High Performance Bus Interface Solutions

PCI-16AI64

64-Channel, 16-Bit Analog Input PCI Board With 300 KSPS Input Sample Rate

Features Include:

- 64 Single-ended or 32 Differential 16-Bit Scanned Analog Input Channels
- Sample Rates to 300K-Samples per Second;
- Up to 75KSPS per channel in Scan Mode, 300KSPS in Single-Channel Mode
- Input Ranges Selectable as $\pm 10V$, $\pm 5V$ or $\pm 2.5V$
- Data Buffered through a 64K-sample FIFO?
- Continuous and Burst (One-Shot) Input Modes
- Sync Input/Output (Alternate Function for Channels 62,63);
- Scan Sizes from 4 to 64 Channels-per-Scan; or Single-Channel sampling of any Channel
- Internal Rate Generator Implements a 32-Bit Divider
- Scan Rates Adjustable from 0.01 to 75K Scans-per-Second
- Internal Autocalibration upon command
- DMA Engine Minimizes Host I/O Overhead
- Each Input Channel Buffered for Minimum Crosstalk and Input Bias Current
- Completely Software-Configurable; No Field Jumpers
- Single-width PCI Form Factor
- Optional EMI Shield and Panel Bezel Available

Applications Include:

- ✓ Data Acquisition Systems
- ✓ Precision Voltage Measurement
- ✓ Industrial Robotics
- ✓ Automatic Test Equipment
- ✓ Process Monitoring
- ✓ Research Instrumentation

High Performance Bus Interface Solutions

Overview:

The PCI-16AI64 board provides cost effective 300,000 samples-per-second 16-bit analog input capability in a single-width PCI format. The inputs are configurable either as 64 single-ended channels or as 32 differential channels, and the input range can be software-selectable as $\pm 10V$, $\pm 5V$ or $\pm 2.5V$. Scan rates can be controlled from (a) an internal rate generator, (b) through an external digital input, or (c) by direct software commands. Multiple PCI-16AI64 boards can be connected together for synchronous scanning. Data is buffered through a 64K-sample FIFO. Internal autocalibration networks permit calibration to be performed without removing the board from the system.

Functional Description:

The PCI-16AI64 board is a scanning analog digitizer that performs high-speed sampling and 16-bit A/D conversion of as many as 64 single-ended or 32 differential analog input channels. The resulting 16-bit sampled data is available to the PCI bus through a 64K-Sample FIFO buffer. All operational parameters are software configurable.

The analog inputs can be sampled in scans of 4, 8, 16, 32 or 64 single-ended channels, or in scans of 4, 8, 16 or 32 differential channels. The scan rate can be controlled internally up to 75,000 scans per second, or any single channel can be sampled at 300,000 samples per second. A Sync input/output signal can replace Channels 62,63 to permit multiple boards to perform synchronous scanning. All inputs are buffered to avoid the high cross talk and input bias currents common with nonbuffered multiplexers.

The internal auto calibration utility uses hardware D/A converters to correct for offset and gain errors in the input signal path, and eliminates the missing codes that are inevitably introduced when software correction methods are used. A selftest switching network routes calibration signals through the input multiplexer to the A/D converter to support internal auto calibration, and permits board integrity to be verified by the host. Auto calibration is performed automatically after reset or upon demand from the PCI bus, and calibrates the offset and gain of the converter to a precision internal reference voltage.

High Performance Bus Interface Solutions

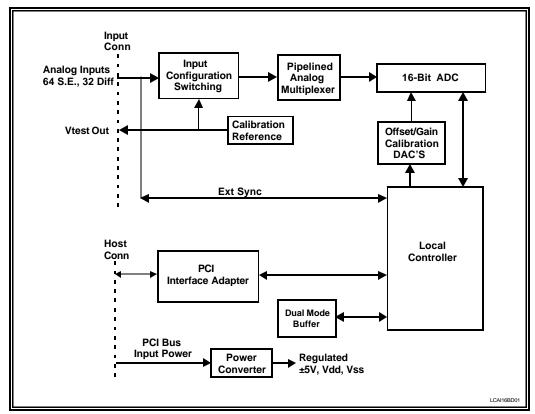


Figure 1. PCI-16AI64; Functional Organization

The board is functionally compatible with the IEEE PCI local bus specification Revision 2.1, and supports the "plug-n-play" initialization concept. System connections are made at the front panel through a high-density 68-pin connector. Power requirements consist of +5 VDC, in compliance with the PCI specification, and operation over the specified temperature range is achieved with conventional convection cooling.

High Performance Bus Interface Solutions

ELECTRICAL SPECIFICATIONS

At +25 °C, with specified operating voltages

☐ Input Characteristics:

Configuration: 64 single-ended or 32 differential analog input channels

Voltage Ranges: Software configurable as ± 10 Volts, ± 5 Volts or ± 2.5 Volts; or optionally

factory configured for a fixed range of ± 10 Volts, ± 5 Volts or ± 2.5 Volts

Input Impedance: 1.0 Megohm typical.

Common Mode Rejection: 60 dB typical, DC-60 Hz (Differential inputs)

Common Mode Range: Same as selected voltage range, with zero normal mode signal (Diff inputs)

Bias Current: Less than 80 nanoamps

Crosstalk Rejection: 85dB typical, DC-10kHz

Overvoltage Protection: ± 30 Volts with power applied*; ± 15 Volts with power removed.

* Inputs 62,63 (Alternate function TTL Sync I/O) limited to -0.5 to +7.0 Volts

☐ Transfer Characteristics:

Resolution: 16 Bits (0.0015 percent of FSR)

Maximum Sample Rate: 300K conversions per second

Scan Rate: Adjustable internally from 0.01 to 75K scans per second; 300KSPS in single-

channel mode.

Channels per scan: 8, 16, 32 or 64 Single-ended channels; 4, 8, 16 or 32 differential channels.

Or, one channel in single-channel mode.

DC Accuracy: Range Midscale Accuracy ±Fullscale Accuracy

(Maximum composite error after autocalibration) $\begin{array}{cccc} \pm 10V & \pm 3mv & \pm 4mv \\ \pm 5V & \pm 2mv & \pm 3mv \\ \pm 2.5V & \pm 1mv & \pm 2mv \end{array}$

Integral Nonlinearity: ± 0.007 percent of FSR, typical

Differential Nonlinearity: ± 0.003 percent of FSR, maximum

☐ Analog Input Operating Modes and Controls

Input Data Buffer: 64K-sample FIFO, with Channel-00 tag.

Analog Input Modes: Continuous Scan: Analog inputs are scanned continuously.

Burst Scan: Each scan is initiated either by the internal rate generator,

or by a hardware TTL input or a software sync input

Single Channel: Any single selected channel is sampled continuously

Selftest: Autocalibration and Selftest modes

General Standards Corporation

High Performance Bus Interface Solutions

Rate Generator: Programmable from 0.01 - 75,000 scans per second; 300KSPS in single-

channel mode. External triggering is available through Channel 62,63 pins.

Input Data Format: Selectable as offset binary or as two's complement

PCI INTERFACE

□ Compatibility: Conforms to PCI Specification 2.1, with D32 read/write transactions.

Supports "plug-n-play" initialization. Provides one multifunction interrupt. Supports DMA transfers as bus master.

MECHANICAL AND ENVIRONMENTAL SPECIFICATIONS

☐ Power Requirements

+5VDC ±0.2 VDC at 1.5 Amp, maximum

Maximum Power Dissipation: 6.0 Watts, Side 1

1.0 Watt, Side 2

☐ Physical Characteristics

Height: 13.5 mm (0.53 in)
Depth: 149.0 mm (5.87 in)
Width: 74.0 mm (2.91 in)

Shield: Side 1 can be protected by an optional EMI shield.

☐ Environmental Specifications

Ambient Temperature Range: Operating: 0 to +55 degrees Celsius

Storage: -40 to +85 degrees Celsius

Relative Humidity: Operating: 0 to 80%, non-condensing

Storage: 0 to 95%, non-condensing

Altitude: Operation to 10,000 ft.

Cooling: Conventional convection cooling

ORDERING INFORMATION

Specify the basic product model number PCI-16AI64.

General Standards Corporation

High Performance Bus Interface Solutions

SYSTEM I/O CONNECTIONS

Table 1. System Connector Pin Functions

	tabie I. S	system Co	
P2 ROW-A			
	SIGNAL		
PIN	S.E. MODE	DIFF MODE	
1	INP00	INP00 HI	
2	INP01	INP00 LO	
3	INP02	INP01 HI	
4	INP03	INP01 LO	
5	INP04	INP02 HI	
6	INP05	INP02 LO	
7	INP06	INP03 HI	
8	INP07	INP03 LO	
9	INP08	INP04 HI	
10	INP09	INP04 LO	
11	INP10	INP05 HI	
12	INP11	INP05 LO	
13	INP12	INP06 HI	
14	INP13	INP06 LO	
15	INP14	INP07 HI	
16	INP15	INP07 LO	
17	AGND	AGND	
18	AGND	AGND	
19	INP16	INP08 HI	
20	INP17	INP08 LO	
21	INP18	INP09 HI	
22	INP19	INP09 LO	
23	INP20	INP10 HI	
24	INP21	INP10 LO	
25	INP22	INP11 HI	
26	INP23	INP11 LO	
27	INP24	INP12 HI	
28	INP25	INP12 LO	
29	INP26	INP13 HI	
30	INP27	INP13 LO	
31	INP28	INP14 HI	
32	INP29	INP14 LO	
33	INP30	INP15 HI	
34	INP31	INP15 LO	

P2 ROW-B		
SIGNAL		
PIN	S.E. MODE	DIFF
		MODE
1	INP32	INP16 HI
2	INP33	INP16 LO
3	INP34	INP17 HI
4	INP35	INP17 LO
5	INP36	INP18 HI
6	INP37	INP18 LO
7	INP38	INP19 HI
8	INP39	INP19 LO
9	INP40	INP20 HI
10	INP41	INP20 LO
11	INP42	INP21 HI
12	INP43	INP21 LO
13	INP44	INP22 HI
14	INP45	INP22 LO
15	INP46	INP23 HI
16	INP47	INP23 LO
17	AGND	AGND
18	VTEST	VTEST
19	INP48	INP24 HI
20	INP49	INP24 LO
21	INP50	INP25 HI
22	INP51	INP25 LO
23	INP52	INP26 HI
24	INP53	INP26 LO
25	INP54	INP27 HI
26	INP55	INP27 LO
27	INP56	INP28 HI
28	INP57	INP28 LO
29	INP58	INP29 HI
30	INP59	INP29 LO
31	INP60	INP30 HI
32	INP61	INP30 LO
33	INP62/	INP31 HI/
	SYNC HI *	SYNC HI*
34	INP63/	INP31 LO/
	SYNC LO*	SYNC LO*

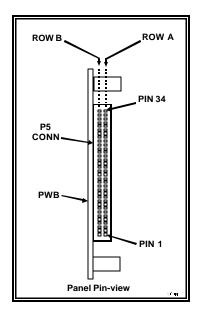


Figure 2. System Input Connector

System Mating Connector:

68-Pin 2-row 0.050" dual-ribbon cable socket connector: Robinson Nugent #P50E-068-S-TG, or equivalent.

* Software-selected.

General Standards Corp.

8302A Whitesburg Drive Huntsville, AL 35802

General Standards Corporation assumes no responsibility for the use of any circuits in this product. No circuit patent licenses are implied. Information included herein supersedes previously published specifications on this product and is subject to change without notice.

General Standards Corporation