Elite.Parts chervon right Manufacturers chervon right A chervon right ACTEL chervon right A3P015
About product Specifications Features Datasheet FAQ

ACTEL A3P015

Description

Actel A3P015 Flash Family FPGA with Optional Soft ARM Support

Part Number

A3P015

Price

Request Quote

Manufacturer

ACTEL

Lead Time

Request Quote

Category

PRODUCTS - A

Specifications

FlashROM Bits

1,024

I/O Banks

2

I/O Standards

Std, & Hot Swap

Maximum User I/Os

49

Speed Grades

Std.

System Gates

15,000

Temperature Grades

C,I

Typical Equivalent Macrocells

128

VersaNet Globals

6

VersaTiles(D-Flip-Flop)

384

Features

Datasheet

pdf file

Flash-613267389.pdf

10320 KiB

Extracted Text

Revision 11 ProASIC3 Flash Family FPGAs with Optional Soft ARM Support Advanced I/O Features and Benefits • 700 Mbps DDR, LVDS-Capable I/Os (A3P250 and above) High Capacity • 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation • 15 k to 1 M System Gates • Wide Range Power Supply Voltage Support per JESD8-B, • Up to 144 kbits of True Dual-Port SRAM Allowing I/Os to Operate from 2.7 V to 3.6 V • Up to 300 User I/Os • Bank-Selectable I/O Voltages—up to 4 Banks per Chip • Single-Ended I/O Standards: LVTTL, LVCMOS 3.3V/ Reprogrammable Flash Technology † 2.5 V / 1.8 V / 1.5 V, 3.3 V PCI / 3.3 V PCI-X and LVCMOS • 130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS 2.5 V / 5.0 V Input Process • Differential I/O Standards: LVPECL, LVDS, B-LVDS, and • Live at Power-Up (LAPU) Level 0 Support M-LVDS (A3P250 and above) • Single-Chip Solution • I/O Registers on Input, Output, and Enable Paths • Retains Programmed Design when Powered Off ‡ • Hot-Swappable and Cold Sparing I/Os High Performance † • Programmable Output Slew Rate and Drive Strength • 350 MHz System Performance • Weak Pull-Up/-Down † • 3.3 V, 66 MHz 64-Bit PCI • IEEE 1149.1 (JTAG) Boundary Scan Test In-System Programming (ISP) and Security • Pin-Compatible Packages across the ProASIC3 Family † Clock Conditioning Circuit (CCC) and PLL • ISP Using On-Chip 128-Bit Advanced Encryption ® • Six CCC Blocks, One with an Integrated PLL Standard (AES) Decryption (except ARM -enabled ® † • Configurable Phase-Shift, Multiply/Divide, Delay Capabilities ProASIC 3 devices) via JTAG (IEEE 1532–compliant) and External Feedback ® • FlashLock to Secure FPGA Contents • Wide Input Frequency Range (1.5 MHz to 350 MHz) † Embedded Memory Low Power • 1 kbit of FlashROM User Nonvolatile Memory • Core Voltage for Low Power • Support for 1.5 V-Only Systems • SRAMs and FIFOs with Variable-Aspect-Ratio 4,608-Bit RAM † Blocks (×1, ×2, ×4, ×9, and ×18 organizations) • Low-Impedance Flash Switches • True Dual-Port SRAM (except ×18) High-Performance Routing Hierarchy ARM Processor Support in ProASIC3 FPGAs • Segmented, Hierarchical Routing and Clock Structure ® • M1 ProASIC3 Devices—ARM Cortex™-M1 Soft Processor Available with or without Debug 1 ProASIC3 Devices A3P015 A3P030 A3P060 A3P125 A3P250 A3P400 A3P600 A3P1000 2 Cortex-M1 Devices M1A3P250 M1A3P400 M1A3P600 M1A3P1000 System Gates 15,000 30,000 60,000 125,000 250,000 400,000 600,000 1,000,000 Typical Equivalent Macrocells 128 256 512 1,024 2,048 – – – VersaTiles (D-flip-flops) 384 768 1,536 3,072 6,144 9,216 13,824 24,576 RAM Kbits (1,024 bits) – – 18 36 36 54 108 144 4,608-Bit Blocks –– 4 8 8 12 24 32 FlashROM Kbits 11 1 1 1 1 1 1 3 Secure (AES) ISP – – Yes Yes Yes Yes Yes Yes Integrated PLL in CCCs –– 1 1 1 1 1 1 4 VersaNet Globals 6 6 18 18 18 18 18 18 I/O Banks 22 2 2 4 4 4 4 Maximum User I/Os 49 81 96 133 157 194 235 300 Package Pins 5 QFN QN68 QN48, QN68, QN132 QN132 QN132 QN132 CS CS121 VQFP VQ100 VQ100 VQ100 VQ100 TQFP TQ144 TQ144 PQFP PQ208 PQ208 PQ208 PQ208 PQ208 5 FBGA FG144 FG144 FG144/256 FG144/256/ FG144/256/ FG144/256/ 484 484 484 Notes: 1. A3P015 is not recommended for new designs. 2. Refer to the Cortex-M1 product brief for more information. 3. AES is not available for Cortex-M1 ProASIC3 devices. 4. Six chip (main) and three quadrant global networks are available for A3P060 and above. 5. The M1A3P250 device does not support this package. 6. For higher densities and support of additional features, refer to the ProASIC3E Flash Family FPGAs datasheet. † A3P015 and A3P030 devices do not support this feature. ‡ Supported only by A3P015 and A3P030 devices. March 2012 I © 2012 Microsemi Corporation ProASIC3 Flash Family FPGAs 1 I/Os Per Package ProASIC3 2 3 3 Devices A3P015 A3P030 A3P060 A3P125 A3P250 A3P400 A3P600 A3P1000 Cortex-M1 3,5 3 Devices M1A3P250 M1A3P400 M1A3P600 M1A3P1000 I/O Type Package QN48 – 34 – – – – ––– –– QN68 49 49 – – – – – – – – – 5 QN132 – 818084 87 19 – – – – – CS121 – – 96 – – – –––– –– VQ100 – 77 71 71 68 13 – – – – – TQ144 – – 91 100 – – –––– –– PQ208 – – – 133 151 34 151 34 154 35 154 35 FG144 – – 96 97 97 24 972597259725 5,6 FG256 – – – – 157 38 178 38 177 43 177 44 6 FG484 – – – – – – 194 38 235 60 300 74 Notes: 1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3 FPGA Fabric User’s Guide to ensure complying with design and board migration requirements. 2. A3P015 is not recommended for new designs. 3. For A3P250 and A3P400 devices, the maximum number of LVPECL pairs in east and west banks cannot exceed 15. Refer to the ProASIC3 FPGA Fabric User’s Guide for position assignments of the 15 LVPECL pairs. 4. Each used differential I/O pair reduces the number of single-ended I/Os available by two. 5. The M1A3P250 device does not support FG256 or QN132 packages. 6. FG256 and FG484 are footprint-compatible packages. Table 1 • ProASIC3 FPGAs Package Sizes Dimensions Package CS121 QN48 QN68 QN132 VQ100 TQ144 PQ208 FG144 FG256 FG484 Length × Width 6 × 6 6 × 6 8 × 8 8 × 8 14 × 14 20 × 20 28 × 28 13 × 13 17 × 17 23 × 23 (mm\mm) Nominal Area 36 36 64 64 196 400 784 169 289 529 2 (mm ) Pitch (mm) 0.5 0.4 0.4 0.5 0.5 0.5 0.5 1.0 1.0 1.0 Height (mm) 0.99 0.90 0.90 0.75 1.00 1.40 3.40 1.45 1.60 2.23 II Revision 11 Single-Ended I/O Single-Ended I/O Single-Ended I/O Single-Ended I/O 4 Single-Ended I/O Differential I/O Pairs 4 Single-Ended I/O Differential I/O Pairs 4 Single-Ended I/O Differential I/O Pairs 4 Single-Ended I/O Differential I/O Pairs ProASIC3 Flash Family FPGAs ProASIC3 Ordering Information . _ A3P1000 1 FG G 144 Y I Application (Temperature Range) Blank = Commercial (0°C to +70°C Ambient Temperature) I = Industrial (–40°C to +85°C Ambient Temperature) PP= Pre-Production ES= Engineering Sample (Room Temperature Only) Security Feature Y = Device Includes License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio Package Lead Count Lead-Free Packaging Blank = Standard Packaging G= RoHS-Compliant (Green) Packaging (some packages also halogen-free) Package Type = QN Quad Flat Pack No Leads (0.4 mm and 0.5 mm pitches) = VQ Very Thin Quad Flat Pack (0.5 mm pitch) = TQ Thin Quad Flat Pack (0.5 mm pitch) = PQ Plastic Quad Flat Pack (0.5 mm pitch) = FG Fine Pitch Ball Grid Array (1.0 mm pitch) = CS Chip Scale Package (0.5 mm pitch) Speed Grade Blank = Standard 1 = 15% Faster than Standard 2 = 25% Faster than Standard Part Number ProASIC3 Devices A3P015 = 15,000 System Gates (A3P015 is not recommended for new designs.) A3P030 = 30,000 System Gates A3P060 = 60,000 System Gates A3P125 = 125,000 System Gates A3P250 = 250,000 System Gates A3P400 = 400,000 System Gates A3P600 = 600,000 System Gates A3P1000 = 1,000,000 System Gates ProASIC3 Devices with Cortex-M1 M1A3P250 = 250,000 System Gates M1A3P400 = 400,000 System Gates M1A3P600 = 600,000 System Gates M1A3P1000 = 1,000,000 System Gates ProASIC3 Device Status ProASIC3 Devices Status Cortex-M1 Devices Status A3P015 Not recommended for new designs. A3P030 Production A3P060 Production A3P125 Production A3P250 Production M1A3P250 Production A3P400 Production M1A3P400 Production A3P600 Production M1A3P600 Production A3P1000 Production M1A3P1000 Production Revision 11 III ProASIC3 Flash Family FPGAs Temperature Grade Offerings * Package A3P015 A3P030 A3P060 A3P125 A3P250 A3P400 A3P600 A3P1000 Cortex-M1 Devices M1A3P250 M1A3P400 M1A3P600 M1A3P1000 QN48 – C, I – – – – – – QN68 C, I C, I – – – – – – QN132 – C, I C, I C, I C, I – – – CS121 – – C, I – ––– – VQ100 – C, IC, IC, I C, I – – – TQ144 – – C, I C, I ––– – PQ208 – – – C, I C, I C, I C, I C, I FG144 – – C, I C, I C, I C, I C, I C, I FG256 – – – – C, I C, I C, I C, I FG484 – – – – – C, I C, I C, I Note: *A3P015 is not recommended for new designs. C = Commercial temperature range: 0°C to 70°C ambient temperature I = Industrial temperature range: –40°C to 85°C ambient temperature Speed Grade and Temperature Grade Matrix Temperature Grade Std. –1 –2 1 C 333 2 I 333 Notes: 1. C = Commercial temperature range: 0°C to 70°C ambient temperature 2. I = Industrial temperature range: –40°C to 85°C ambient temperature References made to ProASIC3 devices also apply to ARM-enabled ProASIC3 devices. The ARM-enabled part numbers start with M1 (Cortex-M1). Contact your local Microsemi representative for device availability: http://www.microsemi.com/soc/contact/default.aspx. A3P015 and A3P030 The A3P015 and A3P030 are architecturally compatible; there are no RAM or PLL features. Devices Not Recommended For New Designs A3P015 is not recommended for new designs. IV Revision 11 ProASIC3 Flash Family FPGAs Table of Contents ProASIC3 Device Family Overview General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 ProASIC3 DC and Switching Characteristics General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 Calculating Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 User I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15 VersaTile Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-83 Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-87 Clock Conditioning Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-92 Embedded SRAM and FIFO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-94 Embedded FlashROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-109 JTAG 1532 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-110 Pin Descriptions Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 User Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 Package Pin Assignments QN48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 QN68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 QN132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 CS121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15 VQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18 TQ144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23 PQ208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28 FG144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-39 FG256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-52 FG484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-65 Datasheet Information List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 Revision 11 V 1 – ProASIC3 Device Family Overview General Description ProASIC3, the third-generation family of Microsemi flash FPGAs, offers performance, density, and PLUS® features beyond those of the ProASIC family. Nonvolatile flash technology gives ProASIC3 devices the advantage of being a secure, low power, single-chip solution that is live at power-up (LAPU). ProASIC3 is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools. ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The A3P015 and A3P030 devices have no PLL or RAM support. ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os. ProASIC3 devices support the ARM Cortex-M1 processor. The ARM-enabled devices have Microsemi ordering numbers that begin with M1A3P (Cortex-M1) and do not support AES decryption. Flash Advantages Reduced Cost of Ownership Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM- based FPGAs, flash-based ProASIC3 devices allow all functionality to be live at power-up; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3 family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3 family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets. Security The nonvolatile, flash-based ProASIC3 devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3 devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer. ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3 devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves. The contents of a programmed ProASIC3 device cannot be read back, although secure design verification is possible. ARM-enabled ProASIC3 devices do not support user-controlled AES security mechanisms. Since the ARM core must be protected at all times, AES encryption is always on for the core logic, so bitstreams are always encrypted. There is no user access to encryption for the FlashROM programming data. Security, built into the FPGA fabric, is an inherent component of the ProASIC3 family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3 family, with FlashLock and AES security, is Revision 11 1-1 ProASIC3 Device Family Overview unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. A ProASIC3 device provides the best available security for programmable logic designs. Single Chip Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based ProASIC3 FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability. Live at Power-Up Flash-based ProASIC3 devices support Level 0 of the LAPU classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The LAPU feature of flash-based ProASIC3 devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs that are used for these purposes in a system. In addition, glitches and brownouts in system power will not corrupt the ProASIC3 device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based ProASIC3 devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time. Firm Errors Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of ProASIC3 flash-based FPGAs. Once it is programmed, the flash cell configuration element of ProASIC3 FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric. Low Power Flash-based ProASIC3 devices exhibit power characteristics similar to an ASIC, making them an ideal choice for power-sensitive applications. ProASIC3 devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs. ProASIC3 devices also have low dynamic power consumption to further maximize power savings. 1-2 Revision 11 Bank 0 Bank 0 ProASIC3 Flash Family FPGAs Advanced Flash Technology The ProASIC3 family offers many benefits, including nonvolatility and reprogrammability through an advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy. Advanced Architecture The proprietary ProASIC3 architecture provides granularity comparable to standard-cell ASICs. The ProASIC3 device consists of five distinct and programmable architectural features (Figure 1-1 and Figure 1-2 on page 1-4): • FPGA VersaTiles • Dedicated FlashROM † • Dedicated SRAM/FIFO memory † • Extensive CCCs and PLLs • Advanced I/O structure Bank 0 CCC RAM Block 4,608-Bit Dual-Port SRAM or FIFO Block* I/Os VersaTile ISP AES User Nonvolatile Charge Pumps Decryption* FlashROM Bank 1 Note: *Not supported by A3P015 and A3P030 devices Figure 1-1 • ProASIC3 Device Architecture Overview with Two I/O Banks (A3P015, A3P030, A3P060, and A3P125) † The A3P015 and A3P030 do not support PLL or SRAM. Revision 11 1-3 Bank 1 Bank 1 Bank 1 Bank 1 ProASIC3 Device Family Overview Bank 0 CCC RAM Block 4,608-Bit Dual-Port SRAM or FIFO Block I/Os VersaTile RAM Block 4,608-Bit Dual-Port ISP AES User Nonvolatile Charge Pumps SRAM or FIFO Block Decryption FlashROM (A3P600 and A3P1000) Bank 2 Figure 1-2 • ProASIC3 Device Architecture Overview with Four I/O Banks (A3P250, A3P600, and A3P1000) The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the ProASIC3 core tile as either a three-input lookup table (LUT) equivalent or as a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the Microsemi ProASIC family of third-generation architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design. VersaTiles PLUS® The ProASIC3 core consists of VersaTiles, which have been enhanced beyond the ProASIC core tiles. The ProASIC3 VersaTile supports the following: • All 3-input logic functions—LUT-3 equivalent • Latch with clear or set • D-flip-flop with clear or set • Enable D-flip-flop with clear or set Refer to Figure 1-3 for VersaTile configurations. Enable D-Flip-Flop with Clear or Set LUT-3 Equivalent D-Flip-Flop with Clear or Set Data Y Data Y X1 X2 LUT-3 CLK Y D-FF D-FF CLK X3 CLR Enable CLR Figure 1-3 • VersaTile Configurations 1-4 Revision 11 Bank 3 Bank 3 ProASIC3 Flash Family FPGAs User Nonvolatile FlashROM ProASIC3 devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications: • Internet protocol addressing (wireless or fixed) • System calibration settings • Device serialization and/or inventory control • Subscription-based business models (for example, set-top boxes) • Secure key storage for secure communications algorithms • Asset management/tracking • Date stamping • Version management The FlashROM is written using the standard ProASIC3 IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the A3P015 and A3P030 devices), as in security keys stored in the FlashROM for a user design. The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array. The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte. ® The ProASIC3 development software solutions, Libero Integrated Design Environment (IDE) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero IDE and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents. SRAM and FIFO ProASIC3 devices (except the A3P015 and A3P030 devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in A3P015 and A3P030 devices). In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations. PLL and CCC ProASIC3 devices provide designers with very flexible clock conditioning capabilities. Each member of the ProASIC3 family contains six CCCs. One CCC (center west side) has a PLL. The A3P015 and A3P030 devices do not have a PLL. The six CCC blocks are located at the four corners and the centers of the east and west sides. All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access. Revision 11 1-5 ProASIC3 Device Family Overview The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block. The CCC block has these key features: • Wide input frequency range (f ) = 1.5 MHz to 350 MHz IN_CCC • Output frequency range (f ) = 0.75 MHz to 350 MHz OUT_CCC • Clock delay adjustment via programmable and fixed delays from –7.56 ns to +11.12 ns • 2 programmable delay types for clock skew minimization • Clock frequency synthesis (for PLL only) Additional CCC specifications: • Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration (for PLL only). • Output duty cycle = 50% ± 1.5% or better (for PLL only) • Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used (for PLL only) • Maximum acquisition time = 300 µs (for PLL only) • Low power consumption of 5 mW • Exceptional tolerance to input period jitter— allowable input jitter is up to 1.5 ns (for PLL only) • Four precise phases; maximum misalignment between adjacent phases of 40 ps × (350 MHz / f ) (for PLL only) OUT_CCC Global Clocking ProASIC3 devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network. Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high fanout nets. 1-6 Revision 11 ProASIC3 Flash Family FPGAs I/Os with Advanced I/O Standards The ProASIC3 family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). ProASIC3 FPGAs support many different I/O standards—single-ended and differential. The I/Os are organized into banks, with two or four banks per device. The configuration of these banks determines the I/O standards supported (Table 1-1). Table 1-1 • I/O Standards Supported I/O Standards Supported LVTTL/ LVPECL, LVDS, I/O Bank Type Device and Bank Location LVCMOS PCI/PCI-X B-LVDS, M-LVDS Advanced East and west Banks of A3P250 and ✓✓ ✓ larger devices Standard Plus North and south banks of A3P250 and Not supported ✓✓ larger devices All banks of A3P060 and A3P125 Standard All banks of A3P015 and A3P030 Not Not supported ✓ supported Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following: • Single-Data-Rate applications • Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications ProASIC3 banks for the A3P250 device and above support LVPECL, LVDS, B-LVDS and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads. Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a powered-up system. Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating. Wide Range I/O Support ProASIC3 devices support JEDEC-defined wide range I/O operation. ProASIC3 supports the JESD8-B specification, covering both 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V. Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications. Specifying I/O States During Programming You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the FlashPro User’s Guide for more information. Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only. 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming. 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint – Programming File Generator window appears. 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box. Revision 11 1-7 ProASIC3 Device Family Overview 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-4 on page 1-8). 5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings: 1 – I/O is set to drive out logic High 0 – I/O is set to drive out logic Low Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming Z -Tristate: I/O is tristated Figure 1-4 • I/O States During Programming Window 6. Click OK to return to the FlashPoint – Programming File Generator window. Note: I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation. 1-8 Revision 11 2 – ProASIC3 DC and Switching Characteristics General Specifications Operating Conditions Stresses beyond those listed in Table 2-1 may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied. Table 2-1 • Absolute Maximum Ratings Symbol Parameter Limits Units VCC DC core supply voltage –0.3 to 1.65 V VJTAG JTAG DC voltage –0.3 to 3.75 V VPUMP Programming voltage –0.3 to 3.75 V VCCPLL Analog power supply (PLL) –0.3 to 1.65 V VCCI DC I/O output buffer supply voltage –0.3 to 3.75 V VMV DC I/O input buffer supply voltage –0.3 to 3.75 V VI I/O input voltage –0.3 V to 3.6 V V (when I/O hot insertion mode is enabled) –0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled) 2 T Storage temperature –65 to +150 °C STG 2 T Junction temperature +125 °C J Notes: 1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3. 2. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-2, and for recommended operating limits, refer to Table 2-2 on page 2-2. Revision 11 2-1 ProASIC3 DC and Switching Characteristics 1,2 Table 2-2 • Recommended Operating Conditions Symbol Parameter Commercial Industrial Units T Ambient temperature 0 to +70 -40 to +85 °C A T Junction temperature 0 to 85 -40 to 100 J 3 VCC 1.5 V DC core supply voltage 1.425 to 1.575 1.425 to 1.575 V VJTAG JTAG DC voltage 1.4 to 3.6 1.4 to 3.6 V VPUMP Programming voltage Programming Mode 3.15 to 3.45 3.15 to 3.45 V 4 Operation 0 to 3.6 0 to 3.6 V VCCPLL Analog power supply (PLL) 1.425 to 1.575 1.425 to 1.575 V VCCI and VMV 1.5 V DC supply voltage 1.425 to 1.575 1.425 to 1.575 V 1.8 V DC supply voltage 1.7 to 1.9 1.7 to 1.9 V 2.5 V DC supply voltage 2.3 to 2.7 2.3 to 2.7 V 3.3 V DC supply voltage 3.0 to 3.6 3.0 to 3.6 V 5 3.3 V wide range DC supply voltage 2.7 to 3.6 2.7 to 3.6 V LVDS/B-LVDS/M-LVDS differential I/O 2.375 to 2.625 2.375 to 2.625 V LVPECL differential I/O 3.0 to 3.6 3.0 to 3.6 V Notes: 1. All parameters representing voltages are measured with respect to GND unless otherwise specified. 2. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi recommends that the user follow best design practices using Microsemi’s timing and power simulation tools. 3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-18 on page 2-19. VMV and VCCI should be at the same voltage within a given I/O bank. 4. VPUMP can be left floating during operation (not programming mode). 5. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation. 1 Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature Product Programming Program Retention Maximum Storage Maximum Operating 2 2 Grade Cycles (biased/unbiased) Temperature T (°C) Junction Temperature T (°C) STG J Commercial 500 20 years 110 100 Industrial 500 20 years 110 100 Notes: 1. This is a stress rating only; functional operation at any condition other than those indicated is not implied. 2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits. 2-2 Revision 11 ProASIC3 Flash Family FPGAs 1 Table 2-4 • Overshoot and Undershoot Limits Average VCCI–GND Overshoot or Undershoot Maximum Overshoot/ 2 2 VCCI and VMV Duration as a Percentage of Clock Cycle Undershoot 2.7 V or less 10% 1.4 V 5% 1.49 V 3 V 10% 1.1 V 5% 1.19 V 3.3 V 10% 0.79 V 5% 0.88 V 3.6 V 10% 0.45 V 5% 0.54 V Notes: 1. Based on reliability requirements at 85°C. 2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V. 3. This table does not provide PCI overshoot/undershoot limits. I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial) ® Sophisticated power-up management circuitry is designed into every ProASIC 3 device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4. There are five regions to consider during power-up. ProASIC3 I/Os are activated only if ALL of the following three conditions are met: 1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4). 2. VCCI > VCC – 0.75 V (typical) 3. Chip is in the operating mode. VCCI Trip Point: Ramping up: 0.6 V < trip_point_up < 1.2 V Ramping down: 0.5 V < trip_point_down < 1.1 V VCC Trip Point: Ramping up: 0.6 V < trip_point_up < 1.1 V Ramping down: 0.5 V < trip_point_down < 1 V VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following: • During programming, I/Os become tristated and weakly pulled up to VCCI. • JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior. PLL Behavior at Brownout Condition Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power- up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLLX exceed brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-1 on page 2-4 for more details). When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V ± 0.25 V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the ProASIC3 FPGA Fabric User’s Guide for information on clock and lock recovery. Revision 11 2-3 ProASIC3 DC and Switching Characteristics Internal Power-Up Activation Sequence 1. Core 2. Input buffers Output buffers, after 200 ns delay from input buffer activation VCC = VCCI + VT where VT can be from 0.58 V to 0.9 V (typically 0.75 V) VCC VCC = 1.575 V Region 5: I/O buffers are ON Region 4: I/O Region 1: I/O Buffers are OFF and power supplies are within buffers are ON. specification. I/Os are functional I/Os meet the entire datasheet (except differential and timer specifications for but slower because VCCI speed, VIH / VIL, VOH / VOL, is below specification. For the etc. same reason, input buffers do not meet VIH / VIL levels, and output buffers do not meet VOH / VOL levels. VCC = 1.425 V Region 2: I/O buffers are ON. Region 3: I/O buffers are ON. I/Os are functional (except differential inputs) I/Os are functional; I/O DC but slower because VCCI / VCC are below specifications are met, specification. For the same reason, input but I/Os are slower because buffers do not meet VIH / VIL levels, and the VCC is below specification. output buffers do not meet VOH / VOL levels. Activation trip point: V = 0.85 V ± 0.25 V a Deactivation trip point: Region 1: I/O buffers are OFF V = 0.75 V ± 0.25 V d VCCI Activation trip point: Min VCCI datasheet specification V = 0.9 V ± 0.3 V voltage at a selected I/O a Deactivation trip point: standard; i.e., 1.425 V or 1.7 V V = 0.8 V ± 0.3 V or 2.3 V or 3.0 V d Figure 2-1 • I/O State as a Function of VCCI and VCC Voltage Levels 2-4 Revision 11 ProASIC3 Flash Family FPGAs Thermal Characteristics Introduction The temperature variable in the Microsemi Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature. EQ 1 can be used to calculate junction temperature. T = Junction Temperature = ΔT + T J A EQ 1 where: T = Ambient Temperature A ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θ * P ja θ = Junction-to-ambient of the package. θ numbers are located in Table 2-5. ja ja P = Power dissipation Package Thermal Characteristics The device junction-to-case thermal resistivity is θ and the junction-to-ambient air thermal resistivity is jc θ . The thermal characteristics for θ are shown for two air flow rates. The absolute maximum junction ja ja temperature is 100°C. EQ 2 shows a sample calculation of the absolute maximum power dissipation allowed for a 484-pin FBGA package at commercial temperature and in still air. Max. junction temp. (°C) – Max. ambient temp. (°C) 100°C7 – 0°C · Maximum Power Allowed = ----------- ----------------- ----------------- ----------------- ----------------- ----------------- ----------------- -------------- -- = ------------- ----------------- ---- - = 1.463 W θ (°C/W) 20.5°C/W ja EQ 2 Table 2-5 • Package Thermal Resistivities θ ja Package Type Device Pin Count θ Still Air 200 ft./min. 500 ft./min. Units jc Quad Flat No Lead A3P030 132 0.4 21.4 16.8 15.3 C/W A3P060 132 0.3 21.2 16.6 15.0 C/W A3P125 132 0.2 21.1 16.5 14.9 C/W A3P250 132 0.1 21.0 16.4 14.8 C/W Very Thin Quad Flat Pack (VQFP) All devices 100 10.0 35.3 29.4 27.1 C/W Thin Quad Flat Pack (TQFP) All devices 144 11.0 33.5 28.0 25.7 C/W Plastic Quad Flat Pack (PQFP) All devices 208 8.0 26.1 22.5 20.8 C/W PQFP with embedded heatspreader All devices 208 3.8 16.2 13.3 11.9 C/W Fine Pitch Ball Grid Array (FBGA) See note* 144 3.8 26.9 22.9 21.5 C/W See note* 256 3.8 26.6 22.8 21.5 C/W See note* 484 3.2 20.5 17.0 15.9 C/W A3P1000 144 6.3 31.6 26.2 24.2 C/W A3P1000 256 6.6 28.1 24.4 22.7 C/W A3P1000 484 8.0 23.3 19.0 16.7 C/W Note: *This information applies to all ProASIC3 devices except the A3P1000. Detailed device/package thermal information will be available in future revisions of the datasheet. Revision 11 2-5 ProASIC3 DC and Switching Characteristics Temperature and Voltage Derating Factors Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T = 70°C, VCC = 1.425 V) J Junction Temperature (°C) Array Voltage VCC (V) –40°C 0°C 25°C 70°C 85°C 100°C 1.425 0.88 0.93 0.95 1.00 1.02 1.04 1.500 0.83 0.88 0.90 0.95 0.96 0.98 1.575 0.80 0.84 0.87 0.91 0.93 0.94 Calculating Power Dissipation Quiescent Supply Current Table 2-7 • Quiescent Supply Current Characteristics A3P015 A3P030 A3P060 A3P125 A3P250 A3P400 A3P600 A3P1000 Typical (25°C) 2 mA 2 mA 2 mA 2 mA 3 mA 3 mA 5 mA 8 mA Max. (Commercial) 10 mA 10 mA 10 mA 10 mA 20 mA 20 mA 30 mA 50 mA Max. (Industrial) 15 mA 15 mA 15 mA 15 mA 30 mA 30 mA 45 mA 75 mA Note: IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-11 and Table 2-12 on page 2-8. Power per I/O Pin Table 2-8 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Advanced I/O Banks Static Power Dynamic Power 1 2 VMV (V) P (mW) PAC9 (µW/MHz) DC2 Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 3.3 – 16.22 3 3.3 V LVCMOS Wide Range 3.3 – 16.22 2.5 V LVCMOS 2.5 – 5.12 1.8 V LVCMOS 1.8 – 2.13 1.5 V LVCMOS (JESD8-11) 1.5 – 1.45 3.3 V PCI 3.3 – 18.11 3.3 V PCI-X 3.3 – 18.11 Differential LVDS 2.5 2.26 1.20 LVPECL 3.3 5.72 1.87 Notes: 1. PDC2 is the static power (where applicable) measured on VMV. 2. PAC9 is the total dynamic power measured on VCC and VMV. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. 2-6 Revision 11 ProASIC3 Flash Family FPGAs Table 2-9 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks Static Power Dynamic Power 1 2 VMV (V) PDC2 (mW) PAC9 (µW/MHz) Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 3.3 – 16.23 3 3.3 V LVCMOS Wide Range 3.3 – 16.23 2.5 V LVCMOS 2.5 – 5.14 1.8 V LVCMOS 1.8 – 2.13 1.5 V LVCMOS (JESD8-11) 1.5 – 1.48 3.3 V PCI 3.3 – 18.13 3.3 V PCI-X 3.3 – 18.13 Notes: 1. PDC2 is the static power (where applicable) measured on VMV. 2. PAC9 is the total dynamic power measured on VCC and VMV. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. Table 2-10 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard I/O Banks Static Power Dynamic Power 1 2 VMV (V) PDC2 (mW) PAC9 (µW/MHz) Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 3.3 – 17.24 3 3.3 V LVCMOS Wide Range 3.3 – 17.24 2.5 V LVCMOS 2.5 – 5.19 1.8 V LVCMOS 1.8 – 2.18 1.5 V LVCMOS (JESD8-11) 1.5 – 1.52 Notes: 1. PDC2 is the static power (where applicable) measured on VMV. 2. PAC9 is the total dynamic power measured on VCC and VMV. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. Revision 11 2-7 ProASIC3 DC and Switching Characteristics 1 Table 2-11 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings Applicable to Advanced I/O Banks Static Power Dynamic Power 2 3 C (pF) VCCI (V) PDC3 (mW) PAC10 (µW/MHz) LOAD Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 468.67 4 3.3 V LVCMOS Wide Range 35 3.3 – 468.67 2.5 V LVCMOS 35 2.5 – 267.48 1.8 V LVCMOS 35 1.8 – 149.46 1.5 V LVCMOS 35 1.5 – 103.12 (JESD8-11) 3.3 V PCI 10 3.3 – 201.02 3.3 V PCI-X 10 3.3 – 201.02 Differential LVDS – 2.5 7.74 88.92 LVPECL – 3.3 19.54 166.52 Notes: 1. Dynamic power consumption is given for standard load and software default drive strength and output slew. 2. PDC3 is the static power (where applicable) measured on VCCI. 3. PAC10 is the total dynamic power measured on VCC and VCCI. 4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. 1 Table 2-12 • Summary of I/O Output Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks Static Power Dynamic Power 2 3 C (pF) VCCI (V) PDC3 (mW) PAC10 (µW/MHz) LOAD Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 452.67 4 3.3 V LVCMOS Wide Range 35 3.3 – 452.67 2.5 V LVCMOS 35 2.5 – 258.32 1.8 V LVCMOS 35 1.8 – 133.59 1.5 V LVCMOS (JESD8-11) 35 1.5 – 92.84 3.3 V PCI 10 3.3 – 184.92 3.3 V PCI-X 10 3.3 – 184.92 Notes: 1. Dynamic power consumption is given for standard load and software default drive strength and output slew. 2. P is the static power (where applicable) measured on VMV. DC3 3. P is the total dynamic power measured on VCC and VMV. AC10 4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. 2-8 Revision 11 ProASIC3 Flash Family FPGAs 1 Table 2-13 • Summary of I/O Output Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard I/O Banks Static Power Dynamic Power 2 3 C (pF) VCCI (V) PDC3 (mW) PAC10 (µW/MHz) LOAD Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 431.08 4 3.3 V LVCMOS Wide Range 35 3.3 – 431.08 2.5 V LVCMOS 35 2.5 – 247.36 1.8 V LVCMOS 35 1.8 – 128.46 1.5 V LVCMOS (JESD8-11) 35 1.5 – 89.46 Notes: 1. Dynamic power consumption is given for standard load and software default drive strength and output slew. 2. P is the static power (where applicable) measured on VCCI. DC3 3. P is the total dynamic power measured on VCC and VCCI. AC10 4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. Revision 11 2-9 ProASIC3 DC and Switching Characteristics Power Consumption of Various Internal Resources Table 2-14 • Different Components Contributing to Dynamic Power Consumption in ProASIC3 Devices Device Specific Dynamic Contributions (µW/MHz) Parameter Definition PAC1 Clock contribution of a Global Rib 14.50 12.80 12.80 11.00 11.00 9.30 9.30 9.30 PAC2 Clock contribution of a Global Spine 2.48 1.85 1.35 1.58 0.81 0.81 0.41 0.41 PAC3 Clock contribution of a VersaTile row 0.81 PAC4 Clock contribution of a VersaTile used as a 0.12 sequential module PAC5 First contribution of a VersaTile used as a 0.07 sequential module PAC6 Second contribution of a VersaTile used as a 0.29 sequential module PAC7 Contribution of a VersaTile used as a 0.29 combinatorial Module PAC8 Average contribution of a routing net 0.70 PAC9 Contribution of an I/O input pin (standard See Table 2-8 on page 2-6 through dependent) Table 2-10 on page 2-7. PAC10 Contribution of an I/O output pin (standard See Table 2-11 on page 2-8 through dependent) Table 2-13 on page 2-9. PAC11 Average contribution of a RAM block during a 25.00 read operation PAC12 Average contribution of a RAM block during a 30.00 write operation PAC13 Dynamic contribution for PLL 2.60 Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi Power ® spreadsheet calculator or SmartPower tool in Libero Integrated Design Environment (IDE) software. 2-10 Revision 11 A3P1000 A3P600 A3P400 A3P250 A3P125 A3P060 A3P030 A3P015 ProASIC3 Flash Family FPGAs Table 2-15 • Different Components Contributing to the Static Power Consumption in ProASIC3 Devices Definition Device Specific Static Power (mW) Parameter PDC1 Array static power in Active mode See Table 2-7 on page 2-6. PDC2 I/O input pin static power (standard-dependent) See Table 2-8 on page 2-6 through Table 2-10 on page 2-7. PDC3 I/O output pin static power (standard-dependent) See Table 2-11 on page 2-8 through Table 2-13 on page 2-9. PDC4 Static PLL contribution 2.55 mW PDC5 Bank quiescent power (VCCI-dependent) See Table 2-7 on page 2-6. Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi Power ® spreadsheet calculator or SmartPower tool in Libero Integrated Design Environment (IDE) software. Revision 11 2-11 A3P1000 A3P600 A3P400 A3P250 A3P125 A3P060 A3P030 A3P015 ProASIC3 DC and Switching Characteristics Power Calculation Methodology This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Libero IDE software. The power calculation methodology described below uses the following variables: • The number of PLLs as well as the number and the frequency of each output clock generated • The number of combinatorial and sequential cells used in the design • The internal clock frequencies • The number and the standard of I/O pins used in the design • The number of RAM blocks used in the design • Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table2-16 on page 2-14. • Enable rates of output buffers—guidelines are provided for typical applications in Table 2-17 on page 2-14. • Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-17 on page 2-14. The calculation should be repeated for each clock domain defined in the design. Methodology Total Power Consumption—P TOTAL P = P + P TOTAL STAT DYN P is the total static power consumption. STAT P is the total dynamic power consumption. DYN Total Static Power Consumption—P STAT P = P + N * P + N * P STAT DC1 INPUTS DC2 OUTPUTS DC3 N is the number of I/O input buffers used in the design. INPUTS N is the number of I/O output buffers used in the design. OUTPUTS Total Dynamic Power Consumption—P DYN P = P + P + P + P + P + P + P + P DYN CLOCK S-CELL C-CELL NET INPUTS OUTPUTS MEMORY PLL Global Clock Contribution—P CLOCK P = (P + N *P + N *P + N * P ) * F CLOCK AC1 SPINE AC2 ROW AC3 S-CELL AC4 CLK N is the number of global spines used in the user design—guidelines are provided in the SPINE "Spine Architecture" section of the Global Resources chapter in the ProASIC3 FPGA Fabric User's Guide. N is the number of VersaTile rows used in the design—guidelines are provided in the "Spine ROW Architecture" section of the Global Resources chapter in the ProASIC3 FPGA Fabric User's Guide. F is the global clock signal frequency. CLK N is the number of VersaTiles used as sequential modules in the design. S-CELL P , P , P , and P are device-dependent. AC1 AC2 AC3 AC4 Sequential Cells Contribution—P S-CELL P = N * (P + α / 2 * P ) * F S-CELL S-CELL AC5 1 AC6 CLK N is the number of VersaTiles used as sequential modules in the design. When a multi-tile S-CELL sequential cell is used, it should be accounted for as 1. α is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-14. 1 F is the global clock signal frequency. CLK 2-12 Revision 11 ProASIC3 Flash Family FPGAs Combinatorial Cells Contribution—P C-CELL P = N * α / 2 * P * F C-CELL C-CELL 1 AC7 CLK N is the number of VersaTiles used as combinatorial modules in the design. C-CELL α is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-14. 1 F is the global clock signal frequency. CLK Routing Net Contribution—P NET P = (N + N ) * α / 2 * P * F NET S-CELL C-CELL 1 AC8 CLK N is the number of VersaTiles used as sequential modules in the design. S-CELL N is the number of VersaTiles used as combinatorial modules in the design. C-CELL α is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-14. 1 F is the global clock signal frequency. CLK I/O Input Buffer Contribution—P INPUTS P = N * α / 2 * P * F INPUTS INPUTS 2 AC9 CLK N is the number of I/O input buffers used in the design. INPUTS α is the I/O buffer toggle rate—guidelines are provided in Table 2-16 on page 2-14. 2 F is the global clock signal frequency. CLK I/O Output Buffer Contribution—P OUTPUTS P = N * α / 2 * β * P * F OUTPUTS OUTPUTS 2 1 AC10 CLK N is the number of I/O output buffers used in the design. OUTPUTS α is the I/O buffer toggle rate—guidelines are provided in Table 2-16 on page 2-14. 2 β is the I/O buffer enable rate—guidelines are provided in Table 2-17 on page 2-14. 1 F is the global clock signal frequency. CLK RAM Contribution—P MEMORY P = P * N * F * β + P * N * F * β MEMORY AC11 BLOCKS READ-CLOCK 2 AC12 BLOCK WRITE-CLOCK 3 N is the number of RAM blocks used in the design. BLOCKS F is the memory read clock frequency. READ-CLOCK β is the RAM enable rate for read operations. 2 F is the memory write clock frequency. WRITE-CLOCK β is the RAM enable rate for write operations—guidelines are provided in Table 2-17 on page 2-14. 3 PLL Contribution—P PLL P = P + P *F PLL DC4 AC13 CLKOUT 1 F is the output clock frequency. CLKOUT 1. The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (P * F product) to the total PLL contribution. AC14 CLKOUT Revision 11 2-13 ProASIC3 DC and Switching Characteristics Guidelines Toggle Rate Definition A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples: • The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the clock frequency. • The average toggle rate of an 8-bit counter is 25%: – Bit 0 (LSB) = 100% – Bit 1 = 50% – Bit 2 = 25% –… – Bit 7 (MSB) = 0.78125% – Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8 Enable Rate Definition Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%. Table 2-16 • Toggle Rate Guidelines Recommended for Power Calculation Component Definition Guideline α Toggle rate of VersaTile outputs 10% 1 α I/O buffer toggle rate 10% 2 Table 2-17 • Enable Rate Guidelines Recommended for Power Calculation Component Definition Guideline β I/O output buffer enable rate 100% 1 β RAM enable rate for read operations 12.5% 2 β RAM enable rate for write operations 12.5% 3 2-14 Revision 11 ProASIC3 Flash Family FPGAs User I/O Characteristics Timing Model I/O Module (Non-Registered) Combinational Cell Combinational Cell LVPECL (Applicable to Y Y Advanced I/O Banks Only)L t = 0.56 ns t = 0.49 ns PD PD t = 1.34 ns DP I/O Module (Non-Registered) Combinational Cell Y Output drive strength = 12 mA LVTTL High slew rate t = 2.64 ns (Advanced I/O Banks) t = 0.87 ns DP PD I/O Module Combinational Cell (Non-Registered) I/O Module Y (Registered) Output drive strength = 8 mA LVTTL t = 1.05 ns High slew rate PY t = 3.66 ns (Advanced I/O Banks) DP LVPECL t = 0.47 ns PD I/O Module DQ (Applicable (Non-Registered) to Advanced Combinational Cell I/O Banks only) Y Output drive strength = 4 mA LVCMOS 1.5 V High slew rate t = 0.24 ns ICLKQ t = 3.97 ns (Advanced I/O Banks) t = 0.47 ns DP t = 0.26 ns PD ISUD Input LVTTL Clock I/O Module Register Cell (Registered) Register Cell Combinational Cell t = 0.76 ns (Advanced I/O Banks) PY Y DQ DQ DQ LVTTL 3.3 V Output drive I/O Module strength = 12 mA High slew rate t = 0.47 ns PD t = 2.64 ns (Non-Registered) DP (Advanced I/O Banks) t = 0.55 ns t = 0.59 ns CLKQ t = 0.55 ns OCLKQ CLKQ LVDS, t = 0.43 ns t = 0.43 ns t = 0.31 ns SUD SUD OSUD BLVDS, M-LVDS Input LVTTL Input LVTTL Clock Clock (Applicable for t = 1.20 ns PY Advanced I/O Banks only) t = 0.76 ns t = 0.76 ns PY PY (Advanced I/O Banks) (Advanced I/O Banks) Figure 2-2 • Timing Model Operating Conditions: –2 Speed, Commercial Temperature Range (T = 70°C), Worst Case J VCC = 1.425 V Revision 11 2-15 ProASIC3 DC and Switching Characteristics t t PY DIN D Q PAD DIN Y CLK To Array I/O Interface t = MAX(t (R), t (F)) PY PY PY t = MAX(t (R), t (F)) DIN DIN DIN VIH V V trip trip VIL PAD VCC 50% 50% Y GND t t PY PY (R) (F) VCC 50% 50% DIN t GND t DIN DIN (R) (F) Figure 2-3 • Input Buffer Timing Model and Delays (example) 2-16 Revision 11 ProASIC3 Flash Family FPGAs t t DOUT DP D Q PAD DOUT CLK Std D Load From Array t = MAX(t (R), t (F)) DP DP DP I/O Interface t = MAX(t (R), t (F)) DOUT DOUT DOUT t t DOUT DOUT VCC (R) (F) 50% 50% D 0 V VCC 50% 50% DOUT 0 V VOH Vtrip Vtrip V OL PAD t t DP DP (R) (F) Figure 2-4 • Output Buffer Model and Delays (example) Revision 11 2-17 ProASIC3 DC and Switching Characteristics t EOUT D Q CLK t , t , t , t , t , t E ZL ZH HZ LZ ZLS ZHS EOUT D Q PAD DOUT CLK D t = MAX(t (r), t (f)) I/O Interface EOUT EOUT EOUT VCC D VCC 50% 50% E t EOUT (F) t EOUT (R) VCC 50% 50% 50% 50% t LZ EOUT t ZH t t ZL HZ VCCI PAD 90% VCCI Vtrip Vtrip VOL 10% V CCI VCC D VCC 50% 50% E t t EOUT (F) EOUT (R) VCC 50% 50% EOUT 50% t ZHS t ZLS VOH PAD Vtrip Vtrip VOL Figure 2-5 • Tristate Output Buffer Timing Model and Delays (example) 2-18 Revision 11 ProASIC3 Flash Family FPGAs Overview of I/O Performance Summary of I/O DC Input and Output Levels – Default I/O Software Settings Table 2-18 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Advanced I/O Banks 1 1 Equiv. VIL VIH VOL VOH IOL IOH Software Default Drive Drive Strength Slew Min. Max. Min. Max. Max. Min. 2 I/O Standard Strength Option Rate V V V V V VmAmA 3.3 V LVTTL / 12 mA 12 mA High –0.3 0.8 2 3.6 0.4 2.4 12 12 3.3 V LVCMOS 3.3 V 100 µA 12 mA High –0.3 0.8 2 3.6 0.2 VCCI – 0.2 0.1 0.1 LVCMOS 3 Wide Range 2.5 V 12 mA 12 mA High –0.3 0.7 1.7 2.7 0.7 1.7 12 12 LVCMOS 1.8 V 12 mA 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 12 12 LVCMOS 1.5 V 12 mA 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.6 0.25 * VCCI 0.75 * VCCI 12 12 LVCMOS 3.3 V PCI Per PCI specifications 3.3 V PCI-X Per PCI-X specifications Notes: 1. Currents are measured at 85°C junction temperature. 2. Please note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. Revision 11 2-19 ProASIC3 DC and Switching Characteristics Table 2-19 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard Plus I/O Banks Equiv. IOH 1 1 Software VIL VIH VOL VOH IOL Default Drive Drive Strength Slew Min. Max. Min. Max. Max. Min. 2 I/O Standard Strength Option Rate V V V V V VmAmA 3.3 V LVTTL / 12 mA 12 mA High –0.3 0.8 2 3.6 0.4 2.4 12 12 3.3 V LVCMOS 3.3 V 100 µA 12 mA High –0.3 0.8 2 3.6 0.2 VCCI – 0.2 0.1 0.1 LVCMOS 3 Wide Range 2.5 V 12 mA 12 mA High –0.3 0.7 1.7 2.7 0.7 1.7 12 12 LVCMOS 1.8 V 8 mA 8 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 8 8 LVCMOS 1.5 V 4 mA 4 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.6 0.25 * VCCI 0.75 * VCCI 4 4 LVCMOS 3.3 V PCI Per PCI specifications 3.3 V PCI-X Per PCI-X specifications Notes: 1. Currents are measured at 85°C junction temperature. 2. Please note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. 2-20 Revision 11 ProASIC3 Flash Family FPGAs Table 2-20 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard I/O Banks 1 1 Equiv. VIL VIH VOL VOH IOL IOH Software Default Drive Drive Strength Slew Min. Max. Min. Max. Max. Min. 2 I/O Standard Strength Option Rate V V V V V VmAmA 3.3 V LVTTL / 8 mA 8 mA High –0.3 0.8 2 3.6 0.4 2.4 8 8 3.3 V LVCMOS 3.3 V 100 µA 8 mA High –0.3 0.8 2 3.6 0.2 VCCI – 0.2 0.1 0.1 LVCMOS 3 Wide Range 2.5 V 8 mA 8 mA High –0.3 0.7 1.7 3.6 0.7 1.7 8 8 LVCMOS 1.8 V 4 mA 4 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 LVCMOS 1.5 V 2 mA 2 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 LVCMOS Notes: 1. Currents are measured at 85°C junction temperature. 2. Please note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. Table 2-21 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions 1 2 Industrial Commercial 3 4 3 4 IIL IIH IIL IIH µA µA µA µA DC I/O Standards 3.3 V LVTTL / 3.3 V LVCMOS 10 10 15 15 3.3 V LVCMOS Wide Range 10 10 15 15 2.5 V LVCMOS 10 10 15 15 1.8 V LVCMOS 10 10 15 15 1.5 V LVCMOS 10 10 15 15 3.3 V PCI 10 10 15 15 3.3 V PCI-X 10 10 15 15 Notes: 1. Commercial range (0°C < T < 70°C) A 2. Industrial range (–40°C < T < 85°C) A 3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3V < V 20 years 0°C > 20 years 25°C > 20 years 70°C 5 years 85°C 2 years 100°C 6 months 110°C 3 months Table 2-36 • I/O Input Rise Time, Fall Time, and Related I/O Reliability Input Buffer Input Rise/Fall Time (min.) Input Rise/Fall Time (max.) Reliability LVTTL/LVCMOS No requirement 10 ns * 20 years (110°C) LVDS/B-LVDS/ No requirement 10 ns * 10 years (100°C) M-LVDS/LVPECL Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals. Revision 11 2-31 ProASIC3 DC and Switching Characteristics Single-Ended I/O Characteristics 3.3 V LVTTL / 3.3 V LVCMOS Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. Table 2-37 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 3.3 V LVTTL / 1 2 3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH Min. Max. Min. Max. Max. Min. Max. Max. 3 3 4 4 Drive Strength V V V V V VmAmA mA mA µA µA 2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 27 25 10 10 4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 27 25 10 10 6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 54 51 10 10 8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 54 51 10 10 12 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 109 103 10 10 16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 127 132 10 10 24 mA –0.3 0.8 2 3.6 0.4 2.4 24 24 181 268 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Table 2-38 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 3.3 V LVTTL / 1 2 3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH Min. Max. Min. Max. Max. Min. Max. Max. 3 3 4 4 Drive Strength V V V V V VmAmA mA mA µA µA 2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 27 25 10 10 4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 27 25 10 10 6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 54 51 10 10 8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 54 51 10 10 12 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 109 103 10 10 16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 109 103 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. 2-32 Revision 11 ProASIC3 Flash Family FPGAs Table 2-39 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks 3.3 V LVTTL / 1 2 3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH Min. Max. Min. Max. Max. Min. Max. Max. 3 3 4 4 Drive Strength V V V V V VmAmA mA mA µA µA 2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 25 27 10 10 4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 10 10 6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 51 54 10 10 8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. I is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is IH larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. R to VCCI for t / t / t LZ ZL ZLS R = 1 k Test Point R to GND for t / t / t HZ ZH ZHS Test Point Datapath 35 pF Enable Path 35 pF for t / t / t / t ZH ZHS ZL ZLS 35 pF for t / t HZ LZ Figure 2-6 • AC Loading Table 2-40 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) C (pF) LOAD 03.3 1.4 35 Note: *Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points. Revision 11 2-33 ProASIC3 DC and Switching Characteristics Timing Characteristics Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Commercial-Case Conditions: T J Applicable to Advanced I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 4 mA Std. 0.66 7.66 0.04 1.02 0.43 7.80 6.59 2.65 2.61 10.03 8.82 ns –1 0.56 6.51 0.04 0.86 0.36 6.63 5.60 2.25 2.22 8.54 7.51 ns –2 0.49 5.72 0.03 0.76 0.32 5.82 4.92 1.98 1.95 7.49 6.59 ns 6 mA Std. 0.66 4.91 0.04 1.02 0.43 5.00 4.07 2.99 3.20 7.23 6.31 ns –1 0.56 4.17 0.04 0.86 0.36 4.25 3.46 2.54 2.73 6.15 5.36 ns –2 0.49 3.66 0.03 0.76 0.32 3.73 3.04 2.23 2.39 5.40 4.71 ns 8 mA Std. 0.66 4.91 0.04 1.02 0.43 5.00 4.07 2.99 3.20 7.23 6.31 ns –1 0.56 4.17 0.04 0.86 0.36 4.25 3.46 2.54 2.73 6.15 5.36 ns –2 0.49 3.66 0.03 0.76 0.32 3.73 3.04 2.23 2.39 5.40 4.71 ns 12 mA Std. 0.66 3.53 0.04 1.02 0.43 3.60 2.82 3.21 3.58 5.83 5.06 ns –1 0.56 3.00 0.04 0.86 0.36 3.06 2.40 2.73 3.05 4.96 4.30 ns –2 0.49 2.64 0.03 0.76 0.32 2.69 2.11 2.40 2.68 4.36 3.78 ns 16 mA Std. 0.66 3.33 0.04 1.02 0.43 3.39 2.56 3.26 3.68 5.63 4.80 ns –1 0.56 2.83 0.04 0.86 0.36 2.89 2.18 2.77 3.13 4.79 4.08 ns –2 0.49 2.49 0.03 0.76 0.32 2.53 1.91 2.44 2.75 4.20 3.58 ns 24 mA Std. 0.66 3.08 0.04 1.02 0.43 3.13 2.12 3.32 4.06 5.37 4.35 ns –1 0.56 2.62 0.04 0.86 0.36 2.66 1.80 2.83 3.45 4.57 3.70 ns –2 0.49 2.30 0.03 0.76 0.32 2.34 1.58 2.48 3.03 4.01 3.25 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 2-34 Revision 11 ProASIC3 Flash Family FPGAs Table 2-42 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Advanced I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 4 mA Std. 0.66 10.26 0.04 1.02 0.43 10.45 8.90 2.64 2.46 12.68 11.13 ns –1 0.56 8.72 0.04 0.86 0.36 8.89 7.57 2.25 2.09 10.79 9.47 ns –2 0.49 7.66 0.03 0.76 0.32 7.80 6.64 1.98 1.83 9.47 8.31 ns 6 mA Std. 0.66 7.27 0.04 1.02 0.43 7.41 6.28 2.98 3.04 9.65 8.52 ns –1 0.56 6.19 0.04 0.86 0.36 6.30 5.35 2.54 2.59 8.20 7.25 ns –2 0.49 5.43 0.03 0.76 0.32 5.53 4.69 2.23 2.27 7.20 6.36 ns 8 mA Std. 0.66 7.27 0.04 1.02 0.43 7.41 6.28 2.98 3.04 9.65 8.52 ns –1 0.56 6.19 0.04 0.86 0.36 6.30 5.35 2.54 2.59 8.20 7.25 ns –2 0.49 5.43 0.03 0.76 0.32 5.53 4.69 2.23 2.27 7.20 6.36 ns 12 mA Std. 0.66 5.58 0.04 1.02 0.43 5.68 4.87 3.21 3.42 7.92 7.11 ns –1 0.56 4.75 0.04 0.86 0.36 4.84 4.14 2.73 2.91 6.74 6.05 ns –2 0.49 4.17 0.03 0.76 0.32 4.24 3.64 2.39 2.55 5.91 5.31 ns 16 mA Std. 0.66 5.21 0.04 1.02 0.43 5.30 4.56 3.26 3.51 7.54 6.80 ns –1 0.56 4.43 0.04 0.86 0.36 4.51 3.88 2.77 2.99 6.41 5.79 ns –2 0.49 3.89 0.03 0.76 0.32 3.96 3.41 2.43 2.62 5.63 5.08 ns 24 mA Std. 0.66 4.85 0.04 1.02 0.43 4.94 4.54 3.32 3.88 7.18 6.78 ns –1 0.56 4.13 0.04 0.86 0.36 4.20 3.87 2.82 3.30 6.10 5.77 ns –2 0.49 3.62 0.03 0.76 0.32 3.69 3.39 2.48 2.90 5.36 5.06 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Revision 11 2-35 ProASIC3 DC and Switching Characteristics Table 2-43 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Plus I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 4 mA Std. 0.66 7.20 0.04 1.00 0.43 7.34 6.29 2.27 2.34 9.57 8.52 ns –1 0.56 6.13 0.04 0.85 0.36 6.24 5.35 1.93 1.99 8.14 7.25 ns –2 0.49 5.38 0.03 0.75 0.32 5.48 4.69 1.70 1.75 7.15 6.36 ns 6 mA Std. 0.66 4.50 0.04 1.00 0.43 4.58 3.82 2.58 2.88 6.82 6.05 ns –1 0.56 3.83 0.04 0.85 0.36 3.90 3.25 2.19 2.45 5.80 5.15 ns –2 0.49 3.36 0.03 0.75 0.32 3.42 2.85 1.92 2.15 5.09 4.52 ns 8 mA Std. 0.66 4.50 0.04 1.00 0.43 4.58 3.82 2.58 2.88 6.82 6.05 ns –1 0.56 3.83 0.04 0.85 0.36 3.90 3.25 2.19 2.45 5.80 5.15 ns –2 0.49 3.36 0.03 0.75 0.32 3.42 2.85 1.92 2.15 5.09 4.52 ns 12 mA Std. 0.66 3.16 0.04 1.00 0.43 3.22 2.58 2.79 3.22 5.45 4.82 ns –1 0.56 2.69 0.04 0.85 0.36 2.74 2.20 2.37 2.74 4.64 4.10 ns –2 0.49 2.36 0.03 0.75 0.32 2.40 1.93 2.08 2.41 4.07 3.60 ns 16 mA Std. 0.66 3.16 0.04 1.00 0.43 3.22 2.58 2.79 3.22 5.45 4.82 ns –1 0.56 2.69 0.04 0.85 0.36 2.74 2.20 2.37 2.74 4.64 4.10 ns –2 0.49 2.36 0.03 0.75 0.32 2.40 1.93 2.08 2.41 4.07 3.60 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 2-36 Revision 11 ProASIC3 Flash Family FPGAs Table 2-44 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Plus I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 4 mA Std. 0.66 9.68 0.04 1.00 0.43 9.86 8.42 2.28 2.21 12.09 10.66 ns –1 0.56 8.23 0.040.85 0.36 8.39 7.17 1.94 1.88 10.29 9.07 ns –2 0.49 7.23 0.030.75 0.32 7.36 6.29 1.70 1.65 9.03 7.96 ns 6 mA Std. 0.66 6.70 0.04 1.00 0.43 6.82 5.89 2.58 2.74 9.06 8.12 ns –1 0.56 5.70 0.040.85 0.36 5.80 5.01 2.20 2.33 7.71 6.91 ns –2 0.49 5.00 0.030.75 0.32 5.10 4.40 1.93 2.05 6.76 6.06 ns 8 mA Std. 0.66 6.70 0.04 1.00 0.43 6.82 5.89 2.58 2.74 9.06 8.12 ns –1 0.56 5.70 0.040.85 0.36 5.80 5.01 2.20 2.33 7.71 6.91 ns –2 0.49 5.00 0.030.75 0.32 5.10 4.40 1.93 2.05 6.76 6.06 ns 12 mA Std. 0.66 5.05 0.04 1.00 0.43 5.14 4.51 2.79 3.08 7.38 6.75 ns –1 0.56 4.29 0.040.85 0.36 4.37 3.84 2.38 2.62 6.28 5.74 ns –2 0.49 3.77 0.030.75 0.32 3.84 3.37 2.09 2.30 5.51 5.04 ns 16 mA Std. 0.66 5.05 0.04 1.00 0.43 5.14 4.51 2.79 3.08 7.38 6.75 ns –1 0.56 4.29 0.040.85 0.36 4.37 3.84 2.38 2.62 6.28 5.74 ns –2 0.49 3.77 0.03 0.75 0.32 3.84 3.37 2.09 2.30 5.51 5.04 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-45 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Commercial-Case Conditions: T J Applicable to Standard I/O Banks Drive Speed Strength Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 0.66 7.07 0.04 1.00 0.43 7.20 6.23 2.07 2.15 ns –1 0.56 6.01 0.04 0.85 0.36 6.12 5.30 1.76 1.83 ns –2 0.49 5.28 0.03 0.75 0.32 5.37 4.65 1.55 1.60 ns 4 mA Std. 0.66 7.07 0.04 1.00 0.43 7.20 6.23 2.07 2.15 ns –1 0.56 6.01 0.04 0.85 0.36 6.12 5.30 1.76 1.83 ns –2 0.49 5.28 0.03 0.75 0.32 5.37 4.65 1.55 1.60 ns 6 mA Std. 0.66 4.41 0.04 1.00 0.43 4.49 3.75 2.39 2.69 ns –1 0.56 3.75 0.04 0.85 0.36 3.82 3.19 2.04 2.29 ns –2 0.49 3.29 0.03 0.75 0.32 3.36 2.80 1.79 2.01 ns 8 mA Std. 0.66 4.41 0.04 1.00 0.43 4.49 3.75 2.39 2.69 ns –1 0.56 3.75 0.04 0.85 0.36 3.82 3.19 2.04 2.29 ns –2 0.49 3.29 0.03 0.75 0.32 3.36 2.80 1.79 2.01 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Revision 11 2-37 ProASIC3 DC and Switching Characteristics Table 2-46 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard I/O Banks Drive Speed Strength Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 0.66 9.46 0.04 1.00 0.43 9.64 8.54 2.07 2.04 ns –1 0.56 8.05 0.04 0.85 0.36 8.20 7.27 1.76 1.73 ns –2 0.49 7.07 0.03 0.75 0.32 7.20 6.38 1.55 1.52 ns 4 mA Std. 0.66 9.46 0.04 1.00 0.43 9.64 8.54 2.07 2.04 ns –1 0.56 8.05 0.04 0.85 0.36 8.20 7.27 1.76 1.73 ns –2 0.49 7.07 0.03 0.75 0.32 7.20 6.38 1.55 1.52 ns 6 mA Std. 0.66 6.57 0.04 1.00 0.43 6.69 5.98 2.40 2.57 ns –1 0.56 5.59 0.04 0.85 0.36 5.69 5.09 2.04 2.19 ns –2 0.49 4.91 0.03 0.75 0.32 5.00 4.47 1.79 1.92 ns 8 mA Std. 0.66 6.57 0.04 1.00 0.43 6.69 5.98 2.40 2.57 ns –1 0.56 5.59 0.04 0.85 0.36 5.69 5.09 2.04 2.19 ns –2 0.49 4.91 0.03 0.75 0.32 5.00 4.47 1.79 1.92 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 2-38 Revision 11 ProASIC3 Flash Family FPGAs 3.3 V LVCMOS Wide Range Table 2-47 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 3.3 V Equiv. LVCMOS Software 2 3 Wide Range Default VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH Drive Drive Strength Min. Max. Min. Max. Max. Min. Max. Max. 1 4 4 5 5 Strength Option V V V V V V µA µA mA mA µA µA 100 µA 2 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 4 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 6 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 8 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 12 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 103 109 10 10 100 µA 16 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 132 127 10 10 100 µA 24 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 268 181 10 10 Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 4. Currents are measured at 85°C junction temperature. 5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. 6. Software default selection highlighted in gray. Table 2-48 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 3.3 V LVCMOS Equiv. 2 3 Wide Range Software VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH Default Drive Strength Min. Max. Min. Max. Max. Min. Max. Max. 1 4 4 5 5 Drive Strength Option V V V V V VµAµA mA mA µA µA 100 µA 2 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 4 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 6 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 8 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 12 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 103 109 10 10 100 μA 16 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 103 109 10 10 Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 4. Currents are measured at 85°C junction temperature. 5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. 6. Software default selection highlighted in gray. Revision 11 2-39 ProASIC3 DC and Switching Characteristics Table 2-49 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks 3.3 V Equiv. LVCMOS Software 2 3 Wide Range Default VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH Drive Drive Strength Min. Max. Min. Max. Max. Min. Max. Max. 1 4 4 5 5 Strength Option V V V V V VµAµA mA mA µA µA 100 µA 2 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 4 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 6 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 8 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 4. Currents are measured at 85°C junction temperature. 5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. 6. Software default selection highlighted in gray. 2-40 Revision 11 ProASIC3 Flash Family FPGAs Timing Characteristics Table 2-50 • 3.3 V LVTTL / 3.3 V LVCMOS HIgh Slew = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Commercial-Case Conditions: T J Applicable to Advanced I/O Banks Equiv. Software Default Drive Drive Strength Speed 1 Strength Option Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 100 µA 4 mA Std. 0.60 11.84 0.04 1.02 0.43 11.84 10.00 4.10 4.04 15.23 13.40 ns –1 0.51 10.07 0.04 0.86 0.36 10.07 8.51 3.48 3.44 12.96 11.40 ns –2 0.45 8.84 0.03 0.76 0.32 8.84 7.47 3.06 3.02 11.38 10.00 ns 100 µA 6 mA Std. 0.60 7.59 0.04 1.02 0.43 7.59 6.18 4.62 4.95 10.98 9.57 ns –1 0.51 6.45 0.04 0.86 0.36 6.45 5.25 3.93 4.21 9.34 8.14 ns –2 0.45 5.67 0.03 0.76 0.32 5.67 4.61 3.45 3.70 8.20 7.15 ns 100 µA 8 mA Std. 0.60 7.59 0.04 1.02 0.43 7.59 6.18 4.62 4.95 10.98 9.57 ns –1 0.51 6.45 0.04 0.86 0.36 6.45 5.25 3.93 4.21 9.34 8.14 ns –2 0.45 5.67 0.03 0.76 0.32 5.67 4.61 3.45 3.70 8.20 7.15 ns 100 µA 12 mA Std. 0.60 5.46 0.04 1.02 0.43 5.46 4.29 4.97 5.54 8.86 7.68 ns –1 0.51 4.65 0.04 0.86 0.36 4.65 3.65 4.22 4.71 7.53 6.54 ns –2 0.45 4.08 0.03 0.76 0.32 4.08 3.20 3.71 4.14 6.61 5.74 ns 100 µA 16 mA Std. 0.60 5.15 0.04 1.02 0.43 5.15 3.89 5.04 5.69 8.55 7.29 ns –1 0.51 4.38 0.04 0.86 0.36 4.38 3.31 4.29 4.84 7.27 6.20 ns –2 0.45 3.85 0.03 0.76 0.32 3.85 2.91 3.77 4.25 6.38 5.44 ns 100 µA 24 mA Std. 0.60 4.75 0.04 1.02 0.43 4.75 3.22 5.14 6.28 8.15 6.61 ns –1 0.51 4.04 0.04 0.86 0.36 4.04 2.74 4.37 5.34 6.93 5.62 ns –2 0.45 3.55 0.03 0.76 0.32 3.55 2.40 3.84 4.69 6.09 4.94 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. Software default selection highlighted in gray. 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Revision 11 2-41 ProASIC3 DC and Switching Characteristics Table 2-51 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Advanced I/O Banks Equiv. Software Default Drive Drive Strength Speed 1 Strength Option Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 100 µA 2 mA Std. 0.60 15.86 0.04 1.54 0.43 15.86 13.51 4.09 3.80 19.25 16.90 ns –1 0.51 13.49 0.04 1.31 0.36 13.49 11.49 3.48 3.23 16.38 14.38 ns –2 0.45 11.84 0.03 1.15 0.32 11.84 10.09 3.05 2.84 14.38 12.62 ns 100 µA 4 mA Std. 0.60 11.25 0.04 1.54 0.43 11.25 9.54 4.61 4.70 14.64 12.93 ns –1 0.51 9.57 0.04 1.31 0.36 9.57 8.11 3.92 4.00 12.46 11.00 ns –2 0.45 8.40 0.03 1.15 0.32 8.40 7.12 3.44 3.51 10.93 9.66 ns 100 µA 6 mA Std. 0.60 11.25 0.04 1.54 0.43 11.25 9.54 4.61 4.70 14.64 12.93 ns –1 0.51 9.57 0.04 1.31 0.36 9.57 8.11 3.92 4.00 12.46 11.00 ns –2 0.45 8.40 0.03 1.15 0.32 8.40 7.12 3.44 3.51 10.93 9.66 ns 100 µA 8 mA Std. 0.60 8.63 0.04 1.54 0.43 8.63 7.39 4.96 5.28 12.02 10.79 ns –1 0.51 7.34 0.04 1.31 0.36 7.34 6.29 4.22 4.49 10.23 9.18 ns –2 0.45 6.44 0.03 1.15 0.32 6.44 5.52 3.70 3.94 8.98 8.06 ns 100 µA 16 mA Std. 0.60 8.05 0.04 1.54 0.43 8.05 6.93 5.03 5.43 11.44 10.32 ns –1 0.51 6.85 0.04 1.31 0.36 6.85 5.90 4.28 4.62 9.74 8.78 ns –2 0.45 6.01 0.03 1.15 0.32 6.01 5.18 3.76 4.06 8.55 7.71 ns 100 µA 24 mA Std. 0.60 7.50 0.04 1.54 0.43 7.50 6.90 5.13 6.00 10.89 10.29 ns –1 0.51 6.38 0.04 1.31 0.36 6.38 5.87 4.36 5.11 9.27 8.76 ns –2 0.45 5.60 0.03 1.15 0.32 5.60 5.15 3.83 4.48 8.13 7.69 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 2-42 Revision 11 ProASIC3 Flash Family FPGAs Table 2-52 • 3.3 V LVTTL / 3.3 V LVCMOS HIgh Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Plus I/O Banks Equiv. Software Default Drive Drive Strength Speed 1 Strength Option Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 100 µA 2 mA Std. 0.60 11.14 0.04 1.52 0.43 11.14 9.54 3.51 3.61 14.53 12.94 ns –1 0.51 9.48 0.04 1.29 0.36 9.48 8.12 2.99 3.07 12.36 11.00 ns –2 0.45 8.32 0.03 1.14 0.32 8.32 7.13 2.62 2.70 10.85 9.66 ns 100 µA 4 mA Std. 0.60 6.96 0.04 1.52 0.43 6.96 5.79 3.99 4.45 10.35 9.19 ns –1 0.51 5.92 0.04 1.29 0.36 5.92 4.93 3.39 3.78 8.81 7.82 ns –2 0.45 5.20 0.03 1.14 0.32 5.20 4.33 2.98 3.32 7.73 6.86 ns 100 µA 6 mA Std. 0.60 6.96 0.04 1.52 0.43 6.96 5.79 3.99 4.45 10.35 9.19 ns –1 0.51 5.92 0.04 1.29 0.36 5.92 4.93 3.39 3.78 8.81 7.82 ns –2 0.45 5.20 0.03 1.14 0.32 5.20 4.33 2.98 3.32 7.73 6.86 ns 100 µA 8 mA Std. 0.60 4.89 0.04 1.52 0.43 4.89 3.92 4.31 4.98 8.28 7.32 ns –1 0.51 4.16 0.04 1.29 0.36 4.16 3.34 3.67 4.24 7.04 6.22 ns –2 0.45 3.65 0.03 1.14 0.32 3.65 2.93 3.22 3.72 6.18 5.46 ns 100 µA 16 mA Std. 0.60 4.89 0.04 1.52 0.43 4.89 3.92 4.31 4.98 8.28 7.32 ns –1 0.51 4.16 0.04 1.29 0.36 4.16 3.34 3.67 4.24 7.04 6.22 ns –2 0.45 3.65 0.03 1.14 0.32 3.65 2.93 3.22 3.72 6.18 5.46 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. Software default selection highlighted in gray. 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Revision 11 2-43 ProASIC3 DC and Switching Characteristics Table 2-53 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Plus I/O Banks Equiv. Software Default Drive Drive Strength Speed 1 Strength Option Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 100 µA 2 mA Std. 0.60 14.97 0.04 1.52 0.43 14.97 12.79 3.52 3.41 18.36 16.18 ns –1 0.51 12.73 0.04 1.29 0.36 12.73 10.88 2.99 2.90 15.62 13.77 ns –2 0.45 11.18 0.03 1.14 0.32 11.18 9.55 2.63 2.55 13.71 12.08 ns 100 µA 4 mA Std. 0.60 10.36 0.04 1.52 0.43 10.36 8.93 3.99 4.24 13.75 12.33 ns –1 0.51 8.81 0.04 1.29 0.36 8.81 7.60 3.39 3.60 11.70 10.49 ns –2 0.45 7.74 0.03 1.14 0.32 7.74 6.67 2.98 3.16 10.27 9.21 ns 100 µA 6 mA Std. 0.60 10.36 0.04 1.52 0.43 10.36 8.93 3.99 4.24 13.75 12.33 ns –1 0.51 8.81 0.04 1.29 0.36 8.81 7.60 3.39 3.60 11.70 10.49 ns –2 0.45 7.74 0.03 1.14 0.32 7.74 6.67 2.98 3.16 10.27 9.21 ns 100 µA 8 mA Std. 0.60 7.81 0.04 1.52 0.43 7.81 6.85 4.32 4.76 11.20 10.24 ns –1 0.51 6.64 0.04 1.29 0.36 6.64 5.82 3.67 4.05 9.53 8.71 ns –2 0.45 5.83 0.03 1.14 0.32 5.83 5.11 3.22 3.56 8.36 7.65 ns 100 µA 16 mA Std. 0.60 7.81 0.04 1.52 0.43 7.81 6.85 4.32 4.76 11.20 10.24 ns –1 0.51 6.64 0.04 1.29 0.36 6.64 5.82 3.67 4.05 9.53 8.71 ns –2 0.45 5.83 0.03 1.14 0.32 5.83 5.11 3.22 3.56 8.36 7.65 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 2-44 Revision 11 ProASIC3 Flash Family FPGAs Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS HIgh Slew Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/O Banks Equiv. Software Default Drive Drive Strength Speed 1 Strength Option Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 100 µA 2 mA Std. 0.60 10.93 0.04 1.52 0.43 10.93 9.46 3.20 3.32 ns –1 0.51 9.29 0.04 1.29 0.36 9.29 8.04 2.72 2.82 ns –2 0.45 8.16 0.03 1.13 0.32 8.16 7.06 2.39 2.48 ns 100 µA 4 mA Std. 0.60 10.93 0.04 1.52 0.43 10.93 9.46 3.20 3.32 ns –1 0.51 9.29 0.04 1.29 0.36 9.29 8.04 2.72 2.82 ns –2 0.45 8.16 0.03 1.13 0.32 8.16 7.06 2.39 2.48 ns 100 µA 6 mA Std. 0.60 6.82 0.04 1.52 0.43 6.82 5.70 3.70 4.16 ns –1 0.51 5.80 0.04 1.29 0.36 5.80 4.85 3.15 3.54 ns –2 0.45 5.09 0.03 1.13 0.32 5.09 4.25 2.77 3.11 ns 100 µA 8 mA Std. 0.60 6.82 0.04 1.52 0.43 6.82 5.70 3.70 4.16 ns –1 0.51 5.80 0.04 1.29 0.36 5.80 4.85 3.15 3.54 ns –2 0.45 5.09 0.03 1.13 0.32 5.09 4.25 2.77 3.11 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. Software default selection highlighted in gray. 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Revision 11 2-45 ProASIC3 DC and Switching Characteristics Table 2-55 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard I/O Banks Equiv. Software Default Drive Drive Strength Speed 1 Strength Option Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 100 µA 2 mA Std. 0.60 14.64 0.04 1.52 0.43 14.64 12.97 3.21 3.15 ns –1 0.51 12.45 0.04 1.29 0.36 12.45 11.04 2.73 2.68 ns –2 0.45 10.93 0.03 1.13 0.32 10.93 9.69 2.39 2.35 ns 100 µA 4 mA Std. 0.60 14.64 0.04 1.52 0.43 14.64 12.97 3.21 3.15 ns –1 0.51 12.45 0.04 1.29 0.36 12.45 11.04 2.73 2.68 ns –2 0.45 10.93 0.03 1.13 0.32 10.93 9.69 2.39 2.35 ns 100 µA 6 mA Std. 0.60 10.16 0.04 1.52 0.43 10.16 9.08 3.71 3.98 ns –1 0.51 8.64 0.04 1.29 0.36 8.64 7.73 3.15 3.39 ns –2 0.45 7.58 0.03 1.13 0.32 7.58 6.78 2.77 2.97 ns 100 µA 8 mA Std. 0.60 10.16 0.04 1.52 0.43 10.16 9.08 3.71 3.98 ns –1 0.51 8.64 0.04 1.29 0.36 8.64 7.73 3.15 3.39 ns –2 0.45 7.58 0.03 1.13 0.32 7.58 6.78 2.77 2.97 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 2-46 Revision 11 ProASIC3 Flash Family FPGAs 2.5 V LVCMOS Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general- purpose 2.5 V applications. Table 2-56 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 2 2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH Min. Max. Min. Max. Max. Min. Max. Max. 3 3 4 4 Drive Strength V V V V V VmAmA mA mA µA µA 2 mA –0.3 0.7 1.7 2.7 0.7 1.7 2 2 18 16 10 10 4 mA –0.3 0.7 1.7 2.7 0.7 1.7 4 4 18 16 10 10 6 mA –0.3 0.7 1.7 2.7 0.7 1.7 6 6 37 32 10 10 8 mA –0.3 0.7 1.7 2.7 0.7 1.7 8 8 37 32 10 10 12 mA –0.3 0.7 1.7 2.7 0.7 1.7 12 12 74 65 10 10 16 mA –0.3 0.7 1.7 2.7 0.7 1.7 16 16 87 83 10 10 24 mA –0.3 0.7 1.7 2.7 0.7 1.7 24 24 124 169 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Table 2-57 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 1 2 IIH 2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL Min. Max. Min. Max. Max. Min. Max. Max. 3 3 4 4 Drive Strength V V V V V VmAmA mA mA µA µA 2 mA –0.3 0.7 1.7 2.7 0.7 1.7 2 2 18 16 10 10 4 mA –0.3 0.7 1.7 2.7 0.7 1.7 4 4 18 16 10 10 6 mA –0.3 0.7 1.7 2.7 0.7 1.7 6 6 37 32 10 10 8 mA –0.3 0.7 1.7 2.7 0.7 1.7 8 8 37 32 10 10 12 mA –0.3 0.7 1.7 2.7 0.7 1.7 12 12 74 65 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Revision 11 2-47 ProASIC3 DC and Switching Characteristics Table 2-58 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks 1 2 2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH Min. Max., Min. Max. Max. Min. Max. Max. 3 3 4 4 Drive Strength V V V V V VmAmA mA mA µA µA 2 mA –0.3 0.7 1.7 3.6 0.7 1.7 2 2 16 18 10 10 4 mA –0.3 0.7 1.7 3.6 0.7 1.7 4 4 16 18 10 10 6 mA –0.3 0.7 1.7 3.6 0.7 1.7 6 6 32 37 10 10 8 mA –0.3 0.7 1.7 3.6 0.7 1.7 8 8 32 37 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. R to VCCI for t / t / t LZ ZL ZLS R = 1 k Test Point R to GND for t / t / t HZ ZH ZHS Test Point Datapath 35 pF Enable Path 35 pF for t / t / t / t ZH ZHS ZL ZLS 35 pF for t / t HZ LZ Figure 2-7 • AC Loading Table 2-59 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) C (pF) LOAD 02.5 1.2 35 Note: *Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points. 2-48 Revision 11 ProASIC3 Flash Family FPGAs Timing Characteristics Table 2-60 • 2.5 V LVCMOS High Slew = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Commercial-Case Conditions: T J Applicable to Advanced I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 4 mA Std. 0.60 8.66 0.04 1.31 0.43 7.83 8.66 2.68 2.30 10.07 10.90 ns –1 0.51 7.37 0.041.11 0.36 6.66 7.37 2.28 1.96 8.56 9.27 ns –2 0.45 6.47 0.030.98 0.32 5.85 6.47 2.00 1.72 7.52 8.14 ns 6 mA Std. 0.60 5.17 0.04 1.31 0.43 5.04 5.17 3.05 3.00 7.27 7.40 ns –1 0.51 4.39 0.041.11 0.36 4.28 4.39 2.59 2.55 6.19 6.30 ns –2 0.45 3.86 0.030.98 0.32 3.76 3.86 2.28 2.24 5.43 5.53 ns 8 mA Std. 0.60 5.17 0.04 1.31 0.43 5.04 5.17 3.05 3.00 7.27 7.40 ns –1 0.51 4.39 0.041.11 0.36 4.28 4.39 2.59 2.55 6.19 6.30 ns –2 0.45 3.86 0.030.98 0.32 3.76 3.86 2.28 2.24 5.43 5.53 ns 12 mA Std. 0.60 3.56 0.04 1.31 0.43 3.63 3.43 3.30 3.44 5.86 5.67 ns –1 0.51 3.03 0.04 1.11 0.36 3.08 2.92 2.81 2.92 4.99 4.82 ns –2 0.45 2.66 0.03 0.98 0.32 2.71 2.56 2.47 2.57 4.38 4.23 ns 16 mA Std. 0.60 3.35 0.04 1.31 0.43 3.41 3.06 3.36 3.55 5.65 5.30 ns –1 0.51 2.85 0.041.11 0.36 2.90 2.60 2.86 3.02 4.81 4.51 ns –2 0.45 2.50 0.030.98 0.32 2.55 2.29 2.51 2.65 4.22 3.96 ns 24 mA Std. 0.60 3.09 0.04 1.31 0.43 3.15 2.44 3.44 4.00 5.38 4.68 ns –1 0.51 2.63 0.041.11 0.36 2.68 2.08 2.92 3.40 4.58 3.98 ns –2 0.45 2.31 0.030.98 0.32 2.35 1.82 2.57 2.98 4.02 3.49 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Revision 11 2-49 ProASIC3 DC and Switching Characteristics Table 2-61 • 2.5 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V J Applicable to Advanced I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 4 mA Std. 0.60 11.40 0.04 1.31 0.43 11.22 11.40 2.68 2.20 13.45 13.63 ns –1 0.51 9.69 0.041.11 0.36 9.54 9.69 2.28 1.88 11.44 11.60 ns –2 0.45 8.51 0.030.98 0.32 8.38 8.51 2.00 1.65 10.05 10.18 ns 6 mA Std. 0.60 7.96 0.04 1.31 0.43 8.11 7.81 3.05 2.89 10.34 10.05 ns –1 0.51 6.77 0.041.11 0.36 6.90 6.65 2.59 2.46 8.80 8.55 ns –2 0.45 5.94 0.030.98 0.32 6.05 5.84 2.28 2.16 7.72 7.50 ns 8 mA Std. 0.60 7.96 0.04 1.31 0.43 8.11 7.81 3.05 2.89 10.34 10.05 ns –1 0.51 6.77 0.041.11 0.36 6.90 6.65 2.59 2.46 8.80 8.55 ns –2 0.45 5.94 0.030.98 0.32 6.05 5.84 2.28 2.16 7.72 7.50 ns 12 mA Std. 0.60 6.18 0.04 1.31 0.43 6.29 5.92 3.30 3.32 8.53 8.15 ns –1 0.51 5.26 0.041.11 0.36 5.35 5.03 2.81 2.83 7.26 6.94 ns –2 0.45 4.61 0.030.98 0.32 4.70 4.42 2.47 2.48 6.37 6.09 ns 16 mA Std. 0.60 5.76 0.04 1.31 0.43 5.87 5.53 3.36 3.44 8.11 7.76 ns –1 0.51 4.90 0.041.11 0.36 4.99 4.70 2.86 2.92 6.90 6.60 ns –2 0.45 4.30 0.030.98 0.32 4.38 4.13 2.51 2.57 6.05 5.80 ns 24 mA Std. 0.60 5.51 0.04 1.31 0.43 5.50 5.51 3.43 3.87 7.74 7.74 ns –1 0.51 4.68 0.041.11 0.36 4.68 4.68 2.92 3.29 6.58 6.59 ns –2 0.45 4.11 0.030.98 0.32 4.11 4.11 2.56 2.89 5.78 5.78 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 2-50 Revision 11 ProASIC3 Flash Family FPGAs Table 2-62 • 2.5 V LVCMOS High Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V J Applicable to Standard Plus I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 4 mA Std. 0.66 8.28 0.04 1.30 0.43 7.41 8.28 2.25 2.07 9.64 10.51 ns –1 0.56 7.040.041.10 0.36 6.30 7.04 1.92 1.76 8.20 8.94 ns –2 0.49 6.180.030.97 0.32 5.53 6.18 1.68 1.55 7.20 7.85 ns 6 mA Std. 0.66 4.85 0.04 1.30 0.43 4.65 4.85 2.59 2.71 6.88 7.09 ns –1 0.56 4.130.041.10 0.36 3.95 4.13 2.20 2.31 5.85 6.03 ns –2 0.49 3.620.030.97 0.32 3.47 3.62 1.93 2.02 5.14 5.29 ns 8 mA Std. 0.66 4.85 0.04 1.30 0.43 4.65 4.85 2.59 2.71 6.88 7.09 ns –1 0.56 4.130.041.10 0.36 3.95 4.13 2.20 2.31 5.85 6.03 ns –2 0.49 3.620.030.97 0.32 3.47 3.62 1.93 2.02 5.14 5.29 ns 12 mA Std. 0.66 3.21 0.04 1.30 0.43 3.27 3.14 2.82 3.11 5.50 5.38 ns –1 0.56 2.73 0.04 1.10 0.36 2.78 2.67 2.40 2.65 4.68 4.57 ns –2 0.49 2.39 0.03 0.97 0.32 2.44 2.35 2.11 2.32 4.11 4.02 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-63 • 2.5 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V J Applicable to Standard Plus I/O Banks Drive Speed t t t t t t t t t t Units Strength Grade t DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 4 mA Std. 0.66 10.84 0.04 1.30 0.43 10.64 10.84 2.26 1.99 12.87 13.08 ns –1 0.56 9.22 0.041.10 0.36 9.05 9.22 1.92 1.69 10.95 11.12 ns –2 0.49 8.10 0.030.97 0.32 7.94 8.10 1.68 1.49 9.61 9.77 ns 6 mA Std. 0.66 7.37 0.04 1.30 0.43 7.50 7.36 2.59 2.61 9.74 9.60 ns –1 0.56 6.27 0.041.10 0.36 6.38 6.26 2.20 2.22 8.29 8.16 ns –2 0.49 5.50 0.030.97 0.32 5.60 5.50 1.93 1.95 7.27 7.17 ns 8 mA Std. 0.66 7.37 0.04 1.30 0.43 7.50 7.36 2.59 2.61 9.74 9.60 ns –1 0.56 6.27 0.041.10 0.36 6.38 6.26 2.20 2.22 8.29 8.16 ns –2 0.49 5.50 0.030.97 0.32 5.60 5.50 1.93 1.95 7.27 7.17 ns 12 mA Std. 0.66 5.63 0.04 1.30 0.43 5.73 5.51 2.83 3.01 7.97 7.74 ns –1 0.56 4.79 0.041.10 0.36 4.88 4.68 2.41 2.56 6.78 6.59 ns –2 0.49 4.20 0.030.97 0.32 4.28 4.11 2.11 2.25 5.95 5.78 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Revision 11 2-51 ProASIC3 DC and Switching Characteristics Table 2-64 • 2.5 V LVCMOS High Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard I/O Banks Drive Speed Strength Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 0.66 8.20 0.04 1.29 0.43 7.24 8.20 2.03 1.91 ns –1 0.56 6.98 0.04 1.10 0.36 6.16 6.98 1.73 1.62 ns –2 0.49 6.13 0.03 0.96 0.32 5.41 6.13 1.52 1.43 ns 4 mA Std. 0.66 8.20 0.04 1.29 0.43 7.24 8.20 2.03 1.91 ns –1 0.56 6.98 0.04 1.10 0.36 6.16 6.98 1.73 1.62 ns –2 0.49 6.13 0.03 0.96 0.32 5.41 6.13 1.52 1.43 ns 6 mA Std. 0.66 4.77 0.04 1.29 0.43 4.55 4.77 2.38 2.55 ns –1 0.56 4.05 0.04 1.10 0.36 3.87 4.05 2.03 2.17 ns –2 0.49 3.56 0.03 0.96 0.32 3.40 3.56 1.78 1.91 ns 8 mA Std. 0.66 4.77 0.04 1.29 0.43 4.55 4.77 2.38 2.55 ns –1 0.56 4.05 0.04 1.10 0.36 3.87 4.05 2.03 2.17 ns –2 0.49 3.56 0.03 0.96 0.32 3.40 3.56 1.78 1.91 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-65 • 2.5 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard I/O Banks Drive Speed t t t t t t t t Units Strength Grade t DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 0.66 11.00 0.04 1.29 0.43 10.37 11.00 2.03 1.83 ns –1 0.56 9.35 0.04 1.10 0.36 8.83 9.35 1.73 1.56 ns –2 0.49 8.21 0.03 0.96 0.32 7.75 8.21 1.52 1.37 ns 4 mA Std. 0.66 11.00 0.04 1.29 0.43 10.37 11.00 2.03 1.83 ns –1 0.56 9.35 0.04 1.10 0.36 8.83 9.35 1.73 1.56 ns –2 0.49 8.21 0.03 0.96 0.32 7.75 8.21 1.52 1.37 ns 6 mA Std. 0.66 7.50 0.04 1.29 0.43 7.36 7.50 2.39 2.46 ns –1 0.56 6.38 0.04 1.10 0.36 6.26 6.38 2.03 2.10 ns –2 0.49 5.60 0.03 0.96 0.32 5.49 5.60 1.78 1.84 ns 8 mA Std. 0.66 7.50 0.04 1.29 0.43 7.36 7.50 2.39 2.46 ns –1 0.56 6.38 0.04 1.10 0.36 6.26 6.38 2.03 2.10 ns –2 0.49 5.60 0.03 0.96 0.32 5.49 5.60 1.78 1.84 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 2-52 Revision 11 ProASIC3 Flash Family FPGAs 1.8 V LVCMOS Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general- purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer. Table 2-66 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 1.8 V 1 2 LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH Drive Min. Max., Min. Max. Max. Min. Max. Max. 3 3 4 4 Strength V V V V V VmAmA mA mA µA µA 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 2 2 11 9 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 4 4 22 17 10 10 6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 6 6 44 35 10 10 8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 8 8 51 45 10 10 12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 12 12 74 91 10 10 16 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 16 16 74 91 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Table 2-67 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O I/O Banks 1.8 V 1 2 LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH Drive Min. Max. Min. Max. Max. Min. Max. Max. 3 3 4 4 Strength V V V V V VmAmA mA mA µA µA 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 2 2 11 9 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 22 17 10 10 6 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 6 6 44 35 10 10 8 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 8 8 44 35 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN

Frequently asked questions

What makes Elite.Parts unique?

chervon down
At GID Industrial (Elite.Parts' parent company), we specialize in procuring industrial parts. We know where to find the rare and obsolete equipment that our customers need in order to get back to business. There are other companies who claim to do what we do, but we're confident that our commitment to quality and value is unparalleled in our field.

What kind of warranty will the A3P015 have?

chervon down
Warranties differ by part and by which suppliers we use to procure it for you. Sometimes, a part will be sold as-is and without a warranty. Our specialty, single board computers, tend to receive a one-year warranty.

Which carriers does Elite.Parts work with?

chervon down
Elite.Parts can ship via FedEx, UPS, DHL, and USPS. We have accounts with each of them and generally ship using one of those, but we can also ship using your account if you would prefer. However, we can use other carriers if it will be more convenient for you.

Will Elite.Parts sell to me even though I live outside the USA?

chervon down
Absolutely! We are happy to serve customers regardless of location. We work with international clients all the time, and we are familiar with shipping to destinations all across the globe.

I have a preferred payment method. Will Elite.Parts accept it?

chervon down
All major credit cards are accepted: Visa, MasterCard, Discover, and American Express. We will also accept payment made with wire transfer or PayPal. Checks will only be accepted from customers in the USA. Terms may available for larger orders, upon approval.

Why buy from GID?

quality

Quality

We are industry veterans who take pride in our work

protection

Protection

Avoid the dangers of risky trading in the gray market

access

Access

Our network of suppliers is ready and at your disposal

savings

Savings

Maintain legacy systems to prevent costly downtime

speed

Speed

Time is of the essence, and we are respectful of yours

What they say about us

FANTASTIC RESOURCE

star star star star star

One of our top priorities is maintaining our business with precision, and we are constantly looking for affiliates that can help us achieve our goal. With the aid of GID Industrial, our obsolete product management has never been more efficient. They have been a great resource to our company, and have quickly become a go-to supplier on our list!

Bucher Emhart Glass

EXCELLENT SERVICE

star star star star star

With our strict fundamentals and high expectations, we were surprised when we came across GID Industrial and their competitive pricing. When we approached them with our issue, they were incredibly confident in being able to provide us with a seamless solution at the best price for us. GID Industrial quickly understood our needs and provided us with excellent service, as well as fully tested product to ensure what we received would be the right fit for our company.

Fuji

HARD TO FIND A BETTER PROVIDER

star star star star star

Our company provides services to aid in the manufacture of technological products, such as semiconductors and flat panel displays, and often searching for distributors of obsolete product we require can waste time and money. Finding GID Industrial proved to be a great asset to our company, with cost effective solutions and superior knowledge on all of their materials, it’d be hard to find a better provider of obsolete or hard to find products.

Applied Materials

CONSISTENTLY DELIVERS QUALITY SOLUTIONS

star star star star star

Over the years, the equipment used in our company becomes discontinued, but they’re still of great use to us and our customers. Once these products are no longer available through the manufacturer, finding a reliable, quick supplier is a necessity, and luckily for us, GID Industrial has provided the most trustworthy, quality solutions to our obsolete component needs.

Nidec Vamco

TERRIFIC RESOURCE

star star star star star

This company has been a terrific help to us (I work for Trican Well Service) in sourcing the Micron Ram Memory we needed for our Siemens computers. Great service! And great pricing! I know when the product is shipping and when it will arrive, all the way through the ordering process.

Trican Well Service

GO TO SOURCE

star star star star star

When I can't find an obsolete part, I first call GID and they'll come up with my parts every time. Great customer service and follow up as well. Scott emails me from time to time to touch base and see if we're having trouble finding something.....which is often with our 25 yr old equipment.

ConAgra Foods

Related Products

A1010B

A1010B-1

A1010B-1B

A1010B-1C

A1010B-1I

product

Actel A1225XL Act 2 Family FPGA