SPECIFICATIONS

Servoamplifier Servovalve Drive: ±8 mA into 1,250 Ω

Input Command: 4 to 20 mA ungrounded current loop

Proportional Gain: 1.0 to 47 mA/V

Integral Gain: 0.5 to 250 mA/V-sec

Differential Gain: 0.04 to 4 mA-sec/V

Frequency Response: ≤ 3 dB amplitude ≥ 800 Hz (1 Henry load)

Transducer Demodulator Outputs:

4 to 20 mA (monitor transducer demodulated signals & selected feedback)

Ripple: < 10 mVrms @ twice the excitation frequency

Linearlty: ≤ ±0.2% at 3 kHz (preliminary)

Gain Stability: ±250 ppm gain/°C, ±0.1 mV/°C

Frequency Response: negligible phase lag @ 10 Hz, ≤ 10° phase lag @ 100 Hz

The N121-001A Series Dual Transducer Servocontroller was developed specifically for General Electric gas and steam turbine upgrades and modifications. This circuit card is designed to interface with various manufacturers' turbine controlllers, existing or new intrinsically safe servovalves and redundant position feedback transducers. Specifically, the N121-001A contains current drivers for driving triple redundant servovalve coils, redundant excitation/demodulation circuits for dual position feedback transducers, a comparator high select circuit, and 4 to 20 mA interface circuits.

Transducer Exciter Frequency: 2,000 to 4,000 Hz

Amplitude: 0.7 to 8 Vrms

Amplitude Stability: ≤ 250 ppm amplitude/°C (preliminary)

Built-In Power Regulator Power Input: 110/220 VAC ±10%, 50/60 Hz, 30 VA

Temperature Range: 0°C to 50°C

Form Factor: Snap Trac format 3.25" x 19"

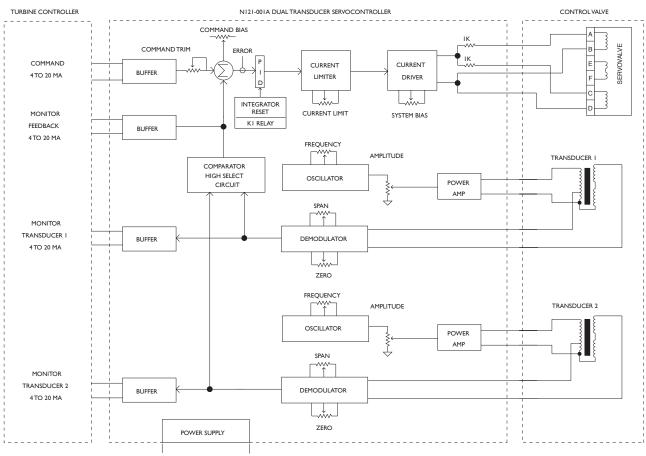
Weight: 2.5 lb

KI Relay Contact Rating Consumption: 15 mA @ 24 VDC

Contact Rating: 2.50 mA / 175 VDC / 3 watt

Coil Resistance: 2 KΩ @ 20°C Max Pick-up VDC @ 20°C: 18.0 VDC Max Drop-up VDC @ 20°C:

2.0 VDC


FEATURES

- > Closed-loop control of redundant linear transducer position loops.
- PID control; jumper selectable with independent gain potentiometers.
- Linear transducer signal high selection circuit.
- Current limiter (rate limit control possible).
- > 4 to 20 mA input for position command signal.
- 4 to 20 mA outputs to monitor the position feedback signals.
 SPDT relay section jumper selectable Hi (+5 to 15 VDC) or
- SPDT relay section jumper selectable Hi (+5 to 15 VDC) or Low (0 VDC) activation logic state.

N121-001A SERVOCONTROLLER BLOCK DIAGRAM

110/220 VAC +/- 10%, 50/60 Hz

CUSTOMER INTERCONNECT DIAGRAM AND SET-UP

110 VAC POWER HOOKUP	SERVO COIL HOOK-UP	TEST POINT DESCRIPTION		POTENTIOMETER DESCRIPTION
	J3	TPI @ ERROR SIGNAL	PI	PROPORTIONAL COMPENSATION GAIN ADJUST
I IOVAC POWER INPUT	SERVOVALVE COIL -I SIGNAL (+) CURRENT LOOP OUTPUT	TP2 @ PROPORTIONAL COMPENSATION SIGNAL	P2	INTEGRAL COMPENSATION GAIN ADJUST
2 HI I VAC POWER INPUT	2 SERVOVALVE COIL -2 SIGNAL (+) CURRENT LOOP OUTPUT	TP3 @ INTEGRAL COMPENSATION SIGNAL	P3	DIFFERENTIAL COMPENSATION LPF ADJUST
	3 SERVOVALVE COIL -I SIGNAL (-) CURRENT LOOP OUTPUT	TP4 @ SERVOVALVE CURRENT VOLTAGE DRIVE SIGNAL	P4	DIFFERENTIAL COMPENSATION GAIN ADJUST
4 UMPER TO 11-2	4 - SERVOVALVE COIL -2 SIGNAL (-) CURRENT LOOP OUTPUT	TP5 @ SERVOVALVE CURRENT RETURN SENSE SIGNAL	P5	CURRENT LIMIT ADJUST
5 CHASSIS GROUND	5	TP6 O DIFFERENTIAL COMPENSATION SIGNAL	P6	POSITIVE REGULATOR (+15) ADJUST
-	6 - MONITOR LT-I SIGNAL (-) CURRENT LOOP OUTPUT	TP7 O SUMMED COMPENSATION SIGNAL	P7	NEGATIVE REGULATOR (-15) ADJUST
	7 MONITOR FEEDBACK (+) CURRENT LOOP OUTPUT	TP8 () NULL BIAS CURRENT POT (P17) MONITOR SIGNAL	P8	BIAS ADJUST
	8 MONITOR FEEDBACK (-) CURRENT LOOP OUTPUT	TP9 () +V POSITIVE UNREGULATED VOLTAGE	P9	LT-I DEMODULATOR SPAN ADJUST
	90-N.C.	TP10 O +E POSITIVE REGULATED VOLTAGE	PIO	LT-I DEMODULATOR ZERO ADJUST
220 VAC POWER HOOKUP	100 N.C.	TPI I Q -E NEGATIVE REGULATED VOLTAGE	PII	LT-1 EXCITATION FREQUENCY ADJUST
JI	4	TP12 O - V NEGATIVE UNREGULATED VOLTAGE	P12	LT-1 EXCITATION SYMMETRY ADJUSTMENT
220 VAC POWER INPUT		TP13 O LT-1 SECONDARY SIGNAL	PI3	LT-1 EXCITATION SYMMETRY ADJUSTMENT
2 UMPER TO 11-3	I O INTEGRATOR RESET (GROUND TO ACTIVATE) SIGNAL	TP14 O LT-1 DEMODULATED SIGNAL	PI4	LT-1 EXCITATION AMPLITUDE ADJUST
3 () JUMPER TO JI-2	2 HINTEGRATOR RESET (+5 TO + 15 VDC TO ACTIVATE) SIGNAL	TP15 O LT-1 EXCITATION SIGNAL (+)	P15	LT-2 DEMODULATOR SPAN ADJUST
4 220 VAC POWER INPUT	3 - + V POSITIVE UNREGULATED VOLTAGE	TP16 () LT-1 EXCITATION SIGNAL (-)	PI6	LT-2 DEMODULATOR ZERO ADJUST
5 - CHASSIS GROUND	s() DC COMMON (GROUND)	TP17 © LT-2 SECONDARY SIGNAL	PI7	LT-2 EXCITATION FREQUENCY ADJUST
	6	TP18 🔘 LT-2 DEMODULATED SIGNAL	P18	LT-2 EXCITATION SYMMETRY ADJUSTMENT
	7 - V NEGATIVE UNREGULATED VOLTAGE	TP19 O LT-2 EXCITATION SIGNAL (+)	P19	LT-2 EXCITATION SYMMETRY ADJUSTMENT
	8 - MONITOR LT-2 SIGNAL (+) CURRENT LOOP OUTPUT	TP20 O LT-2 EXCITATION SIGNAL (-)	P20	LT-2 EXCITATION AMPLITUDE ADJUST
	9 - MONITOR LT-2 SIGNAL (-) CURRENT LOOP OUTPUT	TP21 O COMMAND VOLTAGE SIGNAL		COMMAND TRIM ADJUST
	100N.C.	TP22 O SELECTED FEEDBACK VOLTAGE SIGNAL	P22	COMMAND BIAS ADJUST
J2		TP23 O DC COMMON (GROUND)		
I C LT-I SECONDARY SIGNAL (-) VOLTAG				
2 LT-I SECONDARY SIGNAL (+) VOLTA 3 - LT-I EXCITATION SIGNAL (+) VOLTA				JUMPER DESCRIPTION
4() - LT-I EXCITATION SIGNAL (-) VOLTAG		1	JUMPER	DESCRIPTION
5 LT-2 SECONDARY SIGNAL (-) VOLTAG			IUMPRI	PROPORTIONAL COMPENSATION SIGNAL SELECT
6 LT-2 SECONDARY SIGNAL (+) VOLTA			IUMPR2	INTEGRAL COMPENSATION SIGNAL SELECT
7 - LT-2 EXCITATION SIGNAL (+) VOLTAGE INPUT		JUMPR3	DIFFERENTIAL COMPENSATION SIGNAL SELECT	
8 — LT-2 EXCITATION SIGNAL (-) VOLTAGE INPUT		·	JUMPR4	LT-2 DISABLE SELECT
9 - COMMAND SIGNAL (-) CURRENT LOOP INPUT			JUMPR5	LT-I DISABLE SELECT
IO COMMAND SIGNAL (+) CURRENT L	OOP INPUT	l		

MOOG SERVO DRIVELVDT CALIBRATION AND SET-UP INSTRUCTIONS

Bench Top Set-Up

- Adjust Pot (PI- Proportional Gain) Full CW
- · Set Jumpers as follows for calibration only:
 - IMPI OFF
 - JMP2 OFF
 - IMP3 OFF
 - IMP4
 - OFF JMP5 OFF

Initial Power-Up Check

- Verify Positive (+) Regulated Voltage to +I5Vdc at Test Point TP-10: if NOT adiust P6
- Verify Negative (-) Regulated Voltage to -15Vdc at Test Point TP-11: If NOT adjust P7
- Connect a DVM between TP-8 and TP-23; Then adjust Pot P8 (Null Bias) until voltage between Test Points is 'Zero'
- Connect Field Wiring and Loop; Check all connections / set-up configuration before reapplying power to the card (use connection diagram supplied with any modifications)

Note-I

- All signals except LVDT excitation signals are referenced to TP-23 (DC Common)
- LVDT Excitation Signals are referenced between TP-I5/TP-16 for LT-1 and TP-19/TP-20 for LT-2

Note-2

- In order to be able to calibrate the Moog Servo Drive Card, it is necessary to be able to 'stroke' the valve from 'FULL CLOSED' position to 'FULL **OPEN'** position
- This is done by increasing the Null Bias current (CCW on P8) until valve Is 'FULL OPEN'
- The valve is then 'closed' by decreasing the Null Bias current (CW on P8)
- Use Dial Indicator to measure Full Stroke displacement

LVDT Signal Conditioning Calibration

- Adjust PII to set LVDT-I Excitation Frequency to 2.8KHz. Measure freq between TP-15/16.
- Adjust PI4 to set LVDT-1 Excitation Amplitude to 7Vrms between TP-15/16
- Adjust PI7 to set LVDT-2 Excitation Frequency to 3.2KHz. Measure freq between TP-15/16.
- Adjust P20 to set LVDT-2 Excitation Amplitude to 7Vrms between TP-19/20

Mechanical LVDT Adjustments

Set Gas Valve at 0% stroke

- Loosen 'locknut' on the LVDT and adjust the position core to obtain LVDT feedback 'rms' voltage of 0.7Vrms for the 0% position (Zero Stroke reference then tighten 'locknut')
- 0.7Vrms is measured between [2-1/]2-2 for LVDT-1 and |2-5/|2-6 for LVDT-2 (if present)
- Repeat for other valve LVDT's if applicable

Demodulator 'Zero' Calibration with LVDT's Fully Retracted

- Adjust P10 for +2Vdc signal @ TP-14
- Adjust P16 for +2Vdc signal @ TP-18

Demodulator 'Span' Calibration with LVDT's Fully Extended

- Adjust P9 for +I0Vdc signal @TP-14
- Adjust P15 for +I0Vdc signal @ TP-18

Repeat Steps in "Mechanical LVDT Adjustments" Section

· Multiple iterations may be required

Command Signal Conversion Calibration

- Apply 4mA Command Signal between J2-10 & J2-9. Adjust P22 for +2Vdc @ TP-21.
- Apply 20mA Command Signal between J2-10 & J2-9. Adjust P21 for +10Vdc @ TP-21.

Null Bias Current Calibration

- Slowly 'increase' the Null Bias (P8) until the valve starts to 'open'.
- After reaching approximately 50% of stroke, adjust the Null Bias Pot (P8) so as to keep the valve fixed in this position.

Proportional Gain Adjustment

- Place JMP1 in the 'ON' position Adjust Proportional Gain Pot (P1) to produce a 'smooth' response without 'overshoot' using a step input Command signal
- · Set for 'stable' operation of valve

Final Calibration Adjustment

- Apply 4mA Command Signal (if necessary). Adjust P22 Command Bias Signal for valve Full 'closed'.
- · Apply 20mA Command Signal (if necessary). Adjust P21 Command Trim for valve Full 'open'.
- · Repeat above calibration steps for 4-20mA Command Signal. Multiple iterations may be req'd.

NOTE:

Anytime the Proportional Gain is adjusted, the "Final Calibration Procedure" shown above MUST be repeated!

TEST POINT DESCRIPTION

TEST POINT	FUNCTIONAL DESCRIPTION	RANGE UNITS
TP-I	ERROR SIGNAL (COMMAND SIGNAL HIGH SELECT FEEDBACK)	+10/-10 VDC
TP-2	PROPORTIONAL COMPENSATION SIGNAL	+10/-10 VDC
TP-3	NOT USED	
TP-4	SERVO VALVE CURRENT VOLTAGE DRIVE SIGNAL	+10/-10 VDC
TP-5	SERVO VALVE CURRENT RETURN SENSE SIGNAL	0-80 MVDC
TP-6	NOT USED	
TP-7	SUMMED COMPENSATION SIGNAL (TP-2 + TP-8)	+10/-10 VDC
TP-8	BIAS POT MONITOR SIGNAL (OUTPUT WITH ZERO ERROR)	+15/-15 VDC
TP-9	NOT USED	
TP-10	+E POSITIVE REGULATED VOLTAGE	+15VDC
TP-11	-E NEGATIVE REGULATED VOLTAGE	-15 VDC
TP-12	NOT USED	
TP-13	LT-I FEEDBACK SIGNAL	0.7-3.5 VRMS
TP-14	LT-I DEMODULATED SIGNAL	2-10 VDC
TP-15	LT-1 EXCITATION SIGNAL (+)	7VRMS
TP-16	LT-1 EXCITATION SIGNAL (-)	7VRMS
TP-17	LT-2 FEEDBACK SIGNAL	0.7-3.5VRMS
TP-18	LT-2 DEMODULATED SIGNAL	2-10 VDC
TP-19	LT-2 EXCITATION SIGNAL (+)	7VRMS
TP-20	LT-2 EXCITATION SIGNAL (-)	7VRMS
TP-21	COMMAND VOLTAGE SIGNAL	2-10 VDC
TP-22	HIGH SELECT FEEDBACK SIGNAL	2-10VDC
TP-23	DC COMMON (GROUND)	0VDC

POTENTIOMETER DESCRIPTION

PI PROPORTIONAL GAIN	CW⇒
P2 NOT USED	
P3 NOT USED	
P4 NOT USED	
P5 CURRENT LIMIT ADJUST	CW ⇒
P6 POSITIVE REGULATOR (+15V) ADJUST	CW ⇒
P7 NEGATIVE REGULATOR (-15V) ADJUST	CW ⇒
P8 BIAS ADJUST (OUTPUT WITH NO ERROR)	CCW ⇒
P9 LT-I DEMODULATOR SPAN ADJUST	CCW ⇒
P10 LT-1 DEMODULATOR ZERO ADJUST	CW ⇒
PI I LT-I EXCITATION FREQUENCY ADJUST	CW ⇒
P12 LT-1 EXCITATION SYMMETRY (FACTORY SET-DO NOT ADJUST)	
P13 LT-1 EXCITATION SYMMETRY (FACTORY SET - DO NOT ADJUST)	
P14 LT-1 EXCITATION AMPLITUDE ADJUST	$CCW \Rightarrow$
P15 LT-2 DEMODULATOR SPAN ADJUST	$CCW \Rightarrow$
P16 LT-2 DEMODULATOR ZERO ADJUST	$CW \Rightarrow$
P17 LT-2 EXCITATION FREQUENCY	$CCW \Rightarrow$
P18 LT-2 EXCITATION SYMMETRY (FACTORY SET-DO NOT ADJUST)	
PI9 LT-2 EXCITATION SYMMETRY (FACTORY SET-DO NOT ADJUST)	
P20 LT-2 EXCITATION AMPLITUDE ADJUST	$CCW \Rightarrow$
P21 COMMAND TRIM ADJUST	⇔CW
P22 COMMAND BIAS ADJUST	$CW \Rightarrow$

NOTE:

Set-up instructions outlined are for 'specific' GE gas and steam turbine applications. Other adjustments and procedures may be needed as required by the given application. Consult factory as needed.

Industrial Controls Division Moog Inc., East Aurora, NY 14052-0018 Telephone: 716/655-3000 Fax: 716/655-1803 Toll Free: 1-800-272-MOOG