9��� C�9�D C��9�D �9��� C��9�D �9��� C��9�D Figure C-2. User Board Footprint for LCD/Keypad Module 80 Smartcat (BL2100) �9��� C��9�D �9��� �9��� C��9�D C��9�D C.2 Contrast Adjustments for All Boards Starting in 2005, LCD/keypad modules were factory-configured to optimize their contrast based on the voltage of the system they would be used in. Be sure to select a KDU5V LCD/keypad module for use with the BL2100 — these modules operate at 5 V. You may adjust the contrast using the potentiometer at R2 as shown in Figure C-3. LCD/keypad modules configured for 3.3 V should not be used with the BL2100 because the higher voltage will reduce the backlight service life dramatically. ��"�*�)$�������������$������/���������% �.�� ������& �����.’�.�� ������ �������� ��"�(�� ����� ��� � �� ����� ��� ��� ���� �������� �� �� �� �� ��� #�$���%��� �� �� �� �� �� �� �� �� �� �� ��� ��� ���� ��� ��� �� �� �� �� �� ��� � � �� ��� � � ��� ��� ��� ��� �� ��� ��� �� � � � � �� �� �� �� �� ��?�� �� �� ������ �� �9��� �9��� �� 1989�J���� ��� �� �� ��� ��� �����!( ��!�� �� Figure C-3. LCD/Keypad Module Contrast Adjustment You can set the contrast on the LCD display of pre-2005 LCD/keypad modules by adjust- ing the potentiometer at R2 or by setting the voltage for 5 V by removing the jumper that was installed at the factory across pins 1–2 on header J5 as shown in Figure C-3. Only one of these two options is available on these older LCD/keypad modules. NOTE: Older LCD/keypad modules that do not have a header at J5 or a contrast adjust- ment potentiometer at R2 are limited to operate only at 5 V, and will work with the BL2100. These LCD/keypad modules are no longer being sold. User’s Manual 81 �� ��� ��� �� �� ��� ��� �� ��� �� ��� ��� ��� ��� ��� ��� ��� �� �� �#&$��)9��������� C.3 Keypad Labeling The keypad may be labeled according to your needs. A template is provided in Figure C-4 to allow you to design your own keypad label insert. �9�� C��D �9�� C��D Figure C-4. Keypad Template To replace the keypad legend, remove the old legend and insert your new legend prepared according to the template in Figure C-4. The keypad legend is located under the blue key- pad matte, and is accessible from the left only as shown in Figure C-5. %’-#+�*#K%*�0.�*)8#$%+ ������$/%�K*=%�2%’-#+�>#$$%9 Figure C-5. Removing and Inserting Keypad Label The sample program KEYBASIC.C in the SAMPLES\LCD_KEYPAD\122x32_1x7 folder shows how to reconfigure the keypad for different applications. 82 Smartcat (BL2100) C.4 Header Pinouts Figure C-6 shows the pinouts for the LCD/keypad module. �� �� �� Figure C-6. LCD/Keypad Module Pinouts C.4.1 I/O Address Assignments The LCD and keypad on the LCD/keypad module are addressed by the PE7 strobe as explained in Table C-2. Table C-2. LCD/Keypad Module Address Assignment Address Function Exx0–Exx7 LCD control Exx8 LED enable Exx9 Not used ExxA 7-key keypad ExxB (bits 0–6) 7-LED driver ExxB (bit 7) LCD backlight on/off ExxC–ExxF Not used User’s Manual 83 ��� ��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� !�� !�� !�� !�� !�� !�� !�� !�� ��� ��� ��� ���� ���� ���� ��� ��� ��� ���� ���� ���� ���� ���� ���� ���� ��� 5��� ���� ���� ���� ��� �� ��� ���� ��� 5��� ��� �� ��� �� �� ��� ��� �� ��� ��� ���� ��� ��� ��� ��� ���� �� ��� ���� ����� �� ����� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� �� ��� ��� ��� �� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� C.5 Mounting LCD/Keypad Module on the BL2100 Finish making any connections involving the analog I/O on screw-terminal header J2 before you install the LCD/keypad module since the LCD/keypad module will block access to the screws on screw-terminal header J2. Install the LCD/keypad module on header sockets J20, J21, and J22 of the BL2100 main board as shown in Figure C-7. Be careful to align the pins over the headers, and do not bend them as you press down to mate the LCD/keypad module with the BL2100 main board. �� ��� ��� ���� ���� ��� ��� �� �� �� �� �� (� �� �� �� �� �� �� �� �� (� �� �� ��� ��� ��� ��� �� �� �� ��� �� �� ��� �� ��� ������ ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ���� �� �� �� (� !�� Figure C-7. Install LCD/Keypad Module on BL2100 Main Board 84 Smartcat (BL2100) �� � ��������� ���������������������������������������������������������������������������������������������������������!"������������������������������������������������������������������������������������������������ ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� �#$$%&’ ��� �� ��� �������������������������������������������������������!������!�����!������!������!���������������������������������������������� C.5.1 Programming Cable Tips Once the LCD/keypad module is in place on the BL2100, it is not possible to remove or attach the programming cable to/from the BL2100 programming port. You will have to remove, or at least lift up, the LCD/keypad module while you connect or disconnect the programming cable. While you are developing your application, you may wish to connect or disconnect the programming cable when resetting the BL2100 and switching between the Program Mode and the Run Mode. To avoid the inconvenience of removing and replacing the LCD/key- pad module each time, the programming cable may be disconnected/reconnected at the RS-232/CMOS level converter in the middle of the programming cable. 1. Peel back plastic shrink wrap as shown in Figure C-8. ��!� 4��� �#��’��� �%%*�K#82�-*#.$08�./&02�3&#-9 ���� 4� 3#��11 ’��-��66.�-�’��� Figure C-8. Peel Back Plastic Shrink Wrap 2. Disconnect the programming cable at RS-2332/CMOS level converter board. 4��� �#��’��� ��!� �0.8)11%8$�-&),&#>>01,�8#K*% #$�������5�A���*%B%*�8)1B%&$%& K)#&+9 ���� 4� 3#��11 ’��-��66.�-�’��� Figure C-9. Disconnect Programming Cable User’s Manual 85 3. Line up the colored edges of the programming cable when reconnecting the program- ming cable. Reconnect the programming cable as shown in Figure C-10, being careful to align the pins with the jack 4��� �#��’��� ��!� ���� �01%�=-�8)*)&%+�%+,%. 3/%1�&%8)11%8$01, -&),&#>>01,�8#K*%9 4� 3#��11 ’��-��66.�-�’��� Figure C-10. Reconnect Programming Cable Once you have finished programming the LCD/keypad module, you should disconnect the programming cable from the BL2100 programming port, remembering to first remove, or at least lift up, the LCD/keypad module, disconnect the programming cable, and finally mount the LCD/keypad module back firmly on the BL2100 main board. 86 Smartcat (BL2100) C.6 Bezel-Mount Installation This section describes and illustrates how to bezel-mount the LCD/keypad module designed for remote installation. Follow these steps for bezel-mount installation. 1. Cut mounting holes in the mounting panel in accordance with the recommended dimen- sions in Figure C-11, then use the bezel faceplate to mount the LCD/keypad module onto the panel. �9�����E��@ C�D �5�#5� �9��� C�9�D �9��� C��9�D �9��� C��9�D Figure C-11. Recommended Cutout Dimensions 2. Carefully “drop in” the LCD/keypad module with the bezel and gasket attached. User’s Manual 87 �9��� C�9�D �9��� C��9�D ��� ��� ��� ��� ��� ��� �� ��� ��� ��� �� 3. Fasten the unit with the four 4-40 screws and washers included with the LCD/keypad module. If your panel is thick, use a 4-40 screw that is approximately 3/16" (5 mm) lon- ger than the thickness of the panel. ��:���+�%3�� �����!(���!�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ����� �� �� �� �� �� �� �� �� �� �� �� �� ��� �� Figure C-12. LCD/Keypad Module Mounted in Panel (rear view) Carefully tighten the screws until the gasket is compressed and the plastic bezel face- plate is touching the panel. Do not tighten each screw fully before moving on to the next screw. Apply only one or two turns to each screw in sequence until all are tightened manually as far as they can be so that the gasket is compressed and the plastic bezel faceplate is touching the panel. 88 Smartcat (BL2100) �� ���� ��� ���� ��� ��� ���� ���� ���� ���� �� �� �� �� �� �� (� �� �� �� �� �� �� (� �� �� �� ��� ��� ��� ��� �� �� �� ��� �� �� �� ��� ��� ������ ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ���� ��� �� �� �� (� !�� C.6.1 Connect the LCD/Keypad Module to Your BL2100 The LCD/keypad module can be located as far as 2 ft. (60 cm) away from the BL2100, and is connected via a ribbon cable as shown in Figure C-13. �01�� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� �� �� � ��������� ���������������������������������������������������������������������������������������������������������!"������������������������������������������������������������������������������������������������ Figure C-13. Connecting LCD/Keypad Module to BL2100 Note the locations and connections relative to pin 1 on both the BL2100 and the LCD/key- pad module. Rabbit offers 2 ft. (60 cm) extension cables. Contact your authorized distributor or sales representative for more information. User’s Manual 89 ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� �� ��� ��� �#$$%&’ ���� ��� ���� ��� ���� ��� ��� ���� ��� ���� ���� ���� ���� ���� ���� ���� ��� �� ��� ���� ��� ���� ���� ��� �� �������������������������������������������������������!������!�����!������!������!���������������������������������������������� ��� �����!(���!�� �� �� �� �� �� �� �� �� �� �� �� ��� �� ��� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��� �� �� �� �� �� ��� ��� ��� ��� ��� ��� ��� ���� ���� �� ���� ���� �� ���� �� ��� ��� ���� ���� ���� ���� ���� ���� �� �� ���� �� ��� ��� ���� ��� ��� �� ��� ��� �� ���� �� �� ��� ��� ���� ����� �� ��� ����� ���� ���� ��� ��� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ��� ��� ���� ��� ��� ��� ���� �������� �� ��� ��� ���� ��� ��� ���� ��� ��� ��� ��� ���� ��� ��� �� ��� ���� �� ���� ��� ��� ���� ��� ��� ��� �� ��� ��� ��� ��� �� ��� ���� ��� �� �� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� C.7 Sample Programs The following sample programs are found in the SAMPLES\LCD_Keypad\122x32_1x7 folder. • ALPHANUM.C—Demonstrates how to create messages using the keypad and then dis- playing them on the LCD display. • COFTERMA.C—Demonstrates cofunctions, the cofunction serial library, and using a serial ANSI terminal such as Hyperterminal from an available COM port connection. • DISPPONG.C—Demonstrates output to LCD display. • DKADEMO1.C—Demonstrates some of the LCD/keypad module font and bitmap manipulation features with horizontal and vertical scrolling, and using the GRAPHIC.LIB library. • FUN.C—Demonstrates drawing primitive features (lines, circles, polygons) using the GRAPHIC.LIB library • KEYBASIC.C—Demonstrates the following keypad functions in the STDIO display window: - default ASCII keypad return values. - custom ASCII keypad return values. - keypad repeat functionality. • KEYMENU.C—Demonstrates how to implement a menu system using a highlight bar on a graphic LCD display. The menu options for this sample are as follows. 1. Set Date/Time 2. Display Date/Time 3. Turn Backlight OFF 4. Turn Backlight ON 5. Toggle LEDs 6. Increment LEDs 7. Disable LEDs • LED.C—Demonstrates how to toggle the LEDs on the LCD/keypad module. • SCROLLING.C—Demonstrates scrolling features of the GRAPHIC.LIB library. • TEXT.C—Demonstrates the text functions in the GRAPHIC.LIB library. Here is a list of what is demonstrated. 1. Font initialization. 2. Text window initialization. 3. Text window, end-of-line wraparound, end-of-text window clipping, line feed, and carriage return. 4. Creating 2 different TEXT windows for display. 5. Displaying different FONT sizes. 90 Smartcat (BL2100) The following sample programs, found in the SAMPLES/LCD_Keypad/122x32_1x7/ TCPIP folder, are targeted at the Ethernet-enabled versions of the BL2100, the BL2100 and the BL2110. Remember to configure the IP address, netmask, and gateway as indi- cated in the sample programs. • MBOXDEMO.C—This program implements a web server that allows e-mail messages to be entered that are then shown on the LCD display. The keypad allows you to scroll within messages, flip to other e-mails, mark messages as read, and delete e-mails. When a new e-mail arrives, an LED turns on, and turns off once the message has been marked as read. A log of all e-mail actions is kept, and can be displayed in the Web browser. All current e-mails can also be read with the Web browser. When using MBOXDEMO.C, connect the BL2100 and a PC (or other device with a Web Browser) to an Ethernet. If you connect the PC and the BL2100 directly, be sure to use a crossover Ethernet cable; strait-through Ethernet cables and a hub may be used instead. • TCP_RESPOND.C—This program and TCP_SEND.C are executed on two separate sin- gle-board computers to demonstrate how the two boards communicate with each other. Use PCSEND.EXE on the PC console side at the command prompt if you do not have a second board. PCSEND.EXE is located with source code in the SAMPLES/ LCD_Keypad/Windows directory. TCP_RESPOND.C waits for a message from another single-board computer. The mes- sage received is displayed on the LCD, and you may respond by pressing a key on the keypad. The response is then sent to the remote single-board computer. • TCPSEND.C—This program and TCP_RESPOND.C are executed on two separate single- board computers to demonstrate how the two boards communicate with each other. Use PCRESPOND.EXE on the PC console side at the command prompt if you do not have a second board. PCRESPOND.EXE is located with source code in the SAMPLES/ LCD_Keypad/Windows directory. When a key on the keypad is pressed, a message associated with that key is sent to a specified destination address and port. The destination then responds to that message. The response is displayed on the LCD. Note that only the LEFT and UP scroll keys are set up to cause a message to be sent. When using TCPSEND.C and TCP_RESPOND.C, connect the BL2100 and the other single- board computer to an Ethernet. If you connect the them directly, be sure to use a crossover Ethernet cable; strait-through Ethernet cables and a hub may be used instead. User’s Manual 91 C.8 LCD/Keypad Module Function Calls C.8.1 LEDs When power is applied to the LCD/keypad module for the first time, the red LED (DS1) will come on, indicating that power is being applied to the LCD/keypad module. The red LED is turned off when the brdInit function executes. One function is available to control the LEDs, and can be found in the BL21XX.LIB library. void ledOut(int led, int value); LED on/off control. This function will only work when the LCD/keypad module is installed on the BL2100. PARAMETERS led is the LED to control. 0 = LED DS1 1 = LED DS2 2 = LED DS3 3 = LED DS4 4 = LED DS5 5 = LED DS6 6 = LED DS7 value is the value used to control whether the LED is on or off (0 or 1). 0 = off 1 = on RETURN VALUE None. SEE ALSO brdInit 92 Smartcat (BL2100) C.8.2 LCD Display The functions used to control the LCD display are contained in the Dynamic C DISPLAYS\ GRAPHIC\GRAPHIC.LIB library folder. When x and y coordinates on the display screen are specified, x can range from 0 to 121, and y can range from 0 to 31. These numbers rep- resent pixels from the top left corner of the display. void glInit(void); Initializes the display devices, clears the screen. RETURN VALUE None. SEE ALSO glDispOnOFF, glBacklight, glSetContrast, glPlotDot, glBlock, glPlotDot, glPlotPolygon, glPlotCircle, glHScroll, glVScroll, glXFontInit, glPrintf, glPutChar, glSetBrushType, glBuffLock, glBuffUnlock, glPlotLine void glBackLight(int onOff); Turns the display backlight on or off. PARAMETER onOff turns the backlight on or off 1—turn the backlight on 0—turn the backlight off RETURN VALUE None. SEE ALSO glInit, glDispOnoff, glSetContrast void glDispOnOff(int onOff); Sets the LCD screen on or off. Data will not be cleared from the screen. PARAMETER onOff turns the LCD screen on or off 1—turn the LCD screen on 0—turn the LCD screen off RETURN VALUE None. SEE ALSO glInit, glSetContrast, glBackLight User’s Manual 93 void glSetContrast(unsigned level); Sets display contrast. NOTE: This function is not used with the LCD/keypad module since the support circuits are not available on the LCD/keypad module. void glFillScreen(char pattern); Fills the LCD display screen with a pattern. PARAMETER The screen will be set to all black if pattern is 0xFF, all white if pattern is 0x00, and vertical stripes for any other pattern. RETURN VALUE None. SEE ALSO glBlock, glBlankScreen, glPlotPolygon, glPlotCircle void glBlankScreen(void); Blanks the LCD display screen (sets LCD display screen to white). RETURN VALUE None. SEE ALSO glFillScreen, glBlock, glPlotPolygon, glPlotCircle void glBlock(int x, int y, int bmWidth, int bmHeight); Draws a rectangular block in the page buffer and on the LCD if the buffer is unlocked. Any portion of the block that is outside the LCD display area will be clipped. PARAMETERS x is the x coordinate of the top left corner of the block. y is the y coordinate of the top left corner of the block. bmWidth is the width of the block. bmWidth is the height of the block. RETURN VALUE None. SEE ALSO glFillScreen, glBlankScreen, glPlotPolygon, glPlotCircle 94 Smartcat (BL2100) void glPlotVPolygon(int n, int *pFirstCoord); Plots the outline of a polygon in the LCD page buffer, and on the LCD if the buffer is unlocked. Any portion of the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified, the function will return without doing anything. PARAMETERS n is the number of vertices. *pFirstCoord is a pointer to array of vertex coordinates: x1,y1, x2,y2, x3,y3,... RETURN VALUE None. SEE ALSO glPlotPolygon, glFillPolygon, glFillVPolygon void glPlotPolygon(int n, int y1, int x2, int y2, ...); Plots the outline of a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified, the function will return without doing anything. PARAMETERS n is the number of vertices. y1 is the y coordinate of the first vertex. x1 is the x coordinate of the first vertex. y2 is the y coordinate of the second vertex. x2 is the x coordinate of the second vertex. ... are the coordinates of additional vertices. RETURN VALUE None. SEE ALSO glPlotVPolygon, glFillPolygon, glFillVPolygon User’s Manual 95 void glFillVPolygon(int n, int *pFirstCoord); Fills a polygon in the LCD page buffer and on the LCD screen if the buffer is unlocked. Any portion of the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified, the function will return without doing anything. PARAMETERS n is the number of vertices. *pFirstCoord is a pointer to array of vertex coordinates: x1,y1, x2,y2, x3,y3,... RETURN VALUE None. SEE ALSO glFillPolygon, glPlotPolygon, glPlotVPolygon void glFillPolygon(int n, int x1, int y1, int x2, int y2, ...); Fills a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified, the function will return without doing anything. PARAMETERS n is the number of vertices. x1 is the x coordinate of the first vertex. y1 is the y coordinate of the first vertex. x2 is the x coordinate of the second vertex. y2 is the y coordinate of the second vertex. ... are the coordinates of additional vertices. RETURN VALUE None. SEE ALSO glFillVPolygon, glPlotPolygon, glPlotVPolygon void glPlotCircle(int xc, int yc, int rad); Draws the outline of a circle in the LCD page buffer and on the LCD if the buffer is unlocked. Any por- tion of the circle that is outside the LCD display area will be clipped. PARAMETERS xc is the x coordinate of the center of the circle. yc is the y coordinate of the center of the circle. rad is the radius of the center of the circle (in pixels). RETURN VALUE None. SEE ALSO glFillCircle, glPlotPolygon, glFillPolygon 96 Smartcat (BL2100) void glFillCircle(int xc, int yc, int rad); Draws a filled circle in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the circle that is outside the LCD display area will be clipped. PARAMETERS xc is the x coordinate of the center of the circle. yc is the y coordinate of the center of the circle. rad is the radius of the center of the circle (in pixels). RETURN VALUE None. SEE ALSO glPlotCircle, glPlotPolygon, glFillPolygon void glXFontInit(fontInfo *pInfo, char pixWidth, char pixHeight, unsigned startChar, unsigned endChar, unsigned long xmemBuffer); Initializes the font descriptor structure, where the font is stored in xmem. PARAMETERS *pInfo is a pointer to the font descriptor to be initialized. pixWidth is the width (in pixels) of each font item. pixHeight is the height (in pixels) of each font item. startChar is the value of the first printable character in the font character set. endChar is the value of the last printable character in the font character set. xmemBuffer is the xmem pointer to a linear array of font bitmaps. RETURN VALUE None. SEE ALSO glPrinf User’s Manual 97 unsigned long glFontCharAddr(fontInfo *pInfo, char letter); Returns the xmem address of the character from the specified font set. PARAMETERS *pInfo is the xmem address of the bitmap font set. letter is an ASCII character. RETURN VALUE xmem address of bitmap character font, column major, and byte-aligned. SEE ALSO glPutFont, glPrintf void glPutFont(int x, int y, fontInfo *pInfo, char code); Puts an entry from the font table to the page buffer and on the LCD if the buffer is unlocked. Each font character's bitmap is column major and byte-aligned. Any portion of the bitmap character that is outside the LCD display area will be clipped. PARAMETERS x is the x coordinate (column) of the top left corner of the text. y is the y coordinate (row) of the top left corner of the text. *pInfo is a pointer to the font descriptor. code is the ASCII character to display. RETURN VALUE None. SEE ALSO glFontCharAddr, glPrintf void glSetPfStep(int stepX, int stepY); Sets the glPrintf() printing step direction. The x and y step directions are independent signed values. The actual step increments depend on the height and width of the font being displayed, which are multi- plied by the step values. PARAMETERS stepX is the glPrintf x step value stepY is the glPrintf y step value RETURN VALUE None. SEE ALSO Use glGetPfStep() to examine the current x and y printing step direction. 98 Smartcat (BL2100) int glGetPfStep(void); Gets the current glPrintf() printing step direction. Each step direction is independent of the other, and is treated as an 8-bit signed value. The actual step increments depends on the height and width of the font being displayed, which are multiplied by the step values. RETURN VALUE The x step is returned in the MSB, and the y step is returned in the LSB of the integer result. SEE ALSO Use glGetPfStep() to control the x and y printing step direction. void glPutChar(char ch, char *ptr, int *cnt, glPutCharInst *pInst) Provides an interface between the STDIO string-handling functions and the graphic library. The STDIO string-formatting function will call this function, one character at a time, until the entire format- ted string has been parsed. Any portion of the bitmap character that is outside the LCD display area will be clipped. PARAMETERS ch is the character to be displayed on the LCD. *ptr is not used, but is a place holder for STDIO string functions. *cnt is not used, is a place holder for STDIO string functions. *pInst is a font descriptor pointer. RETURN VALUE None. SEE ALSO glPrintf, glPutFont, doprnt User’s Manual 99 void glPrintf(int x, int y, fontInfo *pInfo, char *fmt, ...); Prints a formatted string (much like printf) on the LCD screen. Only the character codes that exist in the font set are printed, all others are skipped. For example, '\b', '\t', '\n' and '\r' (ASCII backspace, tab, new line, and carriage return, respectively) will be printed if they exist in the font set, but will not have any effect as control characters. Any portion of the bitmap character that is outside the LCD display area will be clipped. PARAMETERS x is the x coordinate (column) of the top left corner of the text. y is the y coordinate (row) of the top left corner of the text. *pInfo is a font descriptor pointer. *fmt is a formatted string. ... are formatted string conversion parameter(s). EXAMPLE glprintf(0,0, &fi12x16, "Test %d\n", count); RETURN VALUE None. SEE ALSO glXFontInit void glBuffLock(void); Increments LCD screen locking counter. Graphic calls are recorded in the LCD memory buffer and are not transferred to the LCD if the counter is non-zero. NOTE: glBuffLock() and glBuffUnlock() can be nested up to a level of 255, but be sure to balance the calls. It is not a requirement to use these procedures, but a set of glBuffLock() and glBuffUnlock() bracketing a set of related graphic calls speeds up the rendering significantly. RETURN VALUE None. SEE ALSO glBuffUnlock, glSwap void glBuffUnlock(void); Decrements the LCD screen locking counter. The contents of the LCD buffer are transferred to the LCD if the counter goes to zero. RETURN VALUE None. SEE ALSO glBuffLock, glSwap 100 Smartcat (BL2100) void glSwap(void); Checks the LCD screen locking counter. The contents of the LCD buffer are transferred to the LCD if the counter is zero. RETURN VALUE None. SEE ALSO glBuffUnlock, glBuffLock, _glSwapData (located in the library specifically for the LCD that you are using) void glSetBrushType(int type); Sets the drawing method (or color) of pixels drawn by subsequent graphic calls. PARAMETER type value can be one of the following macros. PIXBLACK draws black pixels (turns pixel on). PIXWHITE draws white pixels (turns pixel off). PIXXOR draws old pixel XOR'ed with the new pixel. RETURN VALUE None. SEE ALSO glGetBrushType int glGetBrushType(void); Gets the current method (or color) of pixels drawn by subsequent graphic calls. RETURN VALUE The current brush type. SEE ALSO glSetBrushType void glPlotDot(int x, int y); Draws a single pixel in the LCD buffer, and on the LCD if the buffer is unlocked. If the coordinates are outside the LCD display area, the dot will not be plotted. PARAMETERS x is the x coordinate of the dot. y is the y coordinate of the dot. RETURN VALUE None. SEE ALSO glPlotline, glPlotPolygon, glPlotCircle User’s Manual 101 void glPlotLine(int x0, int y0, int x1, int y1); Draws a line in the LCD buffer, and on the LCD if the buffer is unlocked. Any portion of the line that is beyond the LCD display area will be clipped. PARAMETERS x0 is the x coordinate of one endpoint of the line. y0 is the y coordinate of one endpoint of the line. x1 is the x coordinate of the other endpoint of the line. y1 is the y coordinate of the other endpoint of the line. RETURN VALUE None. SEE ALSO glPlotDot, glPlotPolygon, glPlotCircle void glLeft1(int left, int top, int cols, int rows); Scrolls byte-aligned window left one pixel, right column is filled by current pixel type (color). PARAMETERS left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates. top is the top left corner of the bitmap. cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates. rows is the number of rows in the window. RETURN VALUE None. SEE ALSO glHScroll, glRight1 void glRight1(int left, int top, int cols, int rows); Scrolls byte-aligned window right one pixel, left column is filled by current pixel type (color). PARAMETERS left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates. top is the top left corner of the bitmap. cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates. rows is the number of rows in the window. RETURN VALUE None. SEE ALSO glHScroll, glLeft1 102 Smartcat (BL2100) void glUp1(int left, int top, int cols, int rows); Scrolls byte-aligned window up one pixel, bottom column is filled by current pixel type (color). PARAMETERS left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates. top is the top left corner of the bitmap. cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates. rows is the number of rows in the window. RETURN VALUE None. SEE ALSO glVScroll, glDown1 void glDown1(int left, int top, int cols, int rows); Scrolls byte-aligned window down one pixel, top column is filled by current pixel type (color). PARAMETERS left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates. top is the top left corner of the bitmap. cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates. rows is the number of rows in the window. RETURN VALUE None. SEE ALSO glVScroll, glUp1 User’s Manual 103 void glHScroll(int left, int top, int cols, int rows, int nPix); Scrolls right or left, within the defined window by x number of pixels. The opposite edge of the scrolled window will be filled in with white pixels. The window must be byte-aligned. Parameters will be verified for the following: 1. The left and cols parameters will be verified that they are evenly divisible by 8. If not, they will be truncated to a value that is a multiple of 8. 2. Parameters will be checked to verify that the scrolling area is valid. The minimum scrolling area is a width of 8 pixels and a height of one row. PARAMETERS left is the top left corner of bitmap, must be evenly divisible by 8. top is the top left corner of the bitmap. cols is the number of columns in the window, must be evenly divisible by 8. rows is the number of rows in the window. nPix is the number of pixels to scroll within the defined window (a negative value will produce a scroll to the left). RETURN VALUE None. SEE ALSO glVScroll 104 Smartcat (BL2100) void glVScroll(int left, int top, int cols, int rows, int nPix); Scrolls up or down, within the defined window by x number of pixels. The opposite edge of the scrolled window will be filled in with white pixels. The window must be byte-aligned. Parameters will be verified for the following: 1. The left and cols parameters will be verified that they are evenly divisible by 8. If not, they will be truncated to a value that is a multiple of 8. 2. Parameters will be checked to verify that the scrolling area is valid. The minimum scrolling area is a width of 8 pixels and a height of one row. PARAMETERS left is the top left corner of bitmap, must be evenly divisible by 8. top is the top left corner of the bitmap. cols is the number of columns in the window, must be evenly divisible by 8. rows is the number of rows in the window. nPix is the number of pixels to scroll within the defined window (a negative value will produce a scroll up). RETURN VALUE None. SEE ALSO glHScroll void glXPutBitmap(int left, int top, int width, int height, unsigned long bitmap); Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function calls glXPutFastmap automatically if the bitmap is byte-aligned (the left edge and the width are each evenly divisible by 8). Any portion of a bitmap image or character that is outside the LCD display area will be clipped. PARAMETERS left is the top left corner of the bitmap. top is the top left corner of the bitmap. width is the width of the bitmap. height is the height of the bitmap. bitmap is the address of the bitmap in xmem. RETURN VALUE None. SEE ALSO glXPutFastmap, glPrintf User’s Manual 105 void glXPutFastmap(int left, int top, int width, int height, unsigned long bitmap); Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function is like glXPutBitmap, except that it is faster. The restriction is that the bitmap must be byte-aligned. Any portion of a bitmap image or character that is outside the LCD display area will be clipped. PARAMETERS left is the top left corner of the bitmap, must be evenly divisible by 8, otherwise truncates. top is the top left corner of the bitmap. width is the width of the bitmap, must be evenly divisible by 8, otherwise truncates. height is the height of the bitmap. bitmap is the address of the bitmap in xmem. RETURN VALUE None. SEE ALSO glXPutBitmap, glPrintf int TextWindowFrame(windowFrame *window, fontInfo *pFont, int x, int y, int winWidth, int winHeight) Defines a text-only display window. This function provides a way to display characters within the text window using only character row and column coordinates. The text window feature provides end-of-line wrapping and clipping after the character in the last column and row is displayed. NOTE: Execute the TextWindowFrame function before other Text... functions. PARAMETERS *window is a window frame descriptor pointer. *pFont is a font descriptor pointer. x is the x coordinate of the top left corner of the text window frame. y is the y coordinate of the top left corner of the text window frame. winWidth is the width of the text window frame. winHeight is the height of the text window frame. RETURN VALUE 0—window frame was successfully created. -1—x coordinate + width has exceeded the display boundary. -2—y coordinate + height has exceeded the display boundary. 106 Smartcat (BL2100) void TextGotoXY(windowFrame *window, int col, int row); Sets the cursor location to display the next character. The display location is based on the height and width of the character to be displayed. NOTE: Execute the TextWindowFrame function before using this function. PARAMETERS *window is a pointer to a font descriptor. col is a character column location. row is a character row location. RETURN VALUE None. SEE ALSO TextPutChar, TextPrintf, TextWindowFrame void TextCursorLocation(windowFrame *window, int *col, int *row); Gets the current cursor location that was set by a Graphic Text... function. NOTE: Execute the TextWindowFrame function before using this function. PARAMETERS *window is a pointer to a font descriptor. *col is a pointer to cursor column variable. *row is a pointer to cursor row variable. RETURN VALUE Lower word = Cursor Row location Upper word = Cursor Column location SEE ALSO TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation User’s Manual 107 void TextPutChar(struct windowFrame *window, char ch); Displays a character on the display where the cursor is currently pointing. If any portion of a bitmap character is outside the LCD display area, the character will not be displayed. The cursor increments its position as needed. NOTE: Execute the TextWindowFrame function before using this function. PARAMETERS *window is a pointer to a font descriptor. ch is a character to be displayed on the LCD. RETURN VALUE None. SEE ALSO TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation void TextPrintf(struct windowFrame *window, char *fmt, ...); Prints a formatted string (much like printf) on the LCD screen. Only printable characters in the font set are printed, also escape sequences, '\r' and '\n' are recognized. All other escape sequences will be skipped over; for example, '\b' and 't' will print if they exist in the font set, but will not have any effect as control characters. The text window feature provides end-of-line wrapping and clipping after the character in the last col- umn and row is displayed. The cursor then remains at the end of the string. NOTE: Execute the TextWindowFrame function before using this function. PARAMETERS *window is a pointer to a font descriptor. *fmt is a formatted string. ... are formatted string conversion parameter(s). EXAMPLE TextPrintf(&TextWindow, "Test %d\n", count); RETURN VALUE None. SEE ALSO TextGotoXY, TextPutChar, TextWindowFrame, TextCursorLocation 108 Smartcat (BL2100) C.8.3 Keypad The functions used to control the keypad are contained in the located in the Dynamic C KEYPADS\KEYPAD7.LIB library folder. void keyInit(void); Initializes keypad process RETURN VALUE None. SEE ALSO brdInit void keyConfig(char cRaw, char cPress, char cRelease, char cCntHold, char cSpdLo, char cCntLo, char cSpdHi); Assigns each key with key press and release codes, and hold and repeat ticks for auto repeat and debouncing. PARAMETERS cRaw is a raw key code index. 1x7 keypad matrix with raw key code index assignments (in brackets): [0] [1] [2] [3] [4] [5] [6] User Keypad Interface cPress is a key press code An 8-bit value is returned when a key is pressed. 0 = Unused. See keypadDef() for default press codes. cRelease is a key release code. An 8-bit value is returned when a key is pressed. 0 = Unused. cCntHold is a hold tick, which is approximately one debounce period or 5 µs. How long to hold before repeating. 0 = No Repeat. cSpdLo is a low-speed repeat tick, which is approximately one debounce period or 5 µs. How many times to repeat. 0 = None. cCntLo is a low-speed hold tick, which is approximately one debounce period or 5 µs. How long to hold before going to high-speed repeat. 0 = Slow Only. User’s Manual 109 cSpdHi is a high-speed repeat tick, which is approximately one debounce period or 5 µs. How many times to repeat after low speed repeat. 0 = None. RETURN VALUE None. SEE ALSO keyProcess, keyGet, keypadDef void keyProcess(void); Scans and processes keypad data for key assignment, debouncing, press and release, and repeat. NOTE: This function is also able to process an 8 x 8 matrix keypad. RETURN VALUE None SEE ALSO keyConfig, keyGet, keypadDef char keyGet(void); Get next keypress. RETURN VALUE The next keypress, or 0 if none SEE ALSO keyConfig, keyProcess, keypadDef int keyUnget(char cKey); Pushes the value of cKey to the top of the input queue, which is 16 bytes deep. PARAMETER cKey RETURN VALUE None. SEE ALSO keyGet 110 Smartcat (BL2100) void keypadDef(); Configures the physical layout of the keypad with the default ASCII return key codes. Keypad physical mapping 1 x 7 0415263 ['L'] ['U'] ['D'] ['R'] ['–'] ['+'] ['E'] where 'D' represents Down Scroll 'U' represents Up Scroll 'R' represents Right Scroll 'L' represents Left Scroll '–' represents Page Down '+' represents Page Up 'E' represents the ENTER key Example: Do the followingfor the above physical vs. ASCII return key codes. keyConfig ( 3,'R',0, 0, 0, 0, 0 ); keyConfig ( 6,'E',0, 0, 0, 0, 0 ); keyConfig ( 2,'D',0, 0, 0, 0, 0 ); keyConfig ( 4,'-',0, 0, 0, 0, 0 ); keyConfig ( 1,'U',0, 0, 0, 0, 0 ); keyConfig ( 5,'+',0, 0, 0, 0, 0 ); keyConfig ( 0,'L',0, 0, 0, 0, 0 ); Characters are returned upon keypress with no repeat. RETURN VALUE None. SEE ALSO keyConfig, keyGet, keyProcess void keyScan(char *pcKeys); Writes "1" to each row and reads the value. The position of a keypress is indicated by a zero value in a bit position. PARAMETER *pcKeys is a pointer to the address of the value read. RETURN VALUE None. SEE ALSO keyConfig, keyGet, keypadDef, keyProcess User’s Manual 111 112 Smartcat (BL2100) APPENDIX D. PLASTIC ENCLOSURE The plastic enclosure provides a secure way to protect your BL2100. The enclosure itself may be mounted on any flat surface. The complete plastic enclosure consists of a base and a cover. The base alone is a convenient surface on which to mount the BL2100, and also provides a means to mount the BL2100 on any flat surface. The base and cover are sold together with an LCD/keypad module that plugs into the main BL2100 board (Part No. 101-0466). Appendix D describes how to mount the BL2100 and the LCD/keypad inside the plastic enclosure, and provides details on mounting the assembly. User’s Manual 113 ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� �� ��� ��� �#$$%&’ ���� ��� ���� ��� ���� ��� ��� ���� ��� ���� ���� ���� ���� ���� ���� ���� ��� �� ��� ���� ��� ���� ���� ��� �� �������������������������������������������������������!������!�����!������!������!���������������������������������������������� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� �� ��� ��� �#$$%&’ ���� ��� ���� ��� ���� ��� ��� ���� ��� ���� ���� ���� ���� ���� ���� ���� ��� �� ��� ���� ��� ���� ���� ��� �� �������������������������������������������������������!������!�����!������!������!���������������������������������������������� ��� D.1 Assembly Instructions 1. Remove the RabbitCore module from the BL2100 main board, and set the module aside. The module will be plugged back in to the main board later. NOTE: If you are working with more than one BL2100 at a time, take care to keep the BL2100 main boards and their corresponding RabbitCore modules paired since the RabbitCore modules store calibration constants specific to the BL2100 main board to which they are plugged in. ���������������������� �� ��� ����������������� ����� �� ����� �� �� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ���� ���� ��� �� ���� �� ���� ��� �� ��� ���� ���� �� ���� ���� ���� ���� �� ���� �� ��� ���� ��� ��� �� ��� ��� ���� �� �� ��� ���� ��� �� ��� ��� ��� ���� ���� ��� ��� ��� ���� ���� ��� ���� ���� ��� ��� ��� ��� ��� ���� ���� �������� �� ��� ���� ��� ���� ��� ��� ��� ���� ��� ��� ��� ���� �� ���� ��� ��� ���� ��� ��� ��� �� ��� ��� ��� ��� �� ���� ��� �� �� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Figure D-1. Remove RCM2200 Module from BL2100 Main Board 2. Attach the BL2100 main board to the plastic enclosure base. Position the BL2100 main board over the plastic enclosure base as shown below in Figure D-2. Attach the BL2100 to the base using the four 4-40 × ¼ screws supplied with the enclosure base. �� �� �� �� ��� ��� ��� ��� ��� ��� ��� ���� ���� �� ���� ���� �� ���� �� ��� ���� ���� ��� ���� ���� ���� ���� �� ���� �� ��� ���� ��� ��� �� ��� ��� �� �� ��� ���� ��� ���� �� ��� ���� ���� ��� ��� ��� ���� ���� ��� ���� ���� ��� ��� ��� ��� ��� ���� ���� �������� �� ��� ���� ��� ���� ��� ��� ��� ���� ��� ��� ��� ���� �� ���� ��� ��� ���� ��� ��� ��� �� ��� ��� ��� ��� �� ���� ��� ��� �� �� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Figure D-2. Attach BL2100 to Plastic Enclosure Base 114 Smartcat (BL2100) ���� ��� ���� ��� ��� ���� ���� ���� ���� ���� ��� ���� ��� ��� ���� ���� ���� ���� �� �� �� (� �� �� �� �� �� �� �� �� �� (� �� �� �� ��� ��� ��� ��� �� �� �� ��� �� �� �� ��� ��� ������ ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ���� �� �� (� �� !�� �� � ��������� ���������������������������������������������������������������������������������������������������������!"������������������������������������������������������������������������������������������������ �� � ��������� ���������������������������������������������������������������������������������������������������������!"������������������������������������������������������������������������������������������������ ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ���� ���� ��� �� ��� �� ��� ��� ���� ��� ��� ��� ��� ���� �� ��� ���� ����� �� ��� ����� �#$$%&’ ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ���� ��� ��� ��� ���� ��� �� ��� ��� ��� ��� �� ���� ��� ��� ���� ��� ���� ���� ��� ���� ���� ���� ���� ���� ��� ��� �� �� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ���� ��� ���� ��� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� �� �������������������������������������������������������!������!�����!������!������!���������������������������������������������� ��� 3. Reconnect the RabbitCore module to headers J16 and J17 on the BL2100 main board as shown in Figure D-3. Be careful to align the pins over the headers, and do not bend them as you press down to mate the module with the BL2100 main board. NOTE: If you are working with more than one BL2100 at a time, take care to keep the BL2100 main boards and their corresponding RabbitCore modules paired since the RabbitCore modules store calibration constants specific to the BL2100 main board to which they are plugged in. �� ��� ����� �� ����� �� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ���� ��� �� ���� ���� �� ���� �� ��� ��� �� ���� ���� ���� ���� ���� ���� �� ���� �� ��� ���� ��� ��� �� ��� ��� ���� �� �� ��� ���� ��� �� ��� ��� ��� ���� ���� ��� ��� ��� ���� ���� ���� ���� ��� ��� ��� ��� ��� ��� ���� ���� �������� �� ��� ���� ��� ���� ��� ��� ��� ���� ��� ��� ��� ��� ��� ���� �� ���� ��� ��� ���� ��� ��� ��� �� ��� ��� ��� ��� �� ���� ��� �� �� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Figure D-3. Reconnect Module to BL2100 Main Board 4. Install the LCD/keypad module (optional) as shown in Figure D-4. Be careful to align the pins over the headers, and do not bend them as you press down to mate the LCD/keypad module with the BL2100 main board. �� ��� ��� ���� ���� ��� ��� �� �� (� �� �� �� �� �� �� �� �� �� �� (� �� �� �� ��� ��� ��� ��� �� �� �� ��� �� �� �� ��� ��� ������ ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ���� (� �� �� �� !�� Figure D-4. Install LCD/Keypad Module on BL2100 Main Board User’s Manual 115 ���� ��� ���� ��� ��� ���� ���� ���� ���� �� � ��������� ���������������������������������������������������������������������������������������������������������!"������������������������������������������������������������������������������������������������ �� �� (� �� �� �� �� �� �� �� �� �� �� �� (� �� �� ��� ��� ��� ��� �� �� �� ��� �� �� �� ��� ��� ������ ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ���� �� �� �� (� !�� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� �#$$%&’ ��� �� �������������������������������������������������������!������!�����!������!������!���������������������������������������������� ��� �� � ��������� ���������������������������������������������������������������������������������������������������������!"������������������������������������������������������������������������������������������������ �� �� �� ��� �� ��� ��� ��� ��� ��� ��� ���� ���� ���� �� ���� �� ���� �� ��� ��� ���� ���� ���� ���� ���� ���� �� �� ���� �� ��� ��� ���� ��� ��� ��� �� ��� ���� �� �� ��� ���� ��� ����� �� ��� ����� ���� ���� ��� ��� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ��� ��� ���� ��� ��� ��� ���� �������� �� ��� ��� ���� ��� ��� ���� ��� ��� ��� ��� ���� ��� ��� �� ��� ���� �� ���� ��� ��� ���� ��� ��� ��� �� ��� ��� ��� ��� �� ��� ���� ��� �� �� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 5. Mount plastic enclosure (optional). Use four #10 screws to attach the plastic enclosure at the four outer corner mounting holes to the surface on which it will be mounted. This step applies to production versions of BL2100 units once development has been completed. 6. Attach the enclosure cover to the base. Position the cover over the plastic enclosure base as shown below in Figure D-5. Attach the cover to the base using the four 4-40 × 7/8 screws supplied. ���� ��� ���� ��� ��� ���� ���� ���� ���� �� �� (� �� �� �� �� �� �� �� �� �� �� (� �� �� �� ��� ��� ��� �� ��� �� �� ��� �� �� �� ��� ��� ������ ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ���� �� (� �� �� !�� A)=1$01, .8&%3. Figure D-5. Attach Enclosure Top D.2 Dimensions Figure D-6 shows the dimensions for the plastic enclosure. 116 Smartcat (BL2100) �� � ��������� ���������������������������������������������������������������������������������������������������������!"������������������������������������������������������������������������������������������������ ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� �� ��� ��� ��� �#$$%&’ ���� ��� ���� ��� ���� ��� ��� ���� ��� ���� ���� ���� ���� ���� ���� ���� ��� �� ��� ���� ��� ���� ���� ��� �� �������������������������������������������������������!������!�����!������!������!���������������������������������������������� ��� �9��� C��D �9��� C���D �9��� C��D �9�� �9��� �9��� C�9�D C��D C��D �9��� C���D Figure D-6. Plastic Enclosure Dimensions When fully assembled with the BL2100 and the LCD/keypad module installed, the total height of the plastic enclosure will be 1.5" (38 mm). NOTE: All measurements are in inches followed by millimeters enclosed in parentheses. All dimensions have a manufacturing tolerance of ±0.01" (0.25 mm). User’s Manual 117 �9��� C���D �9�� C���D �9��� �9��� C��D C��D �9��� C���D 118 Smartcat (BL2100) APPENDIX E. DEMONSTRATION BOARD Appendix E shows how to connect the Demonstration Board to the BL2100. E.1 Connecting Demonstration Board Before running sample programs based on the Demonstration Board, you will have to con- nect the Demonstration Board from the BL2100 Tool Kit to the BL2100 board. Proceed as follows. 1. Use the wires included in the BL2100 Tool Kit to connect header J1 on the Demonstra- tion Board to screw-terminal headers J5 and J8 on the BL2100. The connections are shown in Figure E-1 for sample program DIGIN.C and for sample program SMTP.C, in Figure E-2 for sample program DIGOUT.C, and in Figure E-3 for sample program SSI.C. 2. Make sure that your BL2100 is connected to your PC and that the power supply is con- nected to the BL2100 and plugged in as described in Chapter 2, “Getting Started.” User’s Manual 119 �� ��� ��� ��� �� ��� ?� ��� ��� ��������MM�� ��� ��� ��������� ���������� ��������� ���� ������ ��������� ���� ������ ��������� ���������� ������ ��������� �"� ������ �"� ������ �������"� �������"� ��������� ������ � ��������� ���������������������������������������������������������������������������������������������!"�����4��������4�������4��������4���������������������������������������������������������������������������� �� 3#��11 ��6�������.���3���� 9��������,: 9���������: ��!" ?� ���������������������� ��� ��� �(6’���7 �������� ���� �"� �������� ��MM�� ?�L��)1% ��A����!�� ���� �"� �������� ?�L�!.�./)31 ���� �"� ���� �"� ����������"��������"��������"� Figure E-1. General Digital Input Connections Between BL2100 and Demonstration Board 120 Smartcat (BL2100) ���� ���� ���� ���� ���� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ���� ��� ��� ���� ��� ���� ���� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� �� �� ��� ��� ��� ��� �� �� �� ���� �� �#$$%&’ ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� �� �� �������������������������������������������������������!������!�����!������!������!���������������������������������������������� �� �� ��� �� �� �� �� ��� ��� �� ��� ��� ��� ��� �� ���� �� �� ��� �� ��� ���� ���� �� ��� �� ��� ��� ���� �� �� �� �� ���� ���� ��� ���� ��� �� ��� ��� ��� ��� ��� ���� ���� ��� ��� �� ��� ��� ��� �� �� ��� ��� �� �� ��� ��� ���� ��� �� �� �� ������ ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ���� ���� ��� ��� ��� ���� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ���� �� ��� ��� ���� ��� ��� ���� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ������������������������������������������������������������������������������������6��������������������������������������������������������������������������������������������������������������������������������������������������� �� ��� ��� ��� �� ��� ��� ?� ��� ��������MM�� ��� ��� ��������� ���������� ��������� ���� ������ ��������� ���� ������ ��������� ���������� ������ ��������� �"� ������ �������"� �������"� �������"� ��� ������ ������ �� � � ��������� ���������������������������������������������������������������������������������������������!"�����4��������4�������4��������4���������������������������������������������������������������������������� 3#��11 ��6�������.���3���� 9��������,$�+: 9���������: ����� ?� ���������������������� ��� ��� �(6’���7 �������� ����� ���� �������� ��MM�� ?�L��)1% ��A����!�� ����� ���� �������� ?�L�!.�./)31 ����� ���� ����� ���� �"��������"��������"��������"� Figure E-2. Digital Output Connections Between BL2100 and Demonstration Board NOTE: +K1 and +K2 on screw-terminal header J8 must be connected to +RAW on screw-terminal header J5 as shown in Figure E-2. User’s Manual 121 ���� ���� ���� ���� ���� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ���� ��� ��� ���� ��� ���� ���� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� �� �� ��� ��� ��� ��� �� �� �� ���� �� �#$$%&’ ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� �� �� �������������������������������������������������������!������!�����!������!������!���������������������������������������������� �� ��� �� �� �� �� �� �� ��� ��� ��� ��� ��� ��� �� �� ���� �� ��� ���� �� ��� ���� �� ��� �� ��� ��� �� ���� �� �� �� ���� ���� ���� ��� ��� �� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� �� �� ��� ��� �� ��� ��� �� �� ��� ��� ���� ��� �� �� �� ������ ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ���� ���� ��� ��� ��� ���� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ���� �� ��� ��� ���� ��� ��� �� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ������������������������������������������������������������������������������������6��������������������������������������������������������������������������������������������������������������������������������������������������� �� ��� ��� ��� �� ��� ��� ?� ��� ��������MM�� ��� ��� ��������� ���� ������ ��������� ���������� ��������� ���������� ��������� ���� ������ ������ ��������� �"� ������ �������"� �������"� �"� ������ ��������� ������ � �� � ��������� ���������������������������������������������������������������������������������������������!"�����4��������4�������4��������4���������������������������������������������������������������������������� 3#��11 ��6�������.���3���� 9��������,$�+: 9���������: ��!" ?� ���������������������� ��� ��� �(6’���7 �������� ����� ���� �������� ��MM�� ?�L��)1% ��A����!�� ����� ���� �������� ?�L�!.�./)31 ����� ���� ����� ���� �"��������"��������"��������"� Figure E-3. SSI.C Connections Between BL2100 and Demonstration Board NOTE: +K1 and +K2 on screw-terminal header J8 must be connected to +RAW on screw-terminal header J5 as shown in Figure E-3. 122 Smartcat (BL2100) ���� ���� ���� ���� ���� ��� ��� ��� ��� ��� ���� ���� ��� ��� ���� ��� ��� ��� ��� ���� ��� ���� ���� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� �� �� ��� ��� ��� ��� �� �� �� ���� �� �#$$%&’ ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� �� �� �������������������������������������������������������!������!�����!������!������!���������������������������������������������� �� ��� �� �� �� �� �� �� ��� ��� ��� ��� ��� ��� �� �� ���� �� ��� �� ��� ���� ���� �� ��� �� ��� �� ��� ���� �� �� �� ���� ���� ��� ���� ��� �� ��� ��� ��� ��� ��� ���� ���� ��� ��� �� ��� ��� �� ��� �� ��� ��� �� �� ��� ��� ���� �� �� ��� �� ������ ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ���� ���� ��� ��� ��� ���� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ���� �� ��� ��� ���� ��� ��� ���� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ������������������������������������������������������������������������������������6��������������������������������������������������������������������������������������������������������������������������������������������������� INDEX function calls installation ......................... 14 A anaOut ...........................52 Rabbit Embedded Security A/D converter ....................... 29 anaOutCalib ..................50 Pack .................... 5, 14, 37 buffered inputs .................. 29 anaOutDriver ................. 51 standard features ............... 36 calibration constants ......... 29 anaOutEERd .................53 debugging ...................... 36 board serial number ....... 40 anaOutEEWr .................53 starting ..............................15 function calls anaOutVolts ..................52 telephone-based technical sup- anaIn .............................. 48 Demonstration Board .............. 4 port ............................ 5, 37 anaInCalib .....................46 hookup instructions ......... 119 upgrades and patches ........ 37 anaInDriver ...................47 digital input sample pro- anaInEERd ....................48 E grams ........................120 anaInEEWr .................... 49 digital output sample pro- EMI anaInVolts .....................48 grams ........................121 spectrum spreader feature . 34 additional information TCP/IP sample programs .. Ethernet cables ...................... 55 online documentation .......... 5 120, 122 Ethernet connections ............. 55 analog I/O jumper configurations .... 120, steps ..................................55 reference voltages ............. 31 121, 122 Ethernet port ......................... 26 analog inputs See A/D converter wire assembly ..................... 4 handling EMI and noise .... 26 analog outputs See D/A convert- digital I/O pinout ................................26 er address assignments .......... 71 exclusion zone ...................... 64 analog reference voltage circuit configure IN16–IN23 as digi- external interrupts ................. 33 31 tal inputs or outputs ...... 71 control register bit map ..... 71 F B function calls features .................................... 1 digIn ..............................44 battery connections ............... 74 flash memory digOut ...........................44 board initialization liefetime write cycles ........ 35 digOutConfig ..........21, 43 function calls ..................... 42 SMODE0 ..........................27 brdInit ............................ 42 H SMODE1 ..........................27 board serial number .............. 40 digital inputs ......................... 20 headers C switching threshold ........... 20 Demonstration Board digital outputs ....................... 21 H1 ................ 120, 121, 122 CE compliance ........................ 6 sinking or sourcing ............ 21 H2 ................ 120, 121, 122 design guidelines ................. 7 dimensions JP1 ..................................... 25 chip select circuit .................. 77 BL2100 main board .......... 62 clock doubler ........................ 34 I LCD/keypad module ......... 79 connections LCD/keypad template ....... 82 Ethernet cable ................... 55 I/O address assignments ....... 71 plastic enclosure .............. 116 connector options .................... 2 LCD/keypad module ......... 83 Dynamic C .................. 5, 35, 36 installation add-on modules ........... 14, 37 D plastic enclosure installation ..................... 14 BL2100 .......................114 D/A converter ....................... 30 basic instructions ............... 35 IP addresses calibration constants ......... 30 COM port .................... 14, 15 how to set .......................... 57 board serial number ....... 40 debugging features ............ 36 User’s Manual 123 how to set PC IP address ...58 glGetPfStep ................99 O glHScroll ..................104 J options .....................................3 glInit ..........................93 connectors ...........................2 glLeft1 .....................102 jumper configurations .....67, 68 LCD/keypad module ...........3 glPlotCircle ................96 Demonstration Board .....120, plastic enclosure ..................3 glPlotDot ..................101 121, 122 glPlotLine ................102 digital inputs ......................68 P glPlotPolygon ............95 JP1 (RS-485 bias and termina- glPlotVPolygon .........95 pinout tion resistors) ...........25, 68 glPrintf .....................100 BL2100 headers ................18 JP2 (configure IN16–IN23 as glPutChar ...................99 Ethernet port ......................26 digital inputs or outputs) 68 glPutFont ...................98 LCD/keypad module .........83 JP2 (flash memory bank se- glRight1 ...................102 plastic enclosure ..............4, 113 lect) ...............................32 glSetBrushType .......101 assembly instructions ......114 jumper locations ................67 glSetContrast .............94 attach BL2100 to base .......11 glSetPfStep ................98 K dimensions .......................116 glSwap .....................101 mounting instructions ......116 K ............................................21 glUp1 .......................103 setup keypad template ....................82 glVScroll ..................105 attach BL2100 to enclosure removing and inserting label . glXFontInit ................97 base ...........................114 82 glXPutBitmap ..........105 attaching top ................116 glXPutFastmap ........106 install LCD/keypad module L TextCursorLocation .107 115 TextGotoXY ............107 LCD/keypad module ...............3 reconnect RabbitCore mod- TextPrintf .................108 bezel-mount installation ....87 ule .............................115 TextPutChar .............108 contrast adjustment ............81 remove RabbitCore module TextWindowFrame ..106 dimensions .........................79 114 LDEs header pinout .....................83 power management ...............73 function calls I/O address assignments ....83 power supply .........................73 ledOut ........................92 keypad backup battery circuit ........75 mounting instructions ........84 function calls battery backup ...................74 mounting locations ............65 keyConfig ................109 chip select circuit ...............77 remote cable connection ....89 keyGet ......................110 connections ........................13 removing and inserting keypad keyInit ......................109 switching voltage regulator 73 label ...............................82 keypadDef ................111 VRAM switch ...................76 removing and plugging in pro- keyProcess ...............110 programming gramming cable .......85, 86 keyScan ....................111 flash vs. RAM ...................35 sample programs ...............90 keyUnget ..................110 programming cable ..............4 versions .............................79 keypad template .................82 programming port ..............27 LCD display programming cable .................4 M function calls connections ........................12 glBackLight ...............93 PROG connector ...............28 memory .................................32 glBlankScreen ............94 switching between Program flash memory configurations . glBlock .......................94 Mode and Run Mode ....28 32 glBuffLock ...............100 use when LCD/keypad module SRAM configuration for dif- glBuffUnlock ...........100 installed ...................85, 86 ferent sizes ....................32 glDispOnOff ..............93 programming port .................27 models .....................................2 glDown1 ..................103 BL2100 ................................2 R glFillCircle .................97 BL2110 ................................2 glFillPolygon .............96 BL2120 ................................2 Rabbit 2000 glFillScreen ................94 BL2130 ................................2 parallel ports ......................69 glFillVPolygon ..........96 connector options ................2 real-time clock glFontCharAddr .........98 mounting instructions how to set ..........................40 glGetBrushType .......101 LCD/keypad module .........84 reset .......................................13 124 Smartcat (BL2100) hardware ............................ 13 PINGME.C .................... 59 electrical ........................ 80 reset generator ................... 76 SMTP.C ........................60 header footprint ............. 80 RS-232 ..................................23 SSI.C .............................60 mechanical ....................80 RS-485 ..................................23 TELNET.C .................... 60 relative pin 1 locations .. 80 RS-485 network .................... 24 serial communication ............ 23 temperature ...................80 termination and bias resistors flow control ....................... 45 plastic enclosure 25 function calls dimensions ..................116 ser485Rx .......................45 spectrum spreader ................. 34 S ser485Tx .......................45 subsystems ............................ 17 serCflowcontrolOff .......45 sample programs ................... 38 T serCflowcontrolOn ........ 45 A/D converter serMode ......................... 45 AD_CALIB.C ...............39 TCP/IP connections .............. 55 programming port ............. 27 AD1.C ...........................39 10Base-T Ethernet card .... 55 RS-232 description ........... 23 AD2.C ...........................39 additional resources .......... 60 RS-485 description ........... 23 AD3.C ...........................39 Ethernet hub ...................... 55 RS-485 network ................ 24 AD4.C ...........................39 steps ..................................55 RS-485 termination and bias calibration constants technical support ................... 16 resistors ......................... 25 GETCALIB.C ... 29, 30, 40 Tool Kit ................................... 4 serial ports SAVECALIB.C 29, 30, 40 AC adapter .......................... 4 Ethernet port ..................... 26 D/A converter DC power supply ................ 4 setup ........................................ 9 DACAL.C .....................39 Demonstration Board .......... 4 attach BL2100 to enclosure DAOUT1.C ...................39 Dynamic C software ........... 4 base ...............................10 DAOUT2.C ...................40 plastic enclosure .................. 4 power supply connections . 13 digital I/O programming cable ............. 4 programming cable connec- DIGIN.C ........................ 38 software ............................... 4 tions ..............................12 DIGOUT.C .................... 38 User’s Manual ..................... 4 reconnect RabbitCore module PWM.C .........................38 wire assembly ..................... 4 11 how to set IP address ........ 57 troubleshooting remove RabbitCore module 9 LCD/keypad module ... 40, 90 changing COM port .......... 15 software ..................................5 ALPHANUN.C .............90 connections .......................15 LCD/keypad module LEDs .. COFTERMA.C .............90 92 U DISPPONG.C ............... 90 libraries .............................41 DKADEMO1.C ............. 90 USB/serial port converter ..... 12 BL2100 .........................41 FUN.C ...........................90 Dynamic C settings ........... 15 BL21xx.LIB ..................41 KEYBASIC.C .........82, 90 PACKET.LIB ................ 45 KEYMENU.C ...............90 RS232.LIB ....................45 LED.C ...........................90 TCP/IP ........................... 41 SCROLLING.C ............90 macros TEXT.C ......................... 90 USE_2NDFLASH_CODE LCD/keypad module (with 35 TCP/IP) sample programs ............... 38 MBOXDEMO.C ...........91 specifications TCP_RESPOND.C .......91 BL2100 TCPSEND.C .................91 electrical ........................63 PONG.C ............................15 exclusion zone ............... 64 real-time clock header footprint ............. 65 RTC_TEST.C ................ 40 headers ..........................65 SETRTCKB.C ..............40 relative pin 1 locations .. 65 serial communication temperature ...................63 MASTER.C ................... 39 dimensions (BL2100 main PUTS.C .........................38 board) ............................ 62 RELAYCHR.C .............38 LCD/keypad module SLAVE.C ......................39 dimensions ....................79 TCP/IP ........................40, 57 User’s Manual 125 126 Smartcat (BL2100) SCHEMATICS 090-0124 BL2100 Schematic www.rabbit.com/documentation/schemat/090-0124.pdf 090-0120 RCM2200 Module Schematic www.rabbit.com/documentation/schemat/090-0120.pdf 090-0119 RCM2300 Module Schematic www.rabbit.com/documentation/schemat/090-0119.pdf 090-0042 Demonstration Board Schematic www.rabbit.com/documentation/schemat/090-0042.pdf 090-0156 LCD/Keypad Module Schematic www.rabbit.com/documentation/schemat/090-0156.pdf 090-0128 Programming Cable Schematic www.rabbit.com/documentation/schemat/090-0128.pdf You may use the URL information provided above to access the latest schematics directly. User’s Manual 127

Frequently asked questions

What makes Elite.Parts unique?

chervon down
At GID Industrial (Elite.Parts' parent company), we specialize in procuring industrial parts. We know where to find the rare and obsolete equipment that our customers need in order to get back to business. There are other companies who claim to do what we do, but we're confident that our commitment to quality and value is unparalleled in our field.

What kind of warranty will the 101-0547 have?

chervon down
Warranties differ by part and by which suppliers we use to procure it for you. Sometimes, a part will be sold as-is and without a warranty. Our specialty, single board computers, tend to receive a one-year warranty.

Which carriers does Elite.Parts work with?

chervon down
Elite.Parts can ship via FedEx, UPS, DHL, and USPS. We have accounts with each of them and generally ship using one of those, but we can also ship using your account if you would prefer. However, we can use other carriers if it will be more convenient for you.

Will Elite.Parts sell to me even though I live outside the USA?

chervon down
Absolutely! We are happy to serve customers regardless of location. We work with international clients all the time, and we are familiar with shipping to destinations all across the globe.

I have a preferred payment method. Will Elite.Parts accept it?

chervon down
All major credit cards are accepted: Visa, MasterCard, Discover, and American Express. We will also accept payment made with wire transfer or PayPal. Checks will only be accepted from customers in the USA. Terms may available for larger orders, upon approval.

Why buy from GID?

quality

Quality

We are industry veterans who take pride in our work

protection

Protection

Avoid the dangers of risky trading in the gray market

access

Access

Our network of suppliers is ready and at your disposal

savings

Savings

Maintain legacy systems to prevent costly downtime

speed

Speed

Time is of the essence, and we are respectful of yours

What they say about us

FANTASTIC RESOURCE

star star star star star

One of our top priorities is maintaining our business with precision, and we are constantly looking for affiliates that can help us achieve our goal. With the aid of GID Industrial, our obsolete product management has never been more efficient. They have been a great resource to our company, and have quickly become a go-to supplier on our list!

Bucher Emhart Glass

EXCELLENT SERVICE

star star star star star

With our strict fundamentals and high expectations, we were surprised when we came across GID Industrial and their competitive pricing. When we approached them with our issue, they were incredibly confident in being able to provide us with a seamless solution at the best price for us. GID Industrial quickly understood our needs and provided us with excellent service, as well as fully tested product to ensure what we received would be the right fit for our company.

Fuji

HARD TO FIND A BETTER PROVIDER

star star star star star

Our company provides services to aid in the manufacture of technological products, such as semiconductors and flat panel displays, and often searching for distributors of obsolete product we require can waste time and money. Finding GID Industrial proved to be a great asset to our company, with cost effective solutions and superior knowledge on all of their materials, it’d be hard to find a better provider of obsolete or hard to find products.

Applied Materials

CONSISTENTLY DELIVERS QUALITY SOLUTIONS

star star star star star

Over the years, the equipment used in our company becomes discontinued, but they’re still of great use to us and our customers. Once these products are no longer available through the manufacturer, finding a reliable, quick supplier is a necessity, and luckily for us, GID Industrial has provided the most trustworthy, quality solutions to our obsolete component needs.

Nidec Vamco

TERRIFIC RESOURCE

star star star star star

This company has been a terrific help to us (I work for Trican Well Service) in sourcing the Micron Ram Memory we needed for our Siemens computers. Great service! And great pricing! I know when the product is shipping and when it will arrive, all the way through the ordering process.

Trican Well Service

GO TO SOURCE

star star star star star

When I can't find an obsolete part, I first call GID and they'll come up with my parts every time. Great customer service and follow up as well. Scott emails me from time to time to touch base and see if we're having trouble finding something.....which is often with our 25 yr old equipment.

ConAgra Foods

Related Products

product

Rabbit Semiconductor 101-0356 CPU Board. Single Board Computer (SBC) BL1800

product

Rabbit Semiconductor 101-0357 CPU Board. Single Board Computer (SBC) BL1810

product

Rabbit Semiconductor 101-0358 CPU Board. Single Board Computer (SBC) BL1820

product

Rabbit Semiconductor 101-0411 CPU Board. INTERFACE 12KEYDISP ETHNT OP6700

product

Rabbit Semiconductor 101-0430 CPU Board. BL2000 | Single Board Computer

product

Rabbit Semiconductor 101-0455 CPU Board. Single Board Computer (SBC) BL2010