High Performance Bus Interface Solutions

PC104-12AI64

64 Analog Input Channels (12-bit A/D):

Features Include:

- 64 Single-ended or 32 Differential 12-Bit Scanned Analog Input Channels
- Sample Rates to 1,500 KSPS per Second in Single-Channel Mode; 1,000 KSPS in Scanning Mode
- Input Ranges Selectable as $\pm 10V$, $\pm 5V$ or $\pm 2.5V$
- 64-Ksample FIFO Data Buffer
- Continuous and Burst (One-Shot) Input Modes
- Sync Input and Output (Alternate Function for Channels 62,63)
- Internal Rate Generator Implements a 32-Bit Divider
- Scan Sizes from 2 to 64 Channels-per-Scan
- Scan Rates Adjustable from 0.01 to 500K Scans-per-Second (2-channel scan)
- Internal Auto calibration; No Host Involvement
- DMA Engine Minimizes Host I/O Overhead
- Dynamic Node Control Minimizes Crosstalk and Input Bias Current
- Completely Software-Configurable; No Field Jumpers

Applications Include:

✓	Acoustics Analysis	✓	Voltage Measurement	\checkmark	Automatic Test Equipment
\checkmark	Analog Inputs	✓	Process Monitoring	\checkmark	Audio Waveform Analysis

✓ Data Acquisition Systems ✓ Industrial Robotics ✓ Environmental Test Systems

General Standards Corporation

8302A Whitesburg Drive · Huntsville, AL 35802 Phone: (256) 880-8787 or (800) 653-9970 FAX: (256) 880-8788

General Standards Corporation High Performance Bus Interface Solutions

Overview:

The high-density PC104P-12AI64 board provides cost effective 1,500,000 conversions-persecond 12-bit analog input capability in a single width PMC format. The inputs are configurable either as 64 single-ended channels or as 32 differential channels, and the input range can be software selectable as $\pm 10V$, $\pm 5V$ or $\pm 2.5V$. Scan rates can be controlled from either (a) an internal rate generator, (b) through an external digital input, or (c) by direct software commands. Multiple PC104P-12AI64 boards can be connected together for synchronous scanning. Data buffering is configurable either as a single 64K sample FIFO for maximum buffering, or as dual 64K location swinging buffers for minimum latency. Internal auto calibration networks permit calibration to be performed without removing the board from the system. A VxWorks is available.

Functional Description:

The PC104-12AI64 board is a scanning analog digitizer that performs high-speed sampling and 12-bit A/D conversion of as many as 64 single-ended or 32 differential analog input channels. The resulting 12-bit sampled data is available to the PCI bus through a data buffer that is configured as a 64K-Sample FIFO. All operational parameters are software configurable.

The analog inputs can be sampled in scans of 2, 4, 8, 16, 32 or 64 single-ended channels, or in scans of 2, 4, 8, 16 or 32 differential channels. The scan rate can be controlled internally up to 500,000 scans per second for 2-channel scans. Sync input and output signals permit multiple boards to perform synchronous scanning. Input buffer amplifiers on all channels eliminate the high input currents that are produced by nonbuffered multiplexers running at high scan rates.

An internal auto calibration utility uses hardware D/A converters to correct for offset and gain errors in the input signal path, and eliminates the missing codes that are inevitably introduced when software correction methods are used. A selftest switching network routes calibration signals through the input multiplexer to the A/D converter to support internal auto calibration, and permits board integrity to be tested by the host. Auto calibration is performed automatically after reset or upon demand from the PCI bus, and calibrates the offset and gain of the converter to a precision internal reference voltage.

High Performance Bus Interface Solutions

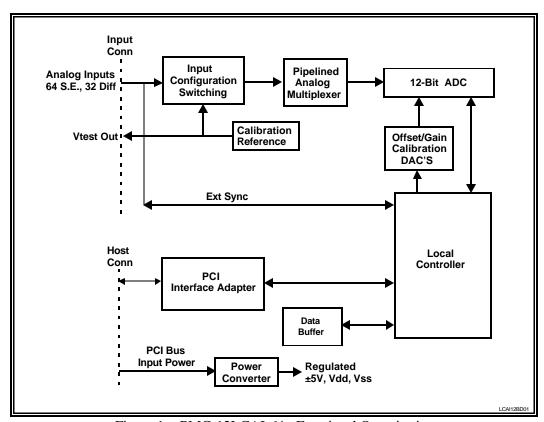


Figure 1. PMC-12LCAI-64; Functional Organization

The board is functionally compatible with the IEEE PCI local bus specification Revision 2.1, and supports the "plug-n-play" initialization concept. System connections are made at the front panel through a high-density 68-pin connector. Power requirements consist of +5 VDC, in compliance with the PCI specification, and operation over the specified temperature range is achieved with conventional convection cooling.

High Performance Bus Interface Solutions

ELECTRICAL SPECIFICATIONS

At +25 °C, with specified operating voltages

☐ Input Characteristics:

Configuration: 64 single-ended or 32 differential analog input channels

Voltage Ranges: Software configurable as ± 10 Volts, ± 5 Volts or ± 2.5 Volts

Input Impedance: 1.0 Megohm, independent of scan rate

Common Mode Rejection: 60 dB typical, DC-60 Hz (Differential inputs)

Common Mode Range: ±10 Volts; differential input configuration

Offset Voltage: ±3.0 millivolts, maximum

Bias Current: Less than 80 nanoamps.

Noise: 2.0 LSB-RMS typical

Crosstalk Rejection: 75dB typical, DC-10kHz

Overvoltage Protection: ±30 Volts with power applied*; ±15 Volts with power removed.

* Inputs 62,63 (Alternate function TTL Sync I/O) limited to -0.5 to +7.0 Volts

☐ Transfer Characteristics:

Resolution: 12 Bits (0.0244 percent of FSR)

Maximum Sample Rate: 1,500 KSPS in single-channel mode; 1,000 KSPS (aggregate) in scanning mode

Scan Rate: Adjustable internally from 0.01 to 500K scans per second.

Channels per scan: 2, 4, 8, 16, 32 or 64 Single-ended channels; 2, 4, 8, 16 or 32 differential

channels. One channel in single-channel mode.

DC Accuracy:

(Maximum composite error after autocalibration)

Range Midscale Accuracy ±Fullscale Accuracy

±10V ±10mv ±12mv

±5V ± 5mv ± 7mv

±2.5V ± 3mv ± 5mv

Integral Nonlinearity: ± 0.04 percent of FSR, typical

Differential Nonlinearity: ±0.024 percent of FSR, maximum

☐ Analog Input Operating Modes and Controls

Input Data Buffer: 64K-sample FIFO, with status flags and interrupt.

Analog Input Modes: Continuous Scan: Analog inputs are scanned continuously

Burst Scan: Each scan is initiated either by the internal rate generator,

or by a hardware TTL input or a software sync input.

Single Channel: Any single selected channel is sampled continuously

Selftest: Autocalibration and Selftest modes

General Standards Corporation

8302A Whitesburg Drive · Huntsville, AL 35802 Phone: (256) 880-8787 or (800) 653-9970 FAX: (256) 880-8788

High Performance Bus Interface Solutions

Rate Generator: Programmable from 0.01 - 500,000 scans per second in scanning mode,

0.01 to 1,500,000 samples per second in single-channel mode.

Input Data Format: Selectable as offset binary or as two's complement

AUTOCALIBRATION

A single bit in the board control register initiates Autocalibration. During autocalibration, all analog channels are calibrated to a single precision internal voltage reference. Autocalibration has a typical duration of less than one second.

PCI INTERFACE

☐ Compatibility: Conforms to PCI Specification 2.1, with D32 read/write transactions.

Supports "plug-n-play" initialization. Provides one multifunction interrupt. Supports DMA transfers as bus master.

MECHANICAL AND ENVIRONMENTAL SPECIFICATIONS

□ □ Power Requirements

+5VDC ±0.2 VDC at 1.0 Amps, maximum, 1.1 Amps typical Power Dissipation: 7.0 Watts maximum; 5.5 Watts typical

□ **Physical Characteristics** (Overall, excluding spacers):

Height: 23.3 mm (0.92 in) Width: 94.0 mm (3.78 in) Depth: 95.9 mm (3.70 in)

□ Environmental Specifications

Ambient Temperature Range: Operating: 0 to +70 degrees Celsius *

Storage: -40 to +85 degrees Celsius *Temperature of inlet cooling air.

Relative Humidity: Operating: 0 to 80%, non-condensing

Storage: 0 to 95%, non-condensing

Altitude: Operation to 10,000 ft.

Cooling: Conventional convection cooling

☐ Cooling Requirements

Conventional air cooling; 200 LPFM (typical mezzanine environment).

General Standards Corporation

High Performance Bus Interface Solutions

ORDERING INFORMATION

Specify the basic product model number PC104-12AI64.

General Standards Corporation assumes no responsibility for the use of any circuits in this product. No circuit patent licenses are implied. Information included herein supersedes previously published specifications on this product and is subject to change without notice.

SYSTEM I/O CONNECTIONS

Table 1. System Connector Pin Functions

Table 1. System Con								
P2 ROW-A								
	SIGNAL							
PIN	S.E. MODE	DIFF MODE						
1	INP00	INP00 HI						
2	INP01	INP00 LO						
3	INP02	INP01 HI						
4	INP03	INP01 LO						
5	INP04	INP02 HI						
6	INP05	INP02 LO						
7	INP06	INP03 HI						
8	INP07	INP03 LO						
9	INP08	INP04 HI						
10	INP09	INP04 LO						
11	INP10	INP05 HI						
12	INP11	INP05 LO						
13	INP12	INP06 HI						
14	INP13	INP06 LO						
15	INP14	INP07 HI						
16	INP15	INP07 LO						
17	AGND	AGND						
18	AGND	AGND						
19	INP16	INP08 HI						
20	INP17	INP08 LO						
21	INP18	INP09 HI						
22	INP19	INP09 LO						
23	INP20	INP10 HI						
24	INP21	INP10 LO						
25	INP22	INP11 HI						
26	INP23	INP11 LO						
27	INP24	INP12 HI						
28	INP25	INP12 LO						
29	INP26	INP13 HI						
30	INP27	INP13 LO						
31	INP28	INP14 HI						
32	INP29	INP14 LO						
33	INP30	INP15 HI						
34	INP31	INP15 LO						

12 KOW-B								
	SIGNAL							
PIN	S.E. MODE	DIFF						
		MODE						
1	INP32	INP16 HI						
2	INP33	INP16 LO						
3	INP34	INP17 HI						
4	INP35	INP17 LO						
5	INP36	INP18 HI						
6	INP37	INP18 LO						
7	INP38	INP19 HI						
8	INP39	INP19 LO						
9	INP40	INP20 HI						
10	INP41	INP20 LO						
11	INP42	INP21 HI						
12	INP43	INP21 LO						
13	INP44	INP22 HI						
14	INP45	INP22 LO						
15	INP46	INP23 HI						
16	INP47	INP23 LO						
17	AGND	AGND						
18	AGND	AGND						
19	INP48	INP24 HI						
20	INP49	INP24 LO						
21	INP50	INP25 HI						
22	INP51	INP25 LO						
23	INP52	INP26 HI						
24	INP53	INP26 LO						
25	INP54	INP27 HI						
26	INP55	INP27 LO						
27	INP56	INP28 HI						
28	INP57	INP28 LO						
29	INP58	INP29 HI						
30	INP59	INP29 LO						
31	INP60	INP30 HI						
32	INP61	INP30 LO						
33	INP62/	INP31 HI/						
	SYNC HI *	SYNC HI*						
34	INP63/	INP31 LO/						
	SYNC LO*	SYNC LO*						

P2 ROW-B

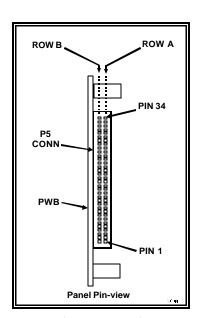


Figure 2. System Input Connector

System Mating Connector:

68-Pin 2-row 0.050" dual-ribbon cable socket connector: Robinson Nugent #P50E-068-S-TG, or equivalent.

Software-selected.