

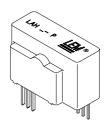
## **Current Transducer LAH 100-P**

For the electronic measurement of currents: DC, AC, pulsed ..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).





#### **Electrical data** Primary nominal r.m.s. current 100 Α I<sub>PN</sub> Primary current, measuring range 1) 0..160 $R_{M}$ Measuring resistance @ $T_{\Lambda} = 70^{\circ}C$ $T_{\Delta} = 85^{\circ}C$ with ± 12 V $@ \mathbf{I}_{PN}[\pm A_{DC}]$ 63 Ω @ I<sub>PN</sub> [A <sub>RMS</sub>] 2) 0 11 0 5 Ω 20 120 45 Ω with ± 15 V @ I<sub>PN</sub> [± A<sub>DC</sub>] 114 @ I<sub>PN</sub> [A <sub>RMS</sub>] 2) 20 51 45 45 Ω @ $I_p < I_{pN}^{3)}$ 50 Secondary nominal r.m.s. current mΑ Conversion ratio 1:2000 Supply voltage (± 5 %) ± 12 .. 15 V Current consumption $10 (@ \pm 15 V) + I_s mA$ R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn 5 kV R.m.s. rated voltage 4) 600


| Accuracy - Dynamic performance data   |                                                                                |                                    |      |  |  |  |  |  |
|---------------------------------------|--------------------------------------------------------------------------------|------------------------------------|------|--|--|--|--|--|
| X                                     | Accuracy <sup>5)</sup> @ <b>I</b> <sub>PN</sub> , <b>T</b> <sub>A</sub> = 25°C | ± 0.25                             | %    |  |  |  |  |  |
| $\mathbf{e}_{\!\scriptscriptstyle L}$ | Linearity                                                                      | < 0.15                             | %    |  |  |  |  |  |
|                                       |                                                                                | Typ   Max<br> ± 0.15               |      |  |  |  |  |  |
| I <sub>o</sub>                        | Offset current @ $T_A = 25^{\circ}C$                                           | ± 0.15                             | mΑ   |  |  |  |  |  |
| I <sub>OM</sub>                       | Residual current @ $I_p = 0$ , after an overload of 5                          | $x  _{PN} = 0.10 \pm 0.15$         | mΑ   |  |  |  |  |  |
| $I_{OT}$                              | Thermal drift of $I_{\odot}$ 0°C + 7                                           | $'0^{\circ}$ C $\pm 0.10 \pm 0.40$ | mΑ   |  |  |  |  |  |
|                                       | - 25°C + 8                                                                     | $\pm 0.10 \pm 0.50$                | mΑ   |  |  |  |  |  |
| <b>t</b> ra                           | Reaction time @ 10 % of I <sub>PN</sub>                                        | < 200                              | ns   |  |  |  |  |  |
| t,                                    | Response time 6 @ 90 % of I <sub>PN</sub>                                      | < 500                              | ns   |  |  |  |  |  |
| di/dt                                 | di/dt accurately followed                                                      | > 200                              | A/µs |  |  |  |  |  |
| f                                     | Frequency bandwidth (- 1 dB)                                                   | DC 200                             | kHz  |  |  |  |  |  |

| G              | General data                  |                              |           |    |  |  |  |  |  |
|----------------|-------------------------------|------------------------------|-----------|----|--|--|--|--|--|
| T <sub>Δ</sub> | Ambient operating temperature |                              | - 25 + 85 | °C |  |  |  |  |  |
| <b>T</b> s     | Ambient storage temperature   |                              | - 40 + 90 | °C |  |  |  |  |  |
| $\ddot{R_s}$   | Secondary coil resistance     | @ $T_{\Delta} = 70^{\circ}C$ | 115       | Ω  |  |  |  |  |  |
| Ü              |                               | @ $T_A = 85^{\circ}C$        | 121       | Ω  |  |  |  |  |  |
| m              | Mass                          |                              | 24        | g  |  |  |  |  |  |
|                | Standards 7)                  |                              | EN 50178  |    |  |  |  |  |  |

Notes : 1)For 10 s, with  $R_M \le 25 \Omega$  ( $V_C = \pm 15 V$ ) - 2) 50 Hz Sinusoidal -

- 3) The measuring resistance  $\mathbf{R}_{\mathrm{M}\,\mathrm{min}}$  may be lower (see "LAH Technical Information" leaflet) 4) Pollution class 2, cat. III 5) Without  $\mathbf{I}_{\mathrm{O}}$  &  $\mathbf{I}_{\mathrm{OM}}$  -
- 6) With a di/dt of 100 A/µs 7) A list of corresponding tests is available.

# $I_{PN} = 100 \text{ A}$

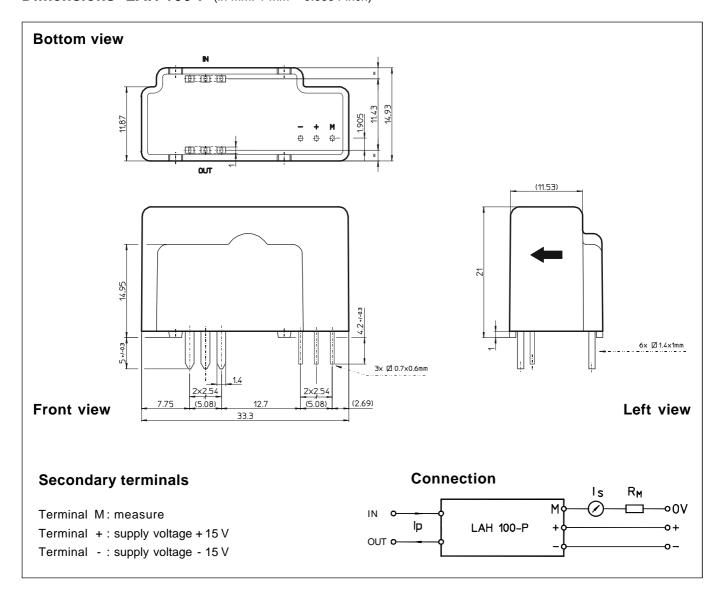


#### **Features**

- Closed loop (compensated) current transducer using the Hall effect
- Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

#### **Advantages**

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


#### **Applications**

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

991027/3



### **Dimensions LAH 100-P** (in mm. 1 mm = 0.0394 inch)



| Number     | Primary             | current                   | Nominal              | Turns          | Primary                        | Primary insertion          |  |
|------------|---------------------|---------------------------|----------------------|----------------|--------------------------------|----------------------------|--|
| of primary | nominal             | maximum                   | output current       | ratio          | resistance                     | inductance                 |  |
| turns      | I <sub>PN</sub> [A] | <b>I</b> <sub>P</sub> [A] | I <sub>SN</sub> [mA] | K <sub>N</sub> | $\mathbf{R}_{P}$ [ $m\Omega$ ] | <b>L</b> <sub>P</sub> [μH] |  |
| 1          | 100                 | 160                       | 50                   | 1 : 2000       | 0.08                           | 0.007                      |  |

#### **Mechanical characteristics**

- General tolerance
- Fastening & connection of primary Recommended PCB hole
- Fastening & connection of secondary Recommended PCB hole
- ± 0.2 mm
- 6 pins 1.4 x 1 mm
- 2 mm
- 3 pins 0.7 x 0.6 mm 1.2 mm

#### **Remarks**

- $\bullet$   $~{\rm I_s}$  is positive when  ${\rm I_p}$  flows from terminals "IN" to terminals "OUT".
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.