

Intel NetStructure[®] MPCBL0001 High Performance Single Board Computer

Technical Product Specification

October 2007

Order Number: 273817-011

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL[®] PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FINESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel NetStructure[®] MPCBL0001 High Performance Single Board Computer may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

AlertVIEW, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Connect, CT Media, Dialogic, DM3, EtherExpress, ETOX, FlashFile, 1386, 1486, 1960, iCOMP, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Create & Share, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, LANDesk, LanRover, MCS, MMX, MMX logo, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, PDCharm, Pentium II Xeon, Pentium II Xeon, Performance at Your Command, RemoteExpress, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside, TokenExpress, Trillium, VoiceBrick, Vtune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

t Hyper Threading Technology (HT Technology) requires a computer system with an Intel® Pentium® 4 processor supporting HT Technology and an HT Technology-enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. See http://www.intel.com/info/hyperthreading/ for more information including details on which processors support HT Technology.

*Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation, 2007. All rights reserved.

2

Contents

1.0	Intro		۱	
	1.1		ent Organization	
	1.2	Glossar	ГУ	13
2.0	Featu	ires Ov	erview	15
	2.1	Applica	tion	15
	2.2		nal Description	15
		2.2.1	Low Voltage Intel [®] Xeon [™] Processor CPU-0 (U35), CPU-1 (U36)	17
		2.2.2	Chipset	17
			2.2.2.1 Intel [®] E7501 Memory Controller Hub (U22)	18
			2.2.2.2 Intel [®] 82801CA I/O Controller Hub 3 (U7)	19
			2.2.2.3 Intel [®] 82870P2 64-bit PCI/PCI-X Controller Hub 2 (U14, U24)	
		2.2.3	Memory (J8, J9, J10, J11)	
			2.2.3.1 Memory Ordering Rule for the MCH	
		2.2.4	1/0	
			2.2.4.1 Super I/O (U28)	
			2.2.4.2Real-Time Clock2.2.4.3Timer0 Capabilities	
			2.2.4.3 Gigabit Ethernet (U13)	
			2.2.4.5 Fibre Channel* (U23) - Optional	
		2.2.5	PMC Connector (J25, J26, J27)	
		2.2.6	Firmware Hub (U30, U33)	
			2.2.6.1 FWH 0 (Main BIOS)	
			2.2.6.2 FWH 1 (Backup/Recovery BIOS)	25
			2.2.6.3 Flash ROM Backup Mechanism	
		2.2.7	Onboard Power Supplies	
			2.2.7.1 Power Feed Fuses	
			2.2.7.2 ORing Diodes and Circuit Breaker Protection	25
			2.2.7.3 -48 V to +12 V Converter 2.2.7.4 -48 V to +5 V/+3.3 V Converter	
			2.2.7.4 -48 V to +5 V/+3.3 V converter	
			2.2.7.6 IPMB Standby Power	
3.0	Hard	ware M	anagement Overview	
3.0	3.1		Data Record (SDR)	
	3.2		n Event Log (SEL)	
	5.2	3.2.1	Temperature and Voltage Sensors	
		3.2.2	Processor Events	
		3.2.3	DIMM Memory Events	
		3.2.4	System Firmware Progress (POST Error)	39
		3.2.5	Critical Interrupts	
		3.2.6	System ACPI Power State	
		3.2.7	IPMB Link Sensor	
		3.2.8	FRU Hot Swap	
		3.2.9	CPU Failure Detection	41
		3.2.10	Port 80h POST Codes	42
	3.3	Field Re	eplaceable Unit (FRU) Information	43
	3.4		ng	
	3.5		irmware Code	
	3.6		irmware Upgrade Procedure	
		3.6.1	IPMC Firmware Upgrade Using KCS Interface	
		3.6.2	IPMC Firmware Upgrade via the IPMB Interface (RMCP)	
			3.6.2.1 Updating MPCBL0001 Firmware	46

	3.7	OEM IP	MI Commands	
		3.7.1	Reset BIOS Flash Type	46
		3.7.2	Set Fibre Channel Port Selection	47
		3.7.3	Get Fibre Channel Port Selection	47
		3.7.4	Get HW Fibre Channel Port Selection	48
		3.7.5	Set Control State	
		3.7.6	Get Control State	
		3.7.7	Get Port80 Data	
	3.8		s Identifier Table	
	3.9		ap Process	
	5.7	3.9.1	Hot-Swap LED (DS10)	
		3.9.1	Ejector Mechanism	
	3.10		pts and Error Reporting	
	3.10		Device Interrupts	
			Error Reporting	
	3.11			
	3.11			
	2 1 2		System States and Power States	
	3.12		ypes	
			Reset Logic	
			Hard Reset Request	
			Soft Reset Request	
			Warm Boot	
			Cold Boot	
			Power Good	
	3.13		log Timers (WDTs)	
			WDT #1	
			WDT #2	
			WDT #3	
	3.14		atus	
			Health LED	
			OOS (Out Of Service) LED	
			Hot-Swap LED	
		3.14.4	IDE Drive Activity LED	62
		3.14.5	User Programmable LEDs	63
		3.14.6	Network Link/Speed LEDs	64
		3.14.7	Ethernet Controller Port State LEDs	64
		3.14.8	Fibre Channel Port State LEDs	65
		3.14.9	Setting the Default Color for the OOS and Health LEDs	65
	3.15	FRU Pa	yload Control	66
		3.15.1	Cold Reset	66
		3.15.2	Warm Reset	66
			Graceful Reboot	
		3.15.4	Diagnostic Interrupt	67
	3.16		Port Buffering Overview	
			Using Serial Port Buffering	
			3.16.1.1 Configuring the Serial Port	
			3.16.1.2 Configuration of Buffering/Filtering	
			3.16.1.3 Reading Buffered Data	72
			3.16.1.4 Examples	73
4.0	Conn	octore	· · · · · · · · · · · · · · · · · · ·	76
.				
	4.1	•	ane Connectors Power Distribution Connector (Zone 1)	
		4.1.1		
		4.1.2	Data Transport Connector (Zone 2)	
		4.1.3	Alignment Blocks	გვ

	4.2	Front Panel Connectors	
		4.2.1 USB Connector (J12)	. 83
		4.2.2 Serial Port Connector (J17)	. 84
		4.2.3 Fibre Channel Small Form-Factor Pluggable (SFP) Receptacle (J34 and J35)	. 86
		4.2.4 Fibre Channel SFP Optical Transceiver Module	
		4.2.5 PMC Connectors (J25, J26, J27)	
	4.3	On-board Connectors	
		4.3.1 IDE Connector (J24)	
5.0	Addro	essing	
	5.1	Configuration Registers	
		5.1.1 Configuration Address Register MCH CONFIG_ADDRESS	
		5.1.2 Configuration Data Register MCH CONFIG_ADDRESS	. 91
	5.2	I/O Address Assignments	. 92
	5.3	Memory Map.	. 92
	5.4	IPMC Addresses	. 94
6.0	S nool	fications	OF
6.0	-		
	6.1	Mechanical Specifications	
		6.1.1 Board Outline	
		6.1.2 Backing Plate	
		6.1.3 Component Height	
	6.2	Environmental Specifications	
	6.3	Reliability Specifications	
		6.3.1 Mean Time Between Failure (MTBF) Specifications	
		6.3.1.1 Environmental Assumptions	
		6.3.1.2 General Assumptions	
		6.3.1.3 General Notes	
		6.3.2 Power Consumption	
		6.3.3 Cooling Requirements	
	6.4	Board Layer Specifications	
	6.5	Weight	
7.0	BIOS	Features	106
	7.1	Introduction	106
	7.2	BIOS Flash Memory Organization	106
	7.3	Complementary Metal-Oxide Semiconductor (CMOS)	
		7.3.1 Copying and Saving CMOS Settings	
	7.4	Redundant BIOS Functionality	
	7.5	System Management BIOS (SMBIOS)	
	7.6	Legacy USB Support	
	7.7	BIOS Updates	
		7.7.1 Language Support	
	7.8	Recovering BIOS Data	
	7.9	Boot Options	
		7.9.1 CD-ROM and Network Boot	
		7.9.2 Booting without Attached Devices	
	7.10	Fast Booting Systems	
		7.10.1 Quick Boot	
	7.11	BIOS Security Features	
	7.12	Remote Access Configuration	
		-	
8.0		Setup	
	8.1	Introduction	
	8.2	Main Menu	
	8.3	Advanced Menu	
		8.3.1 CPU Configuration Submenu	114

		8.3.2	IDE Configuration Submenu		
			8.3.2.1 Primary IDE Master/Slave Submenu	1	16
		8.3.3	Floppy Configuration Submenu	1	17
		8.3.4	SuperIO Configuration Submenu	1	19
		8.3.5	ACPI Configuration Submenu	12	20
			8.3.5.1 Advanced ACPI Configuration Submenu	1:	21
		8.3.6	System Management Configuration Submenu	1:	22
		8.3.7	Event Logging Configuration Submenu		
		8.3.8	Fibre Channel Routing (PICMG) Configuration Submenu		
		8.3.9	Remote Access Configuration Submenu		
		8.3.10	USB Configuration Submenu		
			8.3.10.1 USB Mass Storage Device Configuration		
		8.3.11	PCI Configuration		
	8.4		enu		
	0.1	8.4.1	Boot Settings Configuration Submenu		
		8.4.2	Boot Device Priority Submenu		
		8.4.3	Hard Disk Drive Submenu		
		8.4.4	OS Load Timeout Timer		
	8.5		y Menu		
	8.6		enu		
9.0	Error	Messag	ges	1:	32
	9.1		rror Messages		
	9.2	Port 80	h POST Codes	1:	33
10.0	0		e Unit		
10.0	•	•			
	10.1		onfiguration		
	10.2		mage Updates		
	10.3		ures to Copy and Save BIOS (Including CMOS Settings)		
			Copying BIOS.bin from the SBC		
			Saving BIOS.bin to the SBC		
			Error Messages		
	10.4		۶		
	10.5	Digital	Ground to Chassis Ground Connectivity	14	41
11 0	Serial	l Over I	_an (SOL)	1/	42
11.0	11.1		nces		
	11.2		chitecture		
		11.2.1	Architectural Components		
			11.2.1.1 IPMC 11.2.1.2 Ethernet Controller		
		11 2 2			
	11 0		BIOS		
	11.3		of Operation		
			Front Panel Serial Port		
			Serial Over LAN		
	11.4		5		
	11.5		ted Usage Model		
			Configuring the Blade for SOL		
	11.6		tion and Configuration		
			SOL Configuration Reference Script (reference_cfg)		
			SOL Client (ipmitool)		
			BIOS and OS Configuration		
	11.7		ng the Script (reference_cfg)		
			Default Behavior		
		11.7.2	SOL User Information	14	49
		1173	LAN Parameters	1	10

	11.8	 11.7.4 SOL Parameters 11.7.5 Channel Parameters 11.7.6 Command Line Options	150 150 151
12.0	Maint	tenance	
	12.1 12.2	Supervision	
	12.2	Diagnostics 12.2.1 In-Target Probe (ITP)	
13.0	Therr	nals	154
14.0	Comp	oonent Technology	155
15.0	Warr	anty Information	156
	15.1 15.2	Intel NetStructure® Compute Boards and Platform Products Limited Warranty Returning a Defective Product (RMA)	156
	15.3	For the Americas	157
16.0	Custo	omer Support	159
	16.1	Customer Support	
	16.2 16.3	Technical Support and Return for Service Assistance	
	16.4	Product Code Summary	
17.0	Certif	fications	160
18.0	Agen	cy Information—Class A	
	18.1 18.2	North America (FCC Class A) Canada – Industry Canada (ICES-003 Class A) (English and French-translated)	
	18.2 18.3	Safety Instructions (English and French-translated)	161
		18.3.1 English 18.3.2 French	
	18.4	Taiwan Class A Warning Statement	162
	18.5 18.6	Japan VCCI Class A	
	18.0	Korean Class A Australia, New Zealand	
19.0	Agen	cy Information—Class B	164
	19.1	North America (FCC Class B)	
	19.2 19 3	Canada – Industry Canada (ICES-003 Class B) (English and French-translated) Safety Instructions (English and French-translated)	
	17.0	19.3.1 English	
	19.4	19.3.2 French Japan VCCI Class B	
		Korean Class B	
	19.6	Australia, New Zealand	166
20.0		y Warnings	
	20.1 20.2	Mesures de Sécurité Sicherheitshinweise	
	20.2	Norme di Sicurezza	172
	20.4 20.5	Instrucciones de Seguridad Chinese Safety Warning	
		ence Documents	

B I	ist of Supported Commands (I	PMI v1.5 and PICMG 3.0)	
-----	------------------------------	-------------------------	--

Tables

1	P64H2 Interfaces	20
2	Hardware Sensors	
3	SEL Events Supported by the MPCBL0001 SBC	31
4	Sensor Thresholds for IPMC Firmware 1.0	34
5	Sensor Thresholds for IPMC Firmware 1.2	36
6	Sensor Thresholds for IPMC Firmware 1.7 and Above	37
7	Sensor Thresholds for IPMC Firmware 1.14 and Above	38
8	PCI Mapping for Hardware Component Subsystem	40
9	CPU Failure Behavior	42
10	FRU Multirecord Data for CPU/RAM/PMC/BIOS Version Information	43
11	PMC Data	
12	Link Descriptors for E-Keying	44
13	Reset BIOS Flash Type	
14	Set Fibre Channel Port Selection	
15	Get Fibre Channel Port Selection	
16	Get HW Fibre Channel Port Selection	
17	Set Control State	
18	Get Control State	
19	Get Port80 Data	
20	Controls Identifier Table	
21	Hot-Swap LED (DS11)	
22	Interrupt Assignments	
23	Power States and Targeted System Power	
24	Reset Request	
25	Reset Actions	
26	Health LED	62
27	OOS LED (DS9)	
28	IDE Drive Activity LED	
29	User Programmable LEDs	
30	GPIO Pin Connections	
31	Network Link LEDs	
32	Network Speed LEDs	
33	Ethernet Controller Port State LED	
34	Fibre Channel Port State LED (DS2, DS3)	
35	CMM Commands for FRU Control Options	
36	Returned Values from the Get Message Command	
37	Escape Sequences Not Buffered with Filter Enabled	
38	Set Serial/Modem Configuration Command: Net Function=0Ch, Command=10h	
39	Get Serial/Modem Configuration Command: Net Function=0Ch, Command=11h	
40	Set Serial Buffer Configuration Command: Net Function=30h, Command=32h	
41	Get Serial Buffer Configuration Command: NetFn=30h, Cmd=31h	
42	Get Serial Buffer Command: Net Function=30h, Command=30h	
43	LED Descriptions	
44	Connector Assignments	
45	Power Distribution Connector (Zone 1) P10 Pin Assignments	
46	Data Transport Connector (Zone 2) P23 Pin Assignments	
47	USB Connector (J12) Pin Assignments	
48	Serial Port Connector (J17) Pin Assignments	
49	Fibre Channel SFP Copper Transceiver Module (AMP, J34, J35)	
50	Fibre Channel SFP Pin Assignments	

51	PMC Connector Pin Assignments - 32 Bit	. 88
52	PMC Connector Pin Assignments - 64 Bit	. 88
53	IDE Connector Pin Assignments	
54	Configuration Address Register Bit Assignments	. 91
55	Configuration Data Register Bit Assignments	
56	I/O Address Cross-References	
57	Метогу Мар	
58	SMBus Addresses	
59	Environmental Specifications	
60	Reliability Estimate Data	
61	Total Measured Power	
62	Supervisor and User Password Functions	
63	Function Key Escape Code Equivalents	
64	BIOS Setup Program Menu Bar	
65	BIOS Setup Program Function Keys	
66	Main Menu	
67	Advanced Menu	
68	CPU Configuration Submenu	
69	IDE Configuration Submenu	
70	Primary IDE Master/Slave Submenu	
70	Floppy Configuration Submenu	
72	SuperIO Configuration Submenu	
73 74	ACPI Configuration Submenu	
74	Advanced ACPI Configuration Submenu	
75	System Management Configuration Submenu	
76	Event Logging Configuration Submenu	
77	Fibre Channel Routing (PICMG) Submenu	
78	Remote Access Configuration Submenu	
79	USB Configuration Submenu	
80	USB Mass Storage Device Configuration	
81	PCI Configuration Submenu	
82	Boot Menu	
83	Boot Settings Configuration Submenu	
84	Boot Device Priority Submenu.	
85	Hard Disk Drive Priority Submenu	
86	OS Load Timeout Timer Submenu	
87	Security Menu	
88	Exit Menu	
89	BIOS Error Messages	
90	Bootblock Initialization Code Checkpoints	
91	POST Code Checkpoints	
93	ACPI Runtime Checkpoints	
92	DIM Code Checkpoints	
94	BIOS Beep Codes	
95	Error Message	
96	J18 Pin Assignments	140
97	J16 Jumper Assignments	
98	J37 Jumper Assignments	
99	J40 Jumper Assignments	
	Serial Console Redirection over Front Panel and LAN	
	IPMI V2.0 Set LAN Configuration Parameters Command Settings	
	SOL Configuration Reference Script Command-line Options	
	Hardware Monitoring Components	
	Main Components	
105	MPCBL0001 Product Code Summary	159

106 IPMI 1.5 Supported Commands	180
107 PICMG 3.0 IPMI Supported Commands	183
108 IPMI 2.0 Supported Commands	183

Figures

1	Block Diagram
2	Memory Ordering
3	Hardware Management Block Diagram27
4	IPMC Firmware Code Process45
5	Upgrade via Remote Management Node46
6	Hot-Swap Process
7	Interrupt Signals53
8	Power Good Map58
9	Reset Chain
10	Watchdog Timers60
11	Flow Diagram for Graceful Reboot Command67
12	Diagnostic Interrupt Command Implementation
13	MPCBL0001 SBC Connector Locations
14	MPCBL0001NXX SBC Front Panel
15	MPCBL0001FXX SBC Front Panel79
16	Power Distribution Connector (Zone 1) P1081
17	Data Transport Connector (Zone 2) J2382
18	Serial Port Connector (J17)
19	DB9 to RJ-45 Pin Translation85
20	Component Layout (#1)96
21	Component Layout (#2)97
22	Front Panel Dimensions – FC SKU (PMC and Connectors)
23	Front Panel Dimensions – FC SKU (Screws and LEDs)
24	Front Panel Dimensions – Non FC SKU (PMC and Connectors)
25	Front Panel Dimensions – Non-FC SKU (Screws and LED)
26	Low Voltage Intel [®] Xeon™ Processor Heatsink
27	Jumper/Connector Locations
28	Connecting Digital Ground to Chassis Ground
29	SOL Block Diagram
30	Reference Script Running on Remote Node, Communicating over LAN
31	Power vs. Flow Rate154

Revision History

Date	Revision	Description
October 2007	011	Updated Table 2 Hardware Sensors. Updated Table 3 SEL Events Supported by MPCBL001 SBC. Updated Table 12 Link Descriptors for E-Keying. Updated Section 3.12.3 Soft Reset Request. Updated Section 11.6.2 SOL Client. Rebranded to correct template.
May 2006	010	Added information related to User Programmable LED and Lead Free information. Added chapter with Serial Over Lan (SOL) information. Added new table (108) listing IPMI 2.0 supported commands. Updated Tables 2, 3, 78, 104 and 106. Added new section (3.14.9) about setting the default color for the OOS and health LEDs. Added Appendix C which contains Material Declaration Data Sheets.
September 2005	009	Minor change to Table 10 and Table 11.
September 2005	008	Added serial port buffering section, modified IPMC firmware update procedures.
July 2005	007	Added Table 7. Modified tables 3, 9, 13, 14, and 53; Fig. 21; and Section 10.5.
April 2005	006	New text in sections 3.2.9, 6.5, 10.3.1, and tables 2, 3, and 6.
February 2005	005	New text, figures; added Section 18, "Agency Information-Class B".
November 2004	004	Changes to figures 12, 13; changes to table 2, 3, 48, 77 and 81; added example to Section 3.2.5.
June 2004	003	SRA Release - changed from release 002 to current.
January 2004	002	Pre-SRA Release.
October 2003	001	Initial public release of this document

1.0 Introduction

1.1 Document Organization

This document gives technical specifications related to the Intel NetStructure[®] MPCBL0001 High Performance Single Board Computer. The MPCBL0001 is designed following the standards of the Advanced Telecommunications Compute Architecture (AdvancedTCA*) Design Guide for high availability, switched network computing. This document is intended for support during system product development and while sustaining a product. It specifies the architecture, design requirements, external requirements, board functionality, and design limitations of the MPCBL0001 Single Board Computer.

The following summarizes the focus of each chapter in this document.

Chapter 1.0, "Introduction" gives an overview of the information contained in the Intel NetStructure[®] MPCBL0001 High Performance Single Board Computer Technical Product Specification as well as a glossary of acronyms and important terms.

Chapter 2.0, "Features Overview" introduces the key features of the MPCBL0001. It includes a functional block diagram and a brief description of each block.

Chapter 3.0, "Hardware Management Overview" provides a high-level overview related to IPMI implementation based on PICMG* 3.0 and IPMI v1.5 specifications in the MPCBL0001 SBC.

Chapter 4.0, "Connectors" includes an illustration of connector locations, connector descriptions, and pinout tables.

Chapter 5.0, "Addressing" summarizes the information you need to configure the MPCBL0001. Included are the PCI configuration map, Configuration Address register, Configuration Data register, I/O address assignments, memory map, and IPMC addresses.

Chapter 6.0, "Specifications" contains the mechanical, environmental, and reliability specifications for the MPCBL0001.

Chapter 7.0, "BIOS Features" provides an introduction to the Intel/AMI BIOS, and the System Management BIOS, stored in flash memory on the MPCBL0001.

Chapter 8.0, "BIOS Setup" describes the interactive menu system of the BIOS Setup program. The menu allows a user to configure the BIOS for a given system.

Chapter 9.0, "Error Messages" lists BIOS error messages, Port 80h POST codes, and bus initialization checkpoints, and provides a brief description of each.

Chapter 10.0, "Operating the Unit" provides specifics for configuring the MPCBL0001, including BIOS configuration and jumper settings.

Chapter 11.0, "Serial Over Lan (SOL)" describes the installation and configuration of SOL, aspecification for transmitting serial port data over an Ethernet connection, which allows viewing ofserial port data, thus providing a virtual remote terminal server for accessing a blade's serial port.

Chapter 12.0, "Maintenance" includes supervision and diagnostics information.

Chapter 13.0, "Thermals" contains a graph of pressure drop versus flow rate, illustrating the flow impedance of the slot.

Chapter 14.0, "Component Technology" lists the major components used on the MPCBL0001.

Chapter 15.0, "Warranty Information" provides warranty information for Intel NetStructure[®] products.

Chapter 16.0, "Customer Support" provides information on how to contact customer support.

Chapter 17.0, "Certifications" and Chapter 18.0, "Agency Information—Class A" document the regulatory requirements the MPCBL0001 is designed to meet.

Appendix A, "Reference Documents" provides a list of data sheets, standards, and specifications for the technology designed into the MPCBL0001.

Appendix B, "List of Supported Commands (IPMI v1.5 and PICMG 3.0)" provides lists of commands supported by IPMI v1.5 and PICMG Specification 3.0.

1.2 Glossary

For ease of use, numeric entries are listed first with alpha entries following. Acronyms and terms are then entered in their respective place.

ACPI	Advanced Configuration and Power Interface.
AdvancedTCA	Advanced Telecommunications Compute Architecture
BIOS	Basic Input/Output Subsystem. ROM code that initializes the computer and performs some basic functions.
Blade	An assembled PCB card that plugs into a chassis.
DIMM	Dual Inline Memory Module. Small card with memory on it used for MPCBL0001.
DMI	Desktop Management Interface
EEPROM	Electrically Erasable Programmable Read-Only Memory
Fabric Board	A board capable of moving packet data between Node Boards via the ports of the backplane. This is sometimes referred to as a switch.
Fabric Slot	A slot supporting a link port connection to/from each Node Slot and/or out of the chassis.
Hyper-Threading Techr	
	HT Technology allows a single (or dual) physical processor, to appear as two (or quad) logical processors to a HT Technology-aware operating system.
I ² C*	Inter-IC [Integrated Circuit]. 2-wire interface commonly used to carry management data.

IBA	Intel [®] Boot Agent. The Intel Boot Agent is a software product that allows your networked client computer to boot using a program code image supplied by a remote server.
IDE	Integrated Device Electronics. Common, low-cost disk interface.
IPMB	Intelligent Platform Management Bus. Physical 2-wire medium to carry IPMI.
IPMC	Intelligent Platform Management Controller. ASIC in baseboard responsible for low-level system management.
IPMI	Intelligent Platform Management Interface. Programming model for system management.
KCS	Keyboard Controller Style interface.
LPC Bus	Los Pin Count Bus. Legacy I/O bus that replaces ISA and X-bus. See the Low Pin Count (LPC) Interface Specification.
MTBF	Mean Time Between Failure. A reliability measure based on the probability of failure.
NEBS	National Equipment Building Standards. Telco standards for equipment emissions, thermal, shock, contaminants, and fire suppression requirements.
NMI	Non-Maskable Interrupt. Low-level PC interrupt.
Node Board	A board capable of providing and/or receiving packet data to/ from a Fabric Board via the ports of the networks. The term is used interchangeably with SBC.
MPCBL0001	Single or dual processor Single Board Computer with Fibre Channel*.
MPCBL0002	Single or dual processor Single Board Computer without Fibre Channel.
Node Slot	A slot supporting port connections to/from Fabric Slot(s). A Node slot is intended to accept a Node Board
Physical Port	A port that physically exists. It is supported by one of many physical (PHY) type components.
PMC	PCI Mezzanine Card. IEEE1386 standard for embedded PCI cards. They mount parallel to the SBC.
ROM	Read-Only Memory.
SBC	Single Board Computer. This term is used interchangeably with Node Board.
SEL	System Event Log. Action logged by management controller.
SFP	Small Form Factor Pluggable receptacle for the front panel Fibre Channel interfaces.
SMBus	System Management Bus. Similar to I ² C
SMI	System Management Interrupt. Low-level PC interrupt which can be initiated by chipset or management controller. Used to service IPMC or handle things like memory errors.
SMS, SMSC	Standard Microsystems Corporation*
USB	Universal Serial Bus. General-purpose peripheral interconnect, operating at 1-12 Mbps.

2.0 Features Overview

2.1 Application

The Advanced Telecommunications Compute Architecture (AdvancedTCA) standards define open architecture modular computing components for carrier-grade, communications network infrastructure. The goals of the standards are to enable blade-based modular platforms to be:

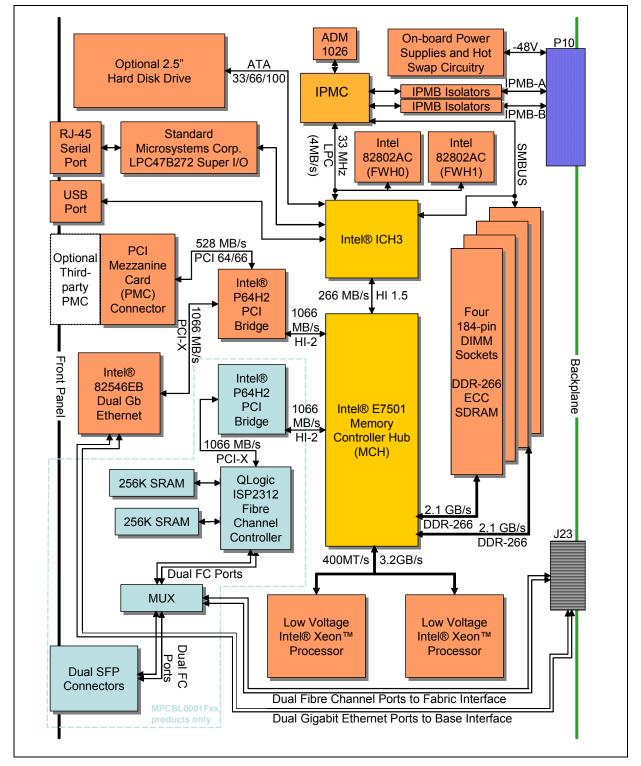
- cost effective
- high-density
- high-availability
- scalable

These systems use a fabric I/O network for connecting multiple, independent processor boards, I/O nodes (e.g., line cards), and I/O devices (e.g., storage subsystem).

The MPCBL0001 SBC is designed per the AdvancedTCA Design Guide for High Availability, Switched Network Computing. Bulk storage for the system is connected through optional dual Fibre Channel interfaces. The MPCBL0001FXX SBC includes a Fibre Channel controller. The MPCBL0001NXX SBC does not have the Fibre Channel controller.

2.2 Functional Description

This topic defines the architecture of the MPCBL0001 SBC through descriptions of functional blocks. Figure 1, "Block Diagram" on page 16 shows the functional blocks of the MPCBL0001 SBC. The MPCBL0001 SBC is a dual processor, hot-swappable SBC with backplane connections to dual Gigabit Ethernet star networks and dual Fibre Channel star arbitrated loops.


The SBC incorporates an Intelligent Platform Management Controller that monitors critical functions of the board, responds to commands from the shelf manager, and reports events.

Power is supplied to the MPCBL0001 SBC through two redundant -48 V power supply connections. Power for on-board hardware management circuitry is provided through a standby converter on the power mezzanine. This converter, along with all the other converters on the power mezzanine are fed by the diode OR'd -48 V supply from the backplane.

The SBC has provision for the addition of a PMC device and supports 32-bit and 64-bit transfers at 33 MHz and 66 MHz. The SBC also offers one USB and one service terminal interface. An overview of each block follows.

2.2.1 Low Voltage Intel[®] Xeon[™] Processor CPU-0 (U35), CPU-1 (U36)

The MPCBL0001 SBC supports up to two Low Voltage Intel[®] Xeon[™] processors (see Figure 20, "Component Layout (#1)" on page 96 for locations). The Low Voltage Xeon processor incorporates Intel[®] NetBurst[™] microarchitecture and a high-bandwidth Front-Side Bus, allowing performance levels that are significantly higher than previous generations of IA-32 family processors. The processors include the following features:

- 2.0 GHz with a 400 MHz system bus
- 512 Kbyte L2 cache
- Hyper-pipelined technology
- Advanced dynamic execution
- Execution trace cache
- Streaming SIMD (single instruction, multiple data) extensions 2
- Advanced transfer cache
- Enhanced floating point and multimedia engine
- Intel & OEM EEPROM and thermal sensor manageability features
- · Supports single and dual processor configurations
- Throttling enabled for protection against high temperatures

The Low Voltage Xeon processor host bus utilizes a split-transaction, deferred-reply protocol. The host bus uses source-synchronous transfer of address and data to improve throughput at the 100 or 133 MHz bus frequency (depending on processor model). Addresses are transferred at 2X the bus frequency while data is transferred at 4X the bus frequency, resulting in peak data transfer rates up to 3.2 or 4.3 GBytes/s.

In addition to the NetBurst microarchitecture, the Low Voltage Intel Xeon processor includes a groundbreaking technology called Hyper-Threading Technology[†] (HT Technology). HT Technology improves processor performance for multithreaded applications or multitasking environments by supporting multiple software threads on each processor.

Low Voltage Intel Xeon processors require their package case temperatures to be operated below an absolute maximum specification. If the chassis ambient temperature exceeds a level whereby the processor thermal cooling subsystem can no longer maintain the specified case temperature, the processors will automatically enter a mode called Thermal Monitor to reduce their case temperatures. Thermal Monitor controls the processor temperature by modulating the internal processor core clocks, thereby reducing internal power dissipation, and does not require any interaction by the Operating System or Application. Once the case temperatures have reached a safe operating level, the processor will return to its non-modulated operating frequency. See the Low Voltage Intel Xeon processor datasheet, referenced in Appendix A, "Reference Documents", for further details.

An optional ITP700 port connection is included to facilitate debug and BIOS/software development efforts. This JTAG connection to the processors utilizes voltage-signaling levels that are specific to the Low Voltage Xeon processor family. These levels must not be exceeded or processor damage may occur. Please refer to Intel document ITP700 Debug Port Design Guide, order number 249679-005 for additional information on the ITP connector pin definitions.

2.2.2 Chipset

The Intel[®] E7501 chipset consists of three major components:

• Intel[®] E7501 Memory Controller Hub (MCH)

- Intel[®] 82801CA I/O Controller Hub 3 (ICH3)
- Intel[®] 82870P2 64-bit PCI/PCI-X Controller Hub 2 (P64H2

See Figure 20, "Component Layout (#1)" on page 96 for their locations.

2.2.2.1 Intel[®] E7501 Memory Controller Hub (U22)

The Intel[®] E7501 Memory Controller Hub (MCH) interfaces between the processor system bus and the memory and I/O subsystems.

Significant features are listed below:

- System/host bus features:
 - Supports dual processors at either 400 or 533 MT/s or a bandwidth of 3.2 or 4.3 GBytes/s
 - Supports a 36-bit system bus addressing model
 - 12 deep in-order queue, two deep defer queue
- *Note:* The current MPCBL0001 is designed to run with the Intel[®] LV Xeon[®] 2.0 GHz processor. At this processor frequency, the processor side bus (PSB) will run at 400 MT/s with a bandwidth of 3.2 GBytes/s.
 - Memory subsystem features:
 - 144-bit wide (72-bit x 2), DDR-266 memory interfaces with 3.2 or 4.3 GByte/s bandwidth
 - Supports x72, registered DDR-266 ECC DIMMs using 64-, 128-, 256-, and 512-Mbit SDRAMs
 - Supports a maximum of 16 GBytes of memory (MPCBL0001 SBC implementation supports a maximum of 8 Gbytes).
 - Supports S4EC/D4ED ChipKill* ECC (x4 ChipKill)
 - Corrects all bit errors within a single 4-bit nibble
 - Detects all errors contained within two 4-bit nibbles
 - Memory scrubbing supported
 - Supports up to 32 simultaneous open pages
 - Hardware support for auto-initialization of memory with valid ECC
 - I/O features:
 - Hub interface A provides HI 1.5 connection for ICH3
 - 266 MB/s data bandwidth with parity protection
 - 8 bits wide, 66 MHz clock, 4x data transfer (quad-pumped)
 - · Supports 64-bit inbound addressing, 32-bit outbound addressing
 - Hub interfaces B and C provide HI2.0 connections for two P64H2s
 - 1 GByte/s data bandwidth with ECC protection in each direction
 - 16-bits wide, 66 MHz clock, 8x data transfer (octal pumped)
 - Supports 64-bit inbound, 32-bit outbound addressing

The MCH I/O subsystems interface incorporates four hub interfaces. Each Hub interface is a point-to-point connection between the MCH and an I/O bridge/device. The various components of the chipset communicate via these connected hub interfaces:

- The first hub link connects the MCH to the ICH3.
- The next two hub link interfaces connect the MCH to P64H2 components.
- The remaining hub link is unused.

2.2.2.2 Intel[®] 82801CA I/O Controller Hub 3 (U7)

The Intel[®] 82801CA I/O Controller Hub 3 (IHC3) provides the legacy I/O subsystem and integrates advanced I/O functions. ICH3 features are listed below:

- IDE interface controller
- Three Universal Host Controller Interface (UHCI)
- USB host controllers supporting up to 6 ports (MPCBL0001 SBC implementation supports one port on the front panel)
- Integrated I/O APIC
- SMBus 2.0 controller
- LPC interface
- Watchdog timer #3 (see "Watchdog Timers (WDTs)" on page 60)
- PCI 2.2 bus interface supporting 32bit/33 MHz operation
- Connects to MCH through Hub Interface A (HI 1.5)

The MPCBL0001 SBC implements one USB port and does not use the ICH3 PCI connection.

2.2.2.2.1 PCI Bus Master IDE Interface (J24)

The ICH3 acts as a PCI based, enhanced IDE, 32-bit interface controller for intelligent disk drives that have disk controller electronics onboard. The SBC includes a single 40-pin (2 x 20) IDE connector (J24) that supports one master or one slave device. See Figure 20, "Component Layout (#1)" on page 96 drawing for its location. The IDE controller provides support for an internally mounted 2.5" hard disk. The IDE controller has the following features:

- PIO and DMA transfer modes
- Mode 4 timings
- Supports Ultra ATA33/66/100 synchronous DMA
- Buffering for PCI/IDE burst transfers
- Master/slave IDE mode
- Support for up to two devices (Master/Slave) via a single primary IDE connector (MPCBL0001 SBC implementation supports one optional physical 2.5" IDE device)
- *Note:* Incorporating an optional IDE Hard Disk drive may significantly impact the Reliability Specifications in Section 6.3.
- *Note:* Performance of the IDE interface may be impacted by the DMA mode and type of DMA transfers used. Even though the BIOS automatically sets the DMA mode/type, the OS could downgrade the DMA transfer mode. Check the operating system documentation to see what DMA mode is used by default and whether it is possible to change to a higher performance DMA mode.

2.2.2.3 Intel[®] 82870P2 64-bit PCI/PCI-X Controller Hub 2 (U14, U24)

The two P64H2 devices provide the system's high-performance PCI bus support. See Figure 20, "Component Layout (#1)" on page 96 for their locations. Each P64H2 component supports two independent, 64-bit, PCI/PCI-X interfaces. 32-bit/33 MHz and 64-bit/66 MHz PCI bus modes are also supported. Each PCI bus interface features:

- PCI-X 1.0 Specification compliance
- PCI Specification 2.2 compliance

- PCI-PCI Bridge Rev 1.1 compliance
- PCI Hot Plug 1.0 compliance
- I/O APIC supporting up to 24 interrupts (16 external pins)
- · PCI peer-to-peer write capability between PCI ports
- SMBus target for Out-of-Band access to all internal PCI registers

Each of the two P64H2 devices (U14, U24) included on the MPCBL0001 SBC provides the bridge to two independent PCI bus connections, as shown in Table 1, "P64H2 Interfaces" on page 20.

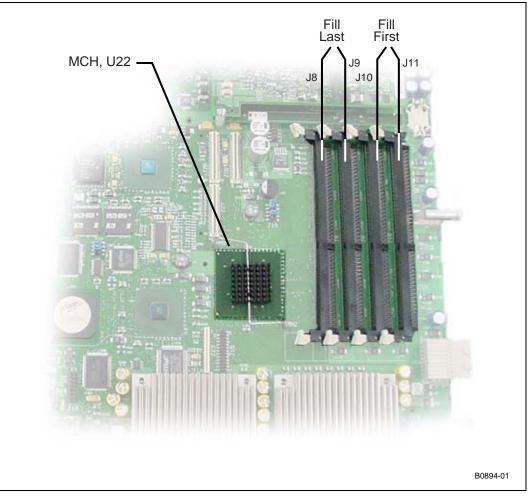
Table 1.P64H2 Interfaces

P64H2 Device	Interface
U24	PCI-X interface to the optional dual Fibre Channel controller
U14	 PCI-X interface to the dual Gigabit Ethernet controller 64-bit/66 MHz PCI bus for a plug-in PMC card

The two high-speed communications interfaces (Gigabit Ethernet and Fibre Channel) are located in separate P64H2 devices to maximize data throughput. A single HI-2 hub link connection from the P64H2 to the MCH provides a >1 Gbyte/s bandwidth back to memory and the processor System Bus.

2.2.3 Memory (J8, J9, J10, J11)

Four DDR 266 DIMM sockets make up the memory subsystem. See Figure 20, "Component Layout (#1)" on page 96 for their locations. The MCH defines two memory channels operating in parallel to logically create a 144-bit wide memory data path. ECC is generated and checked across 128 bits of data, allowing for significant improvement in error correction.


Due to this architecture, DDR DIMMs must be installed in matched pairs. Memory DIMM configurations ranging from 512 MBytes to 8 GBytes in 512 MByte increments are supported.

2.2.3.1 Memory Ordering Rule for the MCH

Platforms based on the E7501 chipset require DDR DIMMs to be populated in matched pairs in a specific order. Start with the two DIMMs furthest from the MCH in a "fill-farthest" approach (see Figure 2). This requirement is based on the signal integrity requirements of the DDR interface.

2.2.4 1/0

2.2.4.1 Super I/O (U28)

The Super I/O device (SIO) is an SMSC LPC47B272 enhanced Super I/O controller. The SIO connects to the ICH3 through its LPC bus connection. The SIO provides support for the front panel serial port (J17, see page 76). There is no front-panel connection to the legacy keyboard and mouse PS/2 ports. Keyboard and mouse support are provided by the USB connection (J12, see page 83). See Figure 13 for connector locations.

To facilitate debug and BIOS development, SIO connections such as legacy (PS/2) keyboard/mouse and floppy may be provided on initial board revisions. Software must not rely on the presence of these connections on future board revisions.

2.2.4.2 Real-Time Clock

The MPCBL0001 SBC real-time clock is integrated into the ICH3. It is derived from a 32.768 KHz crystal with the following specifications:

• Frequency tolerance @ 25 °C: ±20ppm

- Frequency stability: maximum of -0.04ppm/(Δ° C)²
- Aging ΔF/f (1st year @ 25 °C): ±3ppm
- ±20ppm from 0-55 °C and aging 1ppm/year

The real-time clock is powered by a 0.22F SuperCap* capacitor when main power is not applied to the board. This capacitor powers the real-time clock for a minimum of two hours while external power is removed from the MPCBL0001 SBC.

See Section 3.13, "Watchdog Timers (WDTs)" on page 60 for information about the real-time clock timers.

2.2.4.3 Timer0 Capabilities

Timer0, integrated inside the ICH3, is an 8254 compatible timer. This timer is set up to generate a periodic waveform that creates the edge for the timer0 interrupt. The interrupt is received by the ICH3 APIC and communicated to the CPU(s).

MPCBL0001 provides a high-precision 14.318 MHz crystal clock source as the reference for the timer0 counters. To improve timing accuracy, the crystal used is a low-PPM, high-stability component with the following specifications:

- Frequency tolerance (25° C): ±10ppm
- Temperature characteristics (-10° C to +60° C): ±5ppm
- Aging: ±1ppm per year max

This timer does not operate when board power is removed.

2.2.4.4 Gigabit Ethernet (U13)

The MPCBL0001 SBC implements two Gigabit Ethernet interfaces, each of which is routed to the fabric/switch slot through the backplane (J23, see page 82). There are no direct, external Ethernet ports included on the SBC board. Each Ethernet connection utilizes an 82546 Dual Gigabit Ethernet Controller, allowing support for 1000Mbits/s, 100Mbits/s and 10Mbits/s data rates.

The 82546 controller is optimized for designs using the PCI and the emerging PCI-X bus interface extension. The MPCBL0001 SBC has a 133 MHz PCI-X bus connection. The integrated physical layer circuitry (PHY) provides an IEEE 802.3 Ethernet Interface for 1000Base-T, 100Base-TX, and 10Base-T applications.

Features include:

- 32/64-bit 33/66 MHz, PCI Rev 2.2 compliant interface
- Host interface also compliant with the PCI .-X addendum, Rev 1.0a, from 50 to 133 MHz
- Supports 64-bit addressing
- Efficient PCI bus master operation, supported by optimized internal DMA controller
- Supports advanced PCI commands such as MWI, MRM, and MRL, and PCI-X commands such as MRD, MRB, and MWB
- Full IEEE 802.3ab auto-negotiation of speed, duplex, and flow-control configuration
- Complete full duplex and half duplex support
- Automatic MDI crossover operation for 100Base-TX and 10Base-T modes
- Automatic polarity correction
- Digital implementation of adaptive equalizer and canceller for echo and crosstalk

2.2.4.5 Fibre Channel* (U23) - Optional

The QLogic* ISP2312 dual Fibre Channel controller is used for access to high-speed storage subsystems. It is routed through backplane connector P23.

See Figure 20, "Component Layout (#1)" on page 96 for its location.

This controller supports PCI and PCI-X bus interfaces. Burst mode master DMA transfers are utilized for efficient usage of bus bandwidth during data transfers, and 8, 16, and 32-bit accesses are supported as a PCI target. The controller appears as two independent Fibre Channel ports. A PCI function is assigned to each port in the device's PCI configuration space. Functions 0 and 1 are used to configure FC ports 1 and 2, respectively.

ISP2312 features include:

- 32/64-bit 33/66 MHz, PCI Rev 2.2 compliant interface.
- Host interface compliant with the PCI-X addendum, Rev 1.0a, from 50 to 133 MHz.
- Supports 64-bit addressing (addresses >32 bit initiate use of DAC address cycle).
- Efficient PCI bus master operation, supported by optimized internal DMA controller.
- Supports advanced PCI commands such as MWI, MRM, and MRL, and PCI-X commands such as MRD, MRB, and MWB.
- Automatically negotiates Fibre Channel bit rate 1.06 Gbits/s (through backplane or front panel) or 2.12 Gbits/s (through front-panel Fibre Channel ports only)
- Supports up to 533 MBytes sustained FC data transfer rate (combined bandwidth of both directions transmitting simultaneously).
- Supports Fibre Channel-arbitrated loop (FC-AL), FC-AL-2, point-to-point, and switched fabric topologies.
- Maxim MAX3840 2x2 crosspoint switch for switching Fibre Channel between the front ports and the backplane, either via the BIOS Setup Menu by electronic keying.
- Each FC port includes:
 - Internal RISC processor
 - Receive DMA sequencer
 - Frame buffer
 - DMA channels (transmit, receive, command, auto-request, and auto-response)
- Support for JTAG boundary scan.
- Supports IP as well as other protocols; however there are currently no plans to validate protocols other than SCSI_FCP.

Each Fibre Channel interface of the ISP2312 includes its own internal 16-bit RISC processor and external 7.5 ns synchronous SRAM memory for instruction code and data. Parity protection is provided on accesses to this memory. The SBC utilizes two 256 KByte (128Kx18) SRAMs, one for each port, for the ISP2312 memory requirements.

An external 256 x 16 non-volatile EEPROM is used to store system configuration parameters and PCI subsystem and subsystem vendor IDs. The first 128 bytes are used for function 0 parameters and the second 128 bytes are used for function 1.

2.2.5 PMC Connector (J25, J26, J27)

The MPCBL0001 SBC supports one 64-bit, 66 MHz PMC slot. The PMC slot is connected to the second of two P64H2 hub controllers via PMC Connectors J25-J27. The PMC slot has an opening in the front panel of the SBC that exposes the I/O connectors of the add-in PMC card. PMC cards can only be added to or removed from this slot when the board is outside the system chassis. See Figure 20, "Component Layout (#1)" on page 96 for its location.

The PCI bus specification provides the means for backward compatibility with slower PMC cards (32-bit or 33 MHz) through the use of the M66EN pin. A PMC card that does not support 66 MHz operation grounds the M66EN pin when installed to inform the SBC hardware to provide a 33 MHz clock to this interface. Support for 32-bit only PMC cards is accomplished through the use of the REQ64#/ACK64# PCI bus protocol.

The PMC slot provided by the SBC connects the PCI VI/O voltage pins to +3.3 V. This requires use of PMC plug-in cards that support +3.3 V I/O signal levels. Only PMC plug-in cards designated "+3.3 V only" or "universal" voltage I/O are supported. The PMC plug-in location provides a key pin to prevent insertion of cards that do not meet this requirement. Note that +5 V power is still supplied to the PMC pins designated for +5 V connections. The PMC is allotted 1.5 A of current.

2.2.6 Firmware Hub (U30, U33)

The MPCBL0001 SBC supports two 8Mbit (1 MByte) BIOS flash ROMs:

- Primary BIOS flash ROM (FWH0)
- Recovery BIOS flash ROM (FWH1)

The flash is allocated for BIOS and Firmware usage.

The SBC boots from the primary flash ROM under normal circumstances. During the boot process, if the BIOS (or IPMC) determines that the contents of the primary flash ROM are corrupted, a hardware mechanism is available to change the flash device select logic to the recovery flash ROM. See Section 2.2.6.3, "Flash ROM Backup Mechanism" on page 25 for more information.

Each flash component has a separately write-protected boot block that prevents erasure when the device is upgraded.

Flash ROM BIOS updates can be performed by an end user or a network administrator over the LAN. The system should complete booting to an OS, MS-DOS* or logon to Linux* as root user. The system should have a local copy of the flash program and the BIOS data files or have the capability to copy the flash program and BIOS data files onto a local drive via the network. The flash program has a command line interface to specify the path and the file name of the BIOS data files. After completing the BIOS ROM update the user should shutdown and reset the system to let the new BIOS ROM take effect. See Section 7.7, "BIOS Updates" on page 108 for more information.

2.2.6.1 FWH 0 (Main BIOS)

BIOS execute code off this flash and perform checksum validation of its operational code. This checksum occurs in the boot block of the BIOS. The BIOS image is also stored in FWH0. When user performs BIOS update, the BIOS image will be stored in FWH 0 only. FWH0 will also store the factory default CMOS settings user configured CMOS settings.

1. When user "Load optimal defaults" from the BIOS setup screen, it restores the factory default by copying the "Factory Default" settings from FWH0 to ICH3 (CMOS).

- 2. When user "Save custom defaults" from the BIOS setup screen, the changes will be made to the CMOS settings on ICH3 and then copied from ICH3 to FWH0.
- 3. When user "Load custom defaults" from the BIOS setup screen, the "custom" CMOS settings are copied from FWH0 to ICH3.

2.2.6.2 FWH 1 (Backup/Recovery BIOS)

FWH 1 stores the recovery BIOS. In the event of checksum failure on the Main BIOS operational code, BIOS will request BMC to switch FWH, so that the board will be able to boot up from FWH1 for recovery.

User is able to boot up the board from FWH1 by executing an OEM IPMI command as well (see Section 3.7.1, "Reset BIOS Flash Type" on page 46).

2.2.6.3 Flash ROM Backup Mechanism

The on-board Intelligent Platform Management Controller (IPMC) manages which of the two BIOS flash ROMs is used during the boot process. The IPMC monitors the boot progress and can change the flash ROM selection and reset the processor.

The default state of this control configures the primary Firmware Hub (FWH) ROM device ID to be the boot device; the secondary FWH is assigned the next ID. The secondary FWH responds to the address range just below the primary FWH ROM in high memory.

The Intelligent Platform Management Controller sets the ID for both FWH devices. Boot accesses are directed to the FWH with ID = 0; unconnected ID pins are pulled low by the FWH device. In this way the IPMC may select which flash ROM is used for the boot process.

Refer to Section 3.7.1, "Reset BIOS Flash Type" on page 46 for a description of how to do this manually.

2.2.7 Onboard Power Supplies

The main power supply rails on the MPCBL0001 SBC are powered from dual-redundant -48 V power supply inputs from the backplane power connector (P10). There are also dual redundant, limited current, make-last-break-first (MLBF) power connections. See Figure 20, "Component Layout (#1)" on page 96 for their location.

2.2.7.1 Power Feed Fuses

As required by the PICMG 3.0 Specification, the MPCBL0001 SBC provides fuses on each of the -48V power feeds and on the RTN connections as well. The fuses on the return feeds are critical to prevent overcurrent situations if an ORing diode in the return path fails and there is a voltage potential difference between the A and B return paths.

2.2.7.2 ORing Diodes and Circuit Breaker Protection

The two -48 V power connectors are OR'd together. A current limiting FET switch is connected between the OR'd -48 V and the primary DC-DC converters. The FET switch provides three functions:

- A mechanism to electrically connect/disconnect the SBC to/from the two -48 V inputs.
- A soft-on function.
- An over-current circuit breaker feature.

2.2.7.3 -48 V to +12 V Converter

This converter provides DC isolation between the -48 V and -48 V return connections and all of the derived DC power on the MPCBL0001 SBC. Its output is connected to the SBC's +12 V power rail. The converter supplies a maximum of 9 A of current. The converter is enabled/disabled by the onboard IPMC.

2.2.7.4 -48 V to +5 V/+3.3 V Converter

This converter provides DC isolation between the -48 V and -48 V return connections and all of the derived DC power on the MPCBL0001 SBC. Its output is connected to the SBC's +5 V and 3.3 V power rails. The converter supplies a maximum of 9 A of +5 V current and 9 A of +3.3 V current. The converter is enabled/disabled by the onboard IPMC.

2.2.7.5 Processor Voltage Regulator Module (VRM)

The Voltage Regulator Module (VRM) provides core power to the two Low Voltage Xeon processors. The input to the VRM is connected to the +12 V power rail.

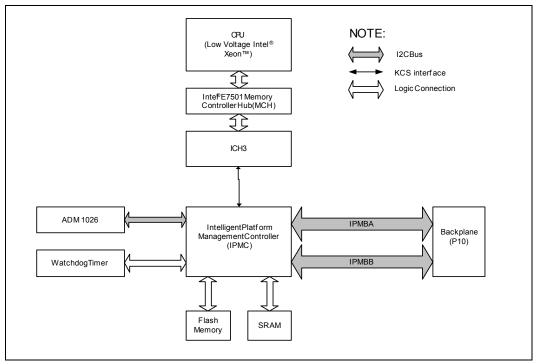
See Figure 20, "Component Layout (#1)" on page 96 for its location.

The VRM controller is designed to support multiple processor core voltages selected by the voltage identification (VID) pins on the processor. Logic provided on the SBC ensures that the VRM is not enabled if the two processors request different VID codes. In addition, the VRM is disabled until all other voltage converters indicate "power good." The voltage regulator module is designed to support up to two 43 W (TDP - Thermal Design Power) processors.

Note: The +5 VSB power rail only needs to supply at least 4.0 V to properly power any circuitry that uses the +5 VSB rail when the payload power (i.e., processors, ethernet controller, etc.) is not turned on. Any alerts from the +5 VSB sensor when the system is not in the M4, M5, or M6 states should be ignored.

2.2.7.6 IPMB Standby Power

This converter provides DC isolation between the -48 V and -48 V return connections and all of the derived DC power on the MPCBL0001. Its output is connected to the IPMB and standby +5 V power rail of the SBC. The converter supplies a maximum of 1.5 A of +5 V current. A +3.3 V management voltage is derived from the IPMB power by means of a linear regulator circuit and is used to power most of the IPMC functions. Standby power is derived from the -48 V rails and is always available on the SBC unless the overall system power rail (-48 V) is shut down.



3.0 Hardware Management Overview

The Intelligent Platform Management Controller (IPMC) is an Intel-designed baseboard management controller device manufactured by Philips Semiconductor* for Intel.

The high-level architecture of the baseboard management for MPCBL0001 is represented in the block diagram below.

Figure 3. Hardware Management Block Diagram

The main processors communicate with the IPMC using the Keyboard Controller Style (KCS) interface. Two KCS interfaces are available for the BIOS to communicate to the IPMC. BIOS uses SMS interface for normal communication and SMM interface when executing code under systems management mode (SMM). The base address of the LPC interface for SMS is 0xCA2 and 0xCA4 for SMM operation. Besides that, the BIOS is able to communicate with the IPMC for POST error logging purposes, fault resilient purposes, and critical interrupts via the KCS interface.

The memory subsystem of the IPMC consists of a flash memory to hold the IPMC operation code, firmware update code, system event log (SEL), and a sensor data record (SDR) repository. RAM is used for data and occasionally as a storage area for code when flash programming is under execution. The field replacement unit (FRU) inventory information is stored in the nonvolatile memory on ADM1026. The flash memory can store up to 64 KBytes of SEL events and SDR information, while the

ADM1026 can store up to 512 bytes of FRU information. Having the SEL and logging functions managed by the IPMC helps ensure that 'post-mortem' logging information is available even if the system processor becomes disabled.

The IPMC provides six I²C bus connections. Two are used as the redundant IPMB bus connections to the backplane while another one is used for communication with the ADM1026. The remaining buses are unused. If an IPMB bus fault or IPMC failure occurs, IPMB isolators are used to switch and isolate the backplane/system IPMB bus from the faulted SBC board. Where possible, the IPMC activates the redundant IPMB bus to re-establish system management communication to report the fault.

The onboard DC voltages are monitored by the ADM1026 device, manufactured by Analog Devices. The IPMC queries the ADM1026 over a local system management I^2C bus. The ADM1026 includes voltage threshold settings that can be configured to generate an interrupt to the IPMC if any of the thresholds are exceeded.

To increase the reliability of the MPCBL0001 SBC, a watchdog timer is implemented, whereby it strobes an external watchdog timer at two-second intervals to ensure continuity of operation of the board's management subsystem. If the IPMC ceases to strobe the watchdog timer, the watchdog timer isolates the IPMC from the IPMBs and resets the IPMC. The watchdog timer expires after six seconds if strobes are not generated, and it resets the IPMC. Detailed information on the watchdog timer comfiguration can be queried using standard IPMI v1.5 watchdog timer commands. The watchdog timer does not reset the payload power.

3.1 Sensor Data Record (SDR)

Sensor Data Records contain information about the type and number of sensors in the baseboard, sensor threshold support, event generation capabilities, and the types of sensor readings handled by system management firmware.

The MPCBL0001 management controller is set up as a satellite management controller (SMC). It does support sensor devices, whose population is static by nature. SDRs can be queried using Device SDR commands to the firmware. Refer to Section B, "List of Supported Commands (IPMI v1.5 and PICMG 3.0)" on page 180 for the list of supported IPMI commands for SDRs. Hardware sensors that have been implemented are listed below.

Table 2.Hardware Sensors (Sheet 1 of 3)

Sensor Number	Sensor Type	Voltage/Signals Monitored	Monitored via	Scanning Enabled under Power State	Health LED (Green to Red)
01h	Power Unit	Payload Power	IPMC	Power On	Soft power control failure (Offset Bit 05h asserted
03h	Watchdog Timer	IPMC Watchdog Timer timeout	IPMC	Power On/Off	No change
06h	System Firmware Progress		IPMC	Power On	No change
07h	CPU Critical Interrupt	PCI SERR	IPMC	Power On	PCI SERR signal asserted
	Interrupt	PCI PERR	IPMC	Power On	PCI PERR signal asserted
08h	Memory Error	ECC Multiple Bit error	IPMC	Power On	Multiple Bit Error or Uncorrectable ECC occurred
		ECC Single Bit error	IPMC	Power On	No change

Table 2.Hardware Sensors (Sheet 2 of 3)

Sensor Number	Sensor Type	Voltage/Signals Monitored	Monitored via	Scanning Enabled under Power State	Health LED (Green to Red)
09h	Event Logging Disabled	BIOS Generated events	BIOS SMI	Power On	No change
10h	Voltage	3.3 VSB	ADM 1026	Power On/Off	Exceeds critical threshold
11h		+5 VSB	ADM 1026	Power On/Off	Exceeds critical threshold
12h		+1.8 VSB	ADM 1026	Power On/Off	Exceeds critical threshold
13h		V BAT	ADM 1026	Power On/Off	Exceeds critical threshold
14h		+1.2 V	ADM 1026	Power On	Exceeds critical threshold
15h		VTT DDR (+1.25 V)	ADM 1026	Power On	Exceeds critical threshold
16h		+1.8 V	ADM 1026	Power On	Exceeds critical threshold
17h		+2.5 V	ADM 1026	Power On	Exceeds critical threshold
18h		+3.3 V	ADM 1026	Power On	Exceeds critical threshold
19h		+5 V	ADM 1026	Power On	Exceeds critical threshold
30h	Temperature	Board Temperature	ADM 1026	Power On/Off	Exceeds critical threshold
37h		CPU 0 Temperature	ADM 1026	Power On	Exceeds critical threshold
38h		CPU 1 Temperature	ADM 1026	Power On	Exceeds critical threshold
50h	Processor	CPU 0 Presence	ADM 1026	Power On/Off	IERR signal asserted
50h		CPU 0 IERR	IPMC	Power On	No change
50h		CPU 0 Thermtrip	IPMC	Power On	ThermTrip signal asserted
50h		CPU 0 Non-Presence	ADM 1026	Power On/Off	CPU 0 is detected as missing
51h		CPU 1 Presence	ADM 1026	Power On/Off	IERR signal asserted
51h		CPU 1 IERR	IPMC	Power On	No change
51h	1	CPU 1 Thermtrip	IPMC	Power On	ThermTrip signal asserted
54h	Boot Error	BIOS Main Flash	IPMC	Power On	No change
55h	1	BIOS FRED Flash	IPMC	Power On	No change
56h	Temperature	CPU 0 ProcHot ¹	IPMC	Power On	ProcHot signal asserted
57h	1	CPU1 ProcHot ¹	IPMC	Power On	ProcHot signal asserted
82h	ACPI State	ACPI State	IPMC	Power On/Off	No change
83h	System Event	System Event	IPMC	Power On	No change
1Ah	Voltage	+12 V	ADM 1026	Power On	Exceeds critical threshold

Table 2.Hardware Sensors (Sheet 3 of 3)

Sensor Number	Sensor Type	Voltage/Signals Monitored	Monitored via	Scanning Enabled under Power State	Health LED (Green to Red)
1Bh	Voltage	-12 V	ADM 1026	Power On	Exceeds critical threshold
1Ch		CPU Core Voltage	ADM 1026	Power On	Exceeds critical threshold
1Dh		+1.5 V	ADM 1026	Power On	Exceeds critical threshold
8Ah	FRU Hot Swap	FRU State	IPMC	Power On/Off	No change
8Bh	IPMB Link Sensor	Operational state of IPMB-0	Logical	Power On/Off	No change
EOh	SMI Timeout	Steady state assertion of the SMI line	IPMC	Power On	SMI Line asserted (Offset bit 01h asserted)

Note: The PROCHOT signal is a discrete signal but it is treated as a threshold sensor so that it can have a Sensor Type of Temperature. IPMI does not have a discrete sensor type for temperatures. The advantage of the PROCHOT sensor acting as a temperature sensor is that the CMM can recognize events from this sensor as temperature events and adjust fan speed accordingly.

3.2 System Event Log (SEL)

The SEL is the collection of events that are generated by the IPMC. Event logs are stored in non-volatile memory. This resides on the board and allows better tracking of error conditions on the baseboard when it is moved from chassis to chassis. Having the SEL and logging functions managed by the IPMC helps ensure that post-mortem logging information is available should a failure occur that disables the systems processor(s). In the MPCBL0001, flash memory for IPMI firmware can store up to 3276 SEL entries. Management software running on the host processor is responsible for ensuring that SEL storage has sufficient space for SEL logging. Events are normally forwarded to shelf manager and logged to SEL on the board. If SEL storage on the board is full, new events are forwarded to the Shelf Manager but are not logged in to SEL on the board.

A set of IPMI commands (see Table 106, "IPMI 1.5 Supported Commands" on page 180) allows the SEL to be read and cleared and allows events to be added to the SEL. The IPMI commands used for adding events to the SEL are *Platform Event Message, Add SEL entry,* and *Partial Add Entry.* Table 3, "SEL Events Supported by the MPCBL0001 SBC" on page 31 lists supported SEL events. Event Messages can be sent to the IPMC via the IPMB. This provides the mechanism for satellite controllers to detect events and log them into the SEL.

Sensor Type	Sensor Type Code	Sensor-Specific Offset (Event Data 1, Bit 0-3)	Event	Remarks		
Reserved	00h	-	Reserved	-		
Temperature	01h	-	Temperature	Threshold exceeded for upper critical, upper non- critical, lower critical and lower non-critical thresholds. Refer to Table 4, "Sensor Thresholds for IPMC Firmware 1.0" on page 34 for sensor thresholds data.		
Voltage	02h	-	Voltage	Voltage exceeded upper critical, upper non-critical, lower critical and lower non-critical thresholds. Refer to Table 4 for sensor thresholds data.		
Processor	07h	00h	IERR	Processor IERR has occurred.		
		01h	Thermal Trip	Processor thermal trip has occurred.		
		04h	FRB3/Processor Startup/ Initialization Failure (CPU did not start)	An FRB3 Timer (30 seconds) was implemented to detect the failure of the CPUs from booting. Event data 3 = Last Post 80 code byte		
		05h	Configuration Error	CPU 0 and CPU 1 are not present.		
		07h	Processor Presence Detected ¹			
		09h	Terminator Presence Detected ¹			
		00h	Power Off/Power On	Normal power off indication. Offset 0 is just a status indicating that the payload power is off. It does not generate an event when it is set. (For internal use).		
Power Unit 01h		05h	Soft Power Control Failure (unit did not respond to request to turn on)	The Power Unit sensor is used to detect when the Payload power does not come up when the board is told to power on. When the board enters M4 state, the IPMC asserts a Power Enable line to cause the Payload to power up. The IPMC then waits for another line that indicates that the power has come up successfully. If that line does not assert within 2 seconds, then offset 05h is asserted on the Power Unit sensor, which generates an event to notify the Shelf Manager of the failure.		
		00h	Correctable ECC	Event data 3 = DIMM pair number 00 refers to J8/J9 01 refers to J10/J11		
Memory	0Ch	01h	Uncorrectable ECC	Event data 3 = DIMM pair number 00 refers to J8/J9 01 refers to J10/J11		
		05h	Correctable ECC/ Other correctable memory error logging limit reached	Event data 2 = DIMM pair number 00 refers to J8/J9 01 refers to J10/J11		

Table 3. SEL Events Supported by the MPCBL0001 SBC (Sheet 1 of 4)

Note:

These sensor offsets do not generate events, but they are valid offsets when reading the sensor values. Watchdog sensor refers to WDT#1 per Section 3.13.1.

1. 2.

Sensor Type	Sensor Type Code	Sensor-Specific Offset (Event Data 1, Bit 0-3)	Event	Remarks		
			BIOS checksum error	Event data 2 = 99h Event data 3 = 99h		
					OK to boot	Event data 2 = F0h Event data 3 = 00h
			Timer Count Read/Write error	Event data 2 = FEh Event data 3 = 00h		
			CMOS Battery error	Event data 2 = FEh Event data 3 = 01h		
			CMOS Diagnosis status error	Event data 2 = FEh Event data 3 = 02h		
			CMOS Checksum error	Event data 2 = FEh Event data 3 = 03h		
			CMOS Memory Size error	Event data 2 = FEh Event data 3 = 04h		
			RAM Read/Write test error	Event data 2 = FEh Event data 3 = 05h		
		00h	CMOS Date/Time error	Event data 2 = FEh Event data 3 = 06h		
System Firmware Progress	OFh		Clear CMOS jumper	Event data 2 = FEh Event data 3 = 07h		
			Clear Password Jumper	Event data 2 = FEh Event data 3 = 08h		
			Manufacturing Jumper	Event data 2 = FEh Event data 3 = 09h		
			Configuration error on DIMM pair 0 (J8 & J9)	Event data 2 = FEh Event data 3 = 10h		
			Configuration error on DIMM pair 1(J10/J11)	Event data 2 = FEh Event data 3 = 11h		
			No system memory is physically installed or fails to access any DIMM's SPD data	Event data 2 = FEh Event data 3 = 12h		
			BMC in update error	Event data 2 = FEh Event data 3 = OAh		
			BMC Response Fail error	Event data 2 = FEh Event data 3 = 0Bh		
			Event Log Full error	Event data 2 = FEh Event data 3 = OCh		
Event Logging Disabled	10h	00h	Correctable Memory Error Logging Disabled	Error Logging will be disabled after 10 events within one hour. Event data 2 = DIMM pair number 00 refers to J8/J9 01 refers to J10/J11		

SEL Events Supported by the MPCBL0001 SBC (Sheet 2 of 4) Table 3.

Note:

These sensor offsets do not generate events, but they are valid offsets when reading the sensor values. Watchdog sensor refers to WDT#1 per Section 3.13.1.

1. 2.

Sensor Type	Sensor Type Code	Sensor-Specific Offset (Event Data 1, Bit 0-3)	Event	Remarks
		04h	PCI PERR	Event data 2 = Bus No. Event data 3: Byte [7:3] = Device No Byte [2:0] = Func. No
Critical Interrupt	13h	05h	PCI SERR	Event data 2 = Bus No. Event data 3: Byte [7:3] = Device No Byte [2:0] = Func. No
		07h	PCI Non-Fatal error	Event data 2 = Bus No. Event data 3: Byte [7:3] = Device No Byte [2:0] = Func. No
		00h	S0/G0 ¹	Board is running
System ACPI Power	22h	06h	S4/S5 ¹	Soft-off
state	2211	0Bh	Legacy ON state ¹	Indicate ON for board that doesn't support ACPI
		0Ch	Legacy OFF state ¹	Legacy soft-off
		00h	Timer expired, status only	
Watchdog ²	23h	01h	Hard Reset	POST/Boot monitor timed out
		02h	Power Down	OS WDT shutdown after the monitor timeout
		03h	Power Cycle	OS WDT reset after the monitor timeout
		08h	Timer Interrupt	Event data 2: Byte [7:4] = Interrupt Type Oh = none 2h = NMI
Boot Error	1Eh	03h	Invalid Boot Sector	Event will be logged if the BIOS detects an invalid boot sector.
		00h	State De-Asserted ¹	This is the normal situation when a board is able to power up.
SMI Timeout	EOh	01h	State Asserted	The SMI line has been constantly asserted for 10 seconds which indicates a severe hardware failure around the CPU.
		00h	M0 – FRU not installed	
		01h	M1 – FRU inactive	
		02h	M2 – FRU activation request	
FRU Hot	F0h	03h	M3 - FRU activation in progress	Refer to PICMG 3.0 Specifications (Table 3-14)
Swap	1011	04h	M4 - FRU active	
		05h	M5 - FRU deactivation request	
		06h	M6 - FRU deactivation in progress	
		07h	M7 - Communication lost	

Table 3. SEL Events Supported by the MPCBL0001 SBC (Sheet 3 of 4)

Note:

These sensor offsets do not generate events, but they are valid offsets when reading the sensor values. Watchdog sensor refers to WDT#1 per Section 3.13.1.

1. 2.

Sensor Type	Sensor Type Code	Sensor-Specific Offset (Event Data 1, Bit 0-3)	Event	Remarks
		00h	IPMB A & B disabled	
IPMB Link	F1h	01h	IPBM A enabled IPMB B disabled	Refer to PICMG 3.0 Specifications (Table 3-46)
Sensor	F 111	02h	IPMB A disabled IPMB B disabled	
	-	03h	IPMB A & B enabled	

Table 3. SEL Events Supported by the MPCBL0001 SBC (Sheet 4 of 4)

Note: 1.

2.

These sensor offsets do not generate events, but they are valid offsets when reading the sensor values. Watchdog sensor refers to WDT#1 per Section 3.13.1.

3.2.1 Temperature and Voltage Sensors

Temperature and voltage readings are monitored by ADM1026. They are critical sensors that ensure the MPCBL0001 is operating at its predefined threshold limits. The sensors are categorized as follows:

- Lower Non-Critical
- Lower Critical
- Upper Non-Critical
- Upper Critical

If the lower critical or upper critical threshold is exceeded, it raises a major alarm. If the lower non-critical or upper non-critical threshold is exceeded, it raises a minor alarm.

Only critical thresholds which are exceeded turn the Health LED solid red. However, for any events above, IPMC forwards the events to the shelf manager to log it into shelf manager's SEL.

Table 4.Sensor Thresholds for IPMC Firmware 1.0 (Sheet 1 of 2)

Sensor Name	Sensor Number	System Event Log, reported via CLI, SNMP, RPC, RMCP	Normal Value	LNR	LC	LNC	UNC	UC	UNR
+1.5 V	1Dh	Yes	+1.5 V	TBD	1.43	1.45	1.55	1.57	-
+2.5 V	17h	Yes	+2.5 V	TBD	2.3	2.36	2.625	2.7	-
+1.8 V	16h	Yes	+1.8 V	TBD	1.71	1.746	1.854	1.89	-
VTT DDR (+1.25 V)	15h	Yes	+1.25 V	TBD	1.185	1.20	1.3	1.315	-
+1.2 V	14h	Yes	+1.2 V	TBD	1.14	1.176	1.224	1.26	-
+5 V	19h	Yes	+5 V	TBD	4.7	4.85	5.25	5.275	-
-12 V	1Bh	Yes	-12 V	TBD	-13.2	-12.6	-11.4	-10.8	-
+12 V	1Ah	Yes	+12 V	TBD	10.8	11.4	12.6	13.2	-
CPU Core Voltage	1Ch	Yes	+1.3 V	TBD	1.24	1.26	1.345	1.36	-
+3.3 V	18h	Yes	+3.3 V	TBD	3.102	3.201	3.465	3.482	-
+1.8 VSB	12h	Yes	+1.8 V	TBD	1.71	1.73	1.836	1.89	-

Table 4.Sensor Thresholds for IPMC Firmware 1.0 (Sheet 2 of 2)

Sensor Name	Sensor Number	System Event Log, reported via CLI, SNMP, RPC, RMCP	Normal Value	LNR	LC	LNC	UNC	UC	UNR
+3.3 VSB	10h	Yes	+3.3V	TBD	3.102	3.201	3.465	3.482	-
+5 VSB	11h	Yes	+5 V	TBD	4.09	4.19	5.25	5.275	-
VBAT	13h	Yes	+3 V	TBD	2.0	2.4	3.4	3.6	-
Board Temperature	30h	Yes	30	TBD	-5	5	60	70	-
CPU 0 Temperature	37h	Yes	40	TBD	5	10	76	81	-
CPU 1 Temperature	38h	Yes	40	TBD	5	10	76	81	_

Note: The following terms apply: LNR: Lower Non-Recoverable

LC: Lower Critical

LNC: Lower Non-Critical

UNC: Upper Non-Critical

UC: Upper Critical

UNR: Upper Non-critical

	Description			Thresholds					
Sensor Name		Sensor Number		Lower Critical	Lower Noncritical	Upper Noncritical	Upper Critical	Upper Non- recoverable	
+1.5V	+1.5V	1Dh	1.5	1.43 (1.45)	-	-	1.57 (1.54)		
+2.5V	+2.5V	17h	2.49	2.29 (2.32)	2.35 (2.375)	2.63 (2.609)	2.69 (2.67)	-	
+1.8V	+1.8V	16h	1.79	1.71 (1.73)	-	-	1.88 (1.86)	-	
VTT DDR	DDR Voltage	15h	1.24	1.19 (1.16)	-	-	1.31 (1.29)	-	
+1.2V	+1.2V	14h	1.2	1.14 (1.16)	-	-	1.25 (1.24)	-	
+5V	+5V	19h	4.99	4.73 (4.78)	-	-	5.23 (5.17)	-	
-12V	-12V	1Bh	-12.11	-15.06 (-14.92)	-12.83 (-12.69)	-11.25 (-11.39)	-7.5 (-7.65)	-	
+12V	+12V	1Ah	12.1	7.56 (7.63)	11.28 (11.313)	12.85 (12.63)	15.06 (14.88)	-	
CPU Core Voltage	CPU Core Voltage	1Ch	1.31	1.24 (1.25)	-	-	1.37 (1.33)	-	
+3.3V	+3.3V	18h	3.3	3.13 (3.17)	-	-	3.46 (3.41)	-	
+1.8VSB	+1.8V on standby rail	12h	1.79	1.71 (1.73)	-	-	1.88 (1.86)	-	
+3.3VSB	+3.3V on standby rail	10h	3.3	3.13 (3.17)	-	-	3.46 (3.41)	-	
+5VSB	+5V on Standby rail	11h	5	4.09 (4.14)	-	-	5.24 (5.19)	-	
VBAT	Battery voltage	13h	3.55	1.99 (2.03)	3.31 (3.35)	-	-	-	
Baseboard Temp	Board temperature	30h	30	-5 (-2)	5 (8)	60 (57)	70 (67)	80 (77)	
CPU 1 Temp	CPU 1 (Right) temperature	37h	40	5 (8)	10 (13)	76 (73)	81 (78)	127 (124)	
CPU 2 Temp	CPU 1 (Left) Temperature	38h	40	5 (8)	10 (13)	76 (73)	81 (78)	127 (124)	

Table 5.Sensor Thresholds for IPMC Firmware 1.2

Note: Values in parentheses are deassertion values.

						Thresholds		
Sensor Name	Description	Sensor Number	Normal Value	Lower Critical	Lower Noncritical	Upper Noncritical	Upper Critical	Upper Non- recoverable
+1.5V	+1.5V	1Dh	1.5	1.43 (1.45)	-	-	1.57 (1.54)	
+2.5V	+2.5V	17h	2.49	2.29 (2.32)	2.35 (2.375)	2.63 (2.609)	2.69 (2.67)	-
+1.8V	+1.8V	16h	1.79	1.71 (1.73)	-	-	1.88 (1.86)	-
VTT DDR	DDR Voltage	15h	1.24	1.19 (1.16)	-	-	1.31 (1.29)	-
+1.2V	+1.2V	14h	1.2	1.14 (1.16)	-	-	1.25 (1.24)	-
+5V	+5V	19h	4.99	4.73 (4.78)	-	-	5.23 (5.17)	-
-12V	-12V	1Bh	-12.11	-15.06 (-14.92)	-12.83 (-12.69)	-11.25 (-11.39)	-7.5 (-7.65)	-
+12V	+12V	1Ah	12.1	7.56 (7.63)	11.28 (11.313)	12.85 (12.63)	15.06 (14.88)	-
CPU Core Voltage	CPU Core Voltage	1Ch	1.31	1.24 (1.25)	-	-	1.37 (1.33)	-
+3.3V	+3.3V	18h	3.3	3.13 (3.17)	-	-	3.46 (3.41)	-
+1.8VSB	+1.8V on standby rail	12h	1.79	1.71 (1.73)	-	-	1.88 (1.86)	-
+3.3VSB	+3.3V on standby rail	10h	3.3	3.13 (3.17)	-	-	3.46 (3.41)	-
+5VSB	+5V on Standby rail	11h	5	4.09 (4.14)	-	-	5.24 (5.19)	-
VBAT	Battery voltage	13h	3.55	1.99 (2.03)	3.31 (3.35)	-	-	-
Baseboard Temp	Board temperature	30h	30	-5 (-2)	5 (8)	60 (57)	70 (67)	80 (77)
CPU 0 Temp	CPU 0 - U35 Temperature	37h	40	5 (8)	10 (13)	76 (73)	81 (78)	127 (124)
CPU 1 Temp	CPU 1 - U36 Temperature	38h	40	5 (8)	10 (13)	76 (73)	81 (78)	127 (124)

Table 6. Sensor Thresholds for IPMC Firmware 1.7 and Above

Note: Values in parentheses are deassertion values.

		Sensor	Normal			Thresholds		
Sensor Name	Description	Number	Value	Lower Critical	Lower Noncritical	Upper Noncritical	Upper Critical	Upper Non- recoverable
+1.5V	+1.5V	1Dh	1.5	1.43 (1.45)	-	-	1.57 (1.54)	
+2.5V	+2.5V	17h	2.49	2.29 (2.32)	2.35 (2.375)	2.63 (2.609)	2.69 (2.67)	-
+1.8V	+1.8V	16h	1.79	1.71 (1.73)	-	-	1.88 (1.86)	-
VTT DDR	DDR Voltage	15h	1.24	1.19 (1.16)	-	-	1.31 (1.29)	-
+1.2V	+1.2V	14h	1.2	1.14 (1.16)	-	-	1.25 (1.24)	-
+5V	+5V	19h	4.99	4.73 (4.78)	-	-	5.23 (5.17)	-
-12V	-12V	1Bh	-12.11	-7.46 (-7.61)	-11.21 (-11.35)	-12.79 (-12.65)	-14.95 (-14.81)	-
+12V	+12V	1Ah	12.1	7.56 (7.63)	11.28 (11.313)	12.85 (12.63)	15.06 (14.88)	-
CPU Core Voltage	CPU Core Voltage	1Ch	1.31	1.24 (1.25)	-	-	1.37 (1.33)	-
+3.3V	+3.3V	18h	3.3	3.13 (3.17)	-	-	3.46 (3.41)	-
+1.8VSB	+1.8V on standby rail	12h	1.79	1.71 (1.73)	-	-	1.88 (1.86)	-
+3.3VSB	+3.3V on standby rail	10h	3.3	3.13 (3.17)	-	-	3.46 (3.41)	-
+5VSB	+5V on Standby rail	11h	5	4.09 (4.14)	-	-	5.24 (5.19)	-
VBAT	Battery voltage	13h	3.55	1.99 (2.03)	3.31 (3.35)	-	-	-
Baseboard Temp	Board temperature	30h	30	-5 (-2)	5 (8)	60 (57)	70 (67)	80 (77)
CPU 0 Temp	CPU 0 - U35 Temperature	37h	40	5 (8)	10 (13)	76 (73)	81 (78)	127 (124)
CPU 1 Temp	CPU 1 - U36 Temperature	38h	40	5 (8)	10 (13)	76 (73)	81 (78)	127 (124)

Table 7. Sensor Thresholds for IPMC Firmware 1.14 and Above

Note: Values in parentheses are deassertion values.

3.2.2 **Processor Events**

The processor asserts IERR as the result of an internal error. A thermal trip error indicates the processor junction temperature has reached a level where permanent silicon damage may occur. Upon THERMTRIP assertion, the IPMC powers down the boards.

3.2.3 DIMM Memory Events

The MCH (E7501) instructs the ICH3 to report memory parity errors via SMI#. The SMI handler extracts the error information (address) from the DRAM error registers in the MCH and logs it into the SEL. The KCS interface performs error reporting to IPMC. BIOS sends a platform event message with the appropriate data to the IPMC, which logs the event to SEL and forwards the event to the Shelf Manager. Correctable memory errors generate an SMI and are logged into SEL. Normally, a board with non-correctable errors is likely to hang as the multi-bit error may cause the CPU to execute corrupted instructions. If the CPU executes corrupted instructions before executing the code to log the event, then this event will not be logged in the SEL.

3.2.4 System Firmware Progress (POST Error)

The BIOS is able to log both POST and critical events to the IPMC error log. (Refer to Table 89, "BIOS Error Messages" on page 132.)

3.2.5 Critical Interrupts

In general, the system BIOS is capable of generating requests on the KCS interface to communicate with the IPMC for error logging, fault resilience, critical interrupts and reading/writing inventory CPUs and RAM information to the IPMC. Two LPC interfaces are available for the BIOS to communicate to the IPMC. The BIOS uses the SMS interface for normal communication with the IPMC and the SMM interface when executing code under SMM mode.

PCI errors implemented in the MPCBL0001 are handled as follows:

- 1. The MCH(E7501) sends a parity error/system error (PERR/SERR) message over the hub interface to the ICH3 notifying it that an error occurred.
- 2. The ICH3 generates an SMI# interrupt when it receives a PERR/SERR message.
- 3. The SMI handler checks the error status registers of CPU/MCH until it identifies the source and type of the error.
- 4. The handler sends a message to the IPMC via the KCS interface, causing it to log the error in the IPMC's event log. IPMC then forwards the event to Shelf Manager to log it into Shelf Manager SEL.

Table 8 shows the PCI mapping of the component subsystem of the baseboard.

Table 8. PCI Mapping for Hardware Component Subsystem

Bus	Device	Function	Hardware Component Subsystem
0	0	0	E7501 MCH Bridge
0	0	1	MCH <-> ICH3
0	2	0	82870P2 PCI-X Bridge (Fibre Channel Controller)
0	3	0	82870P2 PCI-X Bridge (PMC and Gigabit Ethernet Controller)
0	29	0	USB Controller
0	31	1	IDE Interface (hard disk drive)
0	31	3	IPMC Interface
2	29	0	PCI-X Bridge to Gigabit Ethernet Controller
2	31	0	PCI-X Bridge to PMC Card
3	1	0	PMC Card
4	1	0	Gigabit Ethernet Controller (Port A)
4	1	1	Gigabit Ethernet Controller (Port B)
5	29	0	PCI-X Bridge to Fibre Channel Controller
7	1	0	Fibre Channel Controller (Port A)
7	1	1	Fibre Channel Controller (Port B)
OXFF	-	-	PSB (processor-side bus) Error

Note: This table is for MPCBL0001F04 boards. Bus Devices 5 and 7 do not exist for MPCBL0001N04 boards.

Example:

To decode the device and function number from the System Event Log, refer to the following method.

0144 05/26/04 15:24:42 4023 13 Critical Interrupt 07 PCI PERR 6f [a4 04 08]

• Event data 1 = a4

Comments: FromTable 3 on page 31, event data 1, bit 3:0 is referring to PCI-PERR

• Event data 2 = 04.

Comments: From Table 3, event data 2, bit 7:0 is referring to Bus number 4.

• Event data 3 = 08 = 00001000

Comments: FromTable 3, event data 3, bit 7:3 is equivalent to 1 which refers to Device number 1. Event data 3, bit 2:0 is equivalent to 0 which refers to Function number 0. From Table 8 above, the PCI parity error was on the interface of the Gigabit Ethernet Controller (Port A).

3.2.6 System ACPI Power State

MPCBL0001 is targeted to support ACPI functionality, with support for the sleep states S0, S4 & S5. On assertion of ICH3_SLP_S5# and ICH3_SLP_S3# GPIOs, IPMC sends out a hot-swap event message to the shelf manager requesting deactivation. On successful reception of a deactivation message from the shelf manager, the FRU enters M1 power state and remains in this state.

Under conditions where an ACPI enabled operating system is in S4/S5 sleep state, the chipset could deassert ICH3_SLP_S5# and ICH3_SLP_S3# GPIOs requiring the IPMC to attempt AdvancedTCA power state transition to M4 state (through M2, M3).

ACPI capabilities of an operating system are communicated by BIOS to the IPMC at initialization. An OEM style IPMI command is sent by BIOS for this purpose. This command (*SetACPIConfig*; *NetFn: 30h, command: 83h*) is sent by BIOS every time an operating system is initialized. The IPMC firmware defaults to no ACPI until this command is received with proper data in the request to indicate the OS is either ACPI enabled or disabled. For obvious reasons, this command is only executable over SMS channel.

3.2.7 IPMB Link Sensor

The MPCBL0001 provides two IPMB links to increase communication reliability to the shelf manager and other IPM devices on the IPMB bus. These IPMB links work together for increased throughput where both busses are actively used for communication at any point. A request might be received over IPMB Bus A, and the response is sent over IPMB Bus B. Any requests that time out are retried on the redundant IPMB bus. In the event of any link state changes, the events are written to the MPCBL0001 SEL. IPMC monitors the bus for any link failure and isolates itself from the bus if it detects that it is causing errors on the bus. Events are sent to signify the failure of a bus or, conversely, the recovery of a bus.

3.2.8 FRU Hot Swap

The hot-swap event message conveys the current state of the FRU, the previous state, and a cause of the state change as can be determined by the IPMC. Refer to PICMG 3.0 Specifications for further details on the hot-swap state.

3.2.9 CPU Failure Detection

A CPU failure during runtime or POST will have better error handling: a SEL event notification will be generated if either one of the CPUs fails to power up, and the Health LED will turn red.

- 1. An FRB3 timer (30 seconds) was implemented to detect the failure of the CPUs to boot. This also now implements offset 04h in the CPU 0 Status sensor. When asserted, it will generate an event and set the Health LED to red.
- 2. The SMI line is now checked for a long (10 second) assertion that indicates a severe hardware failure around the CPUs during runtime. As a result, a new discrete sensor has been added (SMI Timeout) that will assert when the SMI line stays asserted too long.

Refer to Table 9 for the SEL events associated with FRB3 timer timeout and SMI Timeout assertion.

Table 9.CPU Failure Behavior

CPU Failure Detection	CPU Iden	tification	Behavior			
Operational Phase	CPUO	CPU1	Board Power Status	CMM SEL Event	Health LED	
	Normal	Normal	Bootable	No	Green	
POST	Fail	Normal	Stop Booting	Yes	Red	
F031	Normal	Fail	Stop Booting	Yes	Red	
	Fail	Fail	Stop Booting	Yes	Red	
	Normal	Normal	Keep Working	No	Green	
Runtime	Fail	Normal	Halt	Yes	Red	
Kuntime	Normal	Fail	Halt	Yes	Red	
	Fail	Fail	Halt	Yes	Red	

3.2.10 Port 80h POST Codes

When there is an FRB3 failure, the event message sent from the CPU Status sensor with sensor type code 07 provides the last Port 80 code byte written by the BIOS. This information is contained in Data Byte 3 of the event message.

Example:

To decode Port 80 data from SEL event when a board is booted without memory, refer to the following method.

SEL EVENT - ID:0DD8(Tue Jan 25 18:45:20 2005) Gen:8E Type:07 No:50 Dir:6F D1:64 D2:6F D3:E1

The values shown in bold above convey the following information:

- The sensor type is 07. This refers to the processor.
- Event data 1, bit 0-3 is 4. This refers to an FRB3/processor startup or initialization failure (the CPU did not start).
- Event data 3 is E1. This refers to the last Port 80h POST codes before the board hangs.

Refer to the tables in Section 9.2 for descriptions of the Port 80h POST codes.

Note: At any time when a board hangs, you may also use an OEM IPMI command to query the Port 80 POST codes. For the command syntax, refer to Section 3.7.7, "Get Port80 Data" on page 49.

3.3 Field Replaceable Unit (FRU) Information

The FRU Information provides inventory data about the boards where the FRU Information Device is located. The part number or version number can be read through software.

FRU information in the MPCBL0001 includes data describing the MPCBL0001 board as per PICMG 3.0 Specification requirements. Additional multirecords will be added for the BIOS to write CPU information, BIOS version number, and PMC information to FRU data correctly. This information is retrieved by shelf manager (ShMC), enabling reporting of board-specific information through an out-of-band mechanism.

Following are the definitions for the multirecord implemented by the firmware as part of FRU data.

Table 10. FRU Multirecord Data for CPU/RAM/PMC/BIOS Version Information

Variable	Size (bytes)	Data	Туре
Manufacturer ID (Intel IANA number)	3	0x000157 (LSB first, MSB next)	Binary
Record Version	1	1	Binary
Type/Length	1	1	Binary
CPU Numbers	1	x	Binary
Type/Length	1	2	Binary
RAM Info	2	X (in units of 1 MByte)	Binary
Type/Length	1	(5 * XXX) + 1	Binary
Number of PMCs	1	ХХХ	Binary
PMC Info	5*XXX	PMC_Data	Binary
Type/Length	1	0xFF	Binary
BIOS Version	63 (max)	ууууууу	ASC-II
End of Fields	1	0xC1	Binary

Table 11. PMC Data

Variable	Size (bytes)	Data	Туре
Device ID	2	XX	Binary
Vendor ID	2	XX	Binary
PMC Installed?	1	0 (PMC is not installed) 1 (PMC is installed)	Binary

3.4 E-Keying

E-Keying has been defined in the PICMG 3.0 Specification to prevent board damage, prevent misoperation, and verify fabric compatibility. The FRU data contains the board point-to-point connectivity record as described in Section 3.7.2.3 of the PICMG 3.0 Specification.

Upon management power-on, the firmware sets the Fibre Channel ports to front panel by default. When the board enters M3 power state, the shelf manager reads in the board point-to-point connectivity record from FRU and determines whether the board can enable the Fibre Channel ports to the back plane. Set/Get Port State IPMI commands defined by the PICMG 3.0 Specification are used for either granting or rejecting the E-keys.

If user Fibre Channel selection is to the front, the firmware maintains the Fibre Channel ports to the front panel regardless of the shelf manager's granting or rejecting of E-keys for the board.

Table 12 on page 44, describes the:

- Connections to base and fabric interfaces on the MPCBL0001 board for E-keying purposes.
- Link descriptor list for the two Gigabit Ethernet channels connected to the base interface and the two Fibre Channels on the fabric interface.

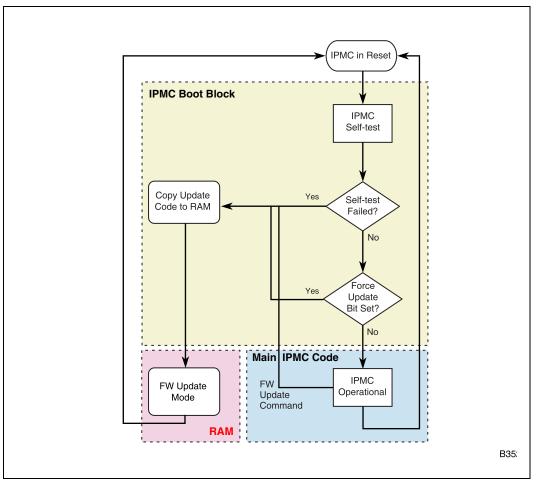
Table 12.Link Descriptors for E-Keying

No	Link	Link	Link Type Extension	Link	L	ink Designa	tor	Link Desc Value
	Descriptor	Grouping I D	Extension	Туре	Port 0 - 3 Flags	Interface	Channel Number	value
		[31:24]	[23:20]	[19:12]	{11:8}	{7:6}	[5:0}	
1	Ethernet Port 1	0	0000	00000001	0001	00	000001	0x00001101
2	Ethernet Port 2	0	0000	00000001	0001	00	000010	0x00001102
3	FC Port 1	0	0010	00000010	1000	01	000001	0x00202841
4	FC Port 2	0	0010	00000010	1000	01	000010	0x00202842

Note: Fibre Channel E-keying is only applicable to MPCBL0001FXX products.

3.5 IPMC Firmware Code

IPMC firmware code is organized into boot code and operational code, both of which are stored in a flash module. Upon an IPMC reset, the IPMC executes the boot code and performs the following:


- 1. Self test to verify the status of its hardware and memory.
- 2. Sets up the internal real-time operating system (RTOS).
- 3. Performs a checksum of the operational code.

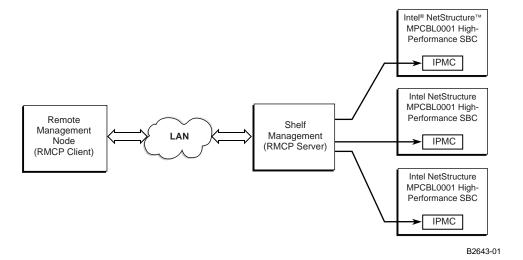
Upon successful verification of the operational code checksum, the firmware will jump to the operational code.

When the firmware is commanded to enter firmware (FW) update mode, the operational code uses a special branch, Software Interrupt, to jump to the FW update code in the boot block. Once in FW update mode, the update code is copied into RAM, then the firmware jumps to the code in RAM to execute. The FW update code cannot execute out of flash while the flash is being updated.

3.6 IPMC Firmware Upgrade Procedure

MPCBL0001 firmware is upgraded using either of two methods, the KCS interface or the IPMB (RMCP) interface.

3.6.1 IPMC Firmware Upgrade Using KCS Interface


The KCS interface is the communication mechanism between the host processor on the MPCBL0001 and the IPMC controller. A firmware update utility is available. It takes a hex file to be updated as input from the command line. It can also verify that updates are completed successfully by reading back data written to the flash memory. Typically, it takes the utility around two minutes to complete the update over the KCS interface. After the firmware update is completed, the controller goes through a reset and boots up with the new firmware. The host processor is not reset when going through a firmware update, so the operating system and applications running on the host processor are not interrupted.

Please refer to the latest IPMC firmware release notes for the upgrade procedure. The upgrade procedure, utility, and upgraded firmware are part of the IPMC firmware release package, which can be downloaded from the Intel web site at http://www.intel.com/design/network/products/cbp/atca/index.htm.

3.6.2 IPMC Firmware Upgrade via the IPMB Interface (RMCP)

IPMI Specification v1.5 defines Remote Management Control Protocol (RMCP). Version 1.5 adds features for layering commands through virtual networks like Ethernet.

The IPMC firmware that needs to be upgraded is loaded to client utility software on the RMCP client. The RMCP client uses the RMCP protocol carrying embedded IPMI messages to send to the RMCP Server running in the CMM. The RMCP server decodes the RMCP package and forwards the IPMI messages to the SBC.

3.6.2.1 Updating MPCBL0001 Firmware

Please refer to the latest IPMC firmware release notes for the upgrade procedure. The upgrade procedure, utility, and upgraded firmware are part of the IPMC firmware release package, which can be downloaded from the Intel web site at http://www.intel.com/design/network/products/cbp/atca/index.htm.

3.7 OEM IPMI Commands

This section documents the OEM style IPMI commands implemented and supported on the MPCBL0001.

3.7.1 Reset BIOS Flash Type

This command resets the processor and changes the BIOS bank select signal so that CPU boots off redundant BIOS bank.

Table 13.Reset BIOS Flash Type

	7	6	5	4	3	2	1	0		
NetFn/LUN		NetFn = 3Ah (OEM Request) RsLUN								
Command		Cmd = 01h								
Byte 1	00h – Che	BIOS checksum success/failure indication 00h – Checksum success 01h – Checksum failure								
Byte 1	Completion code									

3.7.2 Set Fibre Channel Port Selection

This command sets the Fibre Channel port routing as specified in the request data bytes. The command is available over KCS and IPMB interface.

Table 14. Set Fibre Channel Port Selection

	7	6	5	4	3	2	1	0		
NetFn/LUN		NetFn = 3Ah (OEM Request) RsLUN								
Command		Cmd = 02h								
Byte 1	Intel IANA	number (I	_SB) = 57h	I						
Byte 2	Intel IANA	number =	01h							
Byte 3	Intel IANA	number (I	MSB) = 00ł	ı						
Byte 4		Fibre Channel 1 setting, 0=disabled, 1=front panel, 2=Backplane, 3= Reserved, FF= Don't change settings,								
Byte 5		nnel 2 setti nge setting	0	bled, 1=fro	nt panel, 2	=Backplane	e, 3= Reser	ved, FF=		
Byte 1				Complet	ion code					
Byte 2	Intel IANA	Intel IANA number (LSB) = 57h								
Byte 3	Intel IANA	Intel IANA number = 01h								
Byte 4	Intel IANA	number (I	MSB) = 00ł	۱						

3.7.3 Get Fibre Channel Port Selection

This command returns the current Fibre Channel port 'routing' selection. The command is available over the KCS and IPMB interfaces.

Table 15. Get Fibre Channel Port Selection (Sheet 1 of 2)

	7	6	5	4	3	2	1	0	
NetFn/LUN		NetFn = 3Ah (OEM Request)							
Command		Cmd = 03h							
Byte 1	Intel IANA	Intel IANA number (LSB) = 57h							
Byte 2	Intel IANA	Intel IANA number = 01h							
Byte 3	Intel IANA	number (I	MSB) = 00ł	۱					
Byte 1				Complet	ion code				
Byte 2	Intel IANA number (LSB) = 57h								
Byte 3	Intel IANA number = 01h								

Table 15.Get Fibre Channel Port Selection (Sheet 2 of 2)

	7	6	5	4	3	2	1	0			
Byte 4	Intel IANA	Intel IANA number (MSB) = 00h									
Byte 5	Fibre Cha	Fibre Channel 1 setting, 0=disabled, 1= Front panel, 2= Backplane, 3= reserved.									
Byte 6	Fibre Cha	nnel 2settir	ng, 0=disab	led, 1= Fro	ont panel, 2	= Backplar	ne, 3= rese	rved.			

3.7.4 Get HW Fibre Channel Port Selection

This command returns the current Fibre Channel port routing selection as set in the hardware. The command is available over KCS and IPMB interface SetFiberChannelPortSelection.

Table 16. Get HW Fibre Channel Port Selection

	7	6	5	4	3	2	1	0		
NetFn/LUN		NetFn = 3Ah (OEM Request) RsLUN								
Command		Cmd = 04h								
Byte 1	Intel IAI	Intel IANA number (LSB) = 57h								
Byte 2	Intel IAI	Intel IANA number = 01h								
Byte 3	Intel IAI	Intel IANA number (MSB) = 00h								
Byte 1		Completion code								
Byte 2	Intel IAI	NA numb	er (LSB)	= 57h						
Byte 3	Intel IAI	NA numb	er = 01h							
Byte 4	Intel IAI	NA numb	er (MSB)	= 00h						
Byte 5	Fibre Ch	Fibre Channel 1 Settings, 1 = Front Panel, 2 = Backplane								
Byte 6	Fibre Ch	annel 2 S	Settings,	1 = Front	Panel, 2	= Backpl	ane			

3.7.5 Set Control State

This command sets the state of a control pin and overrides the control pin's auto state. Refer to Table 20 on page 49 for control number information.

Table 17. Set Control State

	7	6	5	4	3	2	1	0
NetFn/LUN		NetFn = 3Eh (OEM Request) RsLUN				UN		
Command		Cmd = 20h						
Byte 1	Control nu	Control number						
Byte 2	Control state, 0 = Deassert, 1 = Assert, 3 = Reserved, FF = Don't change settings							
Byte 1		Completion code						

3.7.6 Get Control State

This command sets the state of a control pin. This command overrides the AUTO-state of the control pin. Refer to Table 20 on page 49 for control number information.

Table 18.Get Control State

	7	6	5	4	3	2	1	0
NetFn/LUN		NetFn = 3Eh (OEM Request) RsLUN				UN		
Command		Cmd = 21h						
Byte 1	Control nu	Control number						
Byte 1	Completion code							
Byte 2	Control state, 0 = Deassert, 1 = Assert, 3 = Reserved, FF = Don't change settings							

3.7.7 Get Port80 Data

This command returns the last byte value written by the BIOS to Port 80 since the last System Reset. If no data has been written to the port since System Reset, the Completion Code returned is CBh.

Table 19. Get Port80 Data

	7	6	5	4	3	2	1	0
NetFn/LUN		NetFn = 30h (OEM Request) RsLUN				UN		
Command		Cmd = 2Dh						
Byte 1	— (BLANK	— (BLANK)						
Byte 1	Completion code							
Byte 2	Last Port 80 code value (in HEX)							

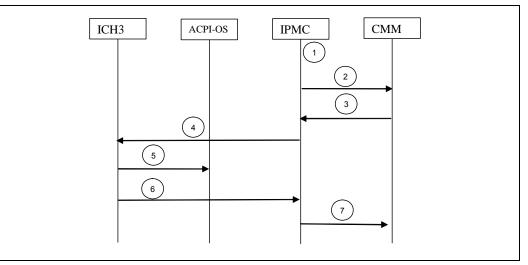
3.8 Controls Identifier Table

Table 20 below lists the control identifiers that can be used with Set/Get Control State IPMI commands to query or set information on certain controls in the firmware.

Table 20.Controls Identifier Table

Control Description	Control Number
FWH Hub (for BIOS bank information) 0	0
FWH 0 Write Protect	1
FWH 1 Write Protect	2
FWH 0 Top Block Lock	3
FWH 1 Top Block Lock4	4

3.9 Hot-Swap Process


The MPCBL0001 SBC has the ability to be hot-swapped in and out of a chassis. The onboard IPMC manages the SBC's power-up and power-down transitions. The list below, along with Figure 6, illustrates this process.

1. Ejector latch is opened. HOT_SWAP_PB# assertion. IPMC firmware detects the assertion of this signal.

- IPMC sends "Deactivation Request" message to CMM. M state moves from M4-> M5.
- 3. Board moves from M5 -> M6 if the CMM grants the request.
- The IPMC's ACPI timer (3 minutes) starts if an ACPI-enable OS is loaded. Otherwise, it goes to Step 7 below. The IPMC asserts 20 ms pulse on SMC_PWRBTN#.
- The Power Button Status register (PWRBTN_STS) is set. It then asserts SCI/SMI# to the OS. If ACPI OS is enabled, SCI interrupt handler on the OS is called. Interrupt handler clears PWRBTN_STS bit. OS starts to perform a graceful shutdown.
- 6. ICH3 detects "LOW" on the ICH3_PWRBTN#. Asserts ICH3_SLP_S3# and ICH3_SLP_S5# to IPMC. Upon detection of ICH3_SLP_S5# and ICH3_SLP_S3#, board transitions to Step 7 below. If ICH3 doesn't assert the signals, the board will transition to Step 7 below upon the ACPI timer expiration.
- 7. The firmware deasserts payload power and sets the IPMI locked bit before it transitions from M6 to M1 state.
- *Note:* If the upper-level software moves the IPMC to M6, the same procedure is followed, starting with Step 4.

Figure 6. Hot-Swap Process

3.9.1 Hot-Swap LED (DS10)

The MPCBL0001 SBC supports one blue Hot Swap LED, mounted on the front panel. See Figure 14, "MPCBL0001NXX SBC Front Panel" on page 78 for its location. This LED indicates when it is safe to remove the SBC from the chassis. The on-board IPMC drives this LED to indicate the hot-swap state. Refer to Table 21, "Hot-Swap LED (DS11)" on page 51.

When the lower ejector handle is disengaged from the faceplate, the hot swap switch embedded in the PCB will assert a "HOT_SWAP_PB#" signal to the IPMC, and the IPMC will move from the M4 state to the M5 state. At the M5 state, the IPMC will ask the CMM (or Shelf Manager) for permission to move to the M6 state. The Hot Swap LED will indicate this state by blinking on for about 100 milliseconds, followed by 900 milliseconds in the off state. This will occur as long as the SBC remains in the M5 state. Once permission is received from the CMM or higher-level software, the SBC will move to the M6 state.

The CMM or higher level software can reject the request to move to the M6 state. If this occurs, the Hot Swap LED returns to a solid off condition, indicating that the SBC has returned to M4 state.

If the SBC reaches the M6 state, either through an extraction request through the lower ejector handle or a direct command from higher-level software, and an ACPI-enabled OS is loaded on the SBC, the IPMC communicates to the OS that the module must discontinue operation in preparation for removal. The Hot Swap LED continues to flash during this preparation time, just like it does at the M5 state. When main board power is successfully removed from the SBC, the Hot Swap LED remains lit, indicating it is safe to remove the SBC from the chassis.

Warning: Removing the SBC prematurely can lead to device corruption or failure.

Table 21.Hot-Swap LED (DS11)

LED Status	Meaning
Off	Normal status
Blinking Blue	Preparing for removal/insertion: Long blink indicates activation is in progress, short blink when deactivation is in progress.
Solid Blue	Ready for hot swap

3.9.2 Ejector Mechanism

In addition to captive retaining screws, the MPCBL0001 SBC has two ejector mechanisms to provide a positive cam action; This ensures the blade is properly seated. The bottom ejector handle also has a switch that is connected to the IPMC to determine if the board has been properly inserted.

3.10 Interrupts and Error Reporting

3.10.1 Device Interrupts

The Low Voltage Intel[®] Xeon[™] processor and E7501 chipset (MCH, ICH3, P64H2) utilize a mechanism for delivering interrupts that is slightly different from, though fully compatible with, previous IA-32 system platforms. The change affects only the delivery mechanism and no changes are required to existing software.

This new delivery mechanism transfers the equivalent APIC messages across the system bus structure rather than using a sideband channel as in the case of the APIC serial bus. There is no longer an APIC bus connection to the processor. This new mechanism improves the interrupt message transfer speed to the processors, thus reducing latency. It also simplifies the flushing of buffers that is required when data is buffered between the I/O subsystem and memory. Since interrupt messages are no longer communicated across a sideband channel, these transfers are now visible to the chipset. The interrupt message transactions themselves can now initiate buffer flushing to ensure all data within the I/O and memory subsystems is coherent.

As before, the LINT[1:0] connections to the processors remain for compatibility with the old PC industry standard, legacy interrupt architecture (8259 controllers). In addition, the P64H2 PCI bridge devices include an interrupt output (BTINTR#), which can be routed into the legacy interrupt controller to facilitate booting from devices residing on the far side of such PCI bridge devices. Once the boot process is complete and the APIC interrupt system is enabled, devices no longer need to share interrupts; This improves interrupt system performance.

The BIOS initializes and enables both the 8259 and APIC but masks all APIC interrupts in the redirection table. This is so the SBC operates in legacy interrupt mode. The BIOS does not operate in APIC mode at any time. An APIC-aware OS disables the 8259 and unmasks the APIC interrupts to switch to APIC mode.

Table 22 displays the interrupt connections provided by the MPCBL0001 SBC. Actual interrupt vector assignments and routing to legacy interrupts as necessary is under BIOS and/or OS control.

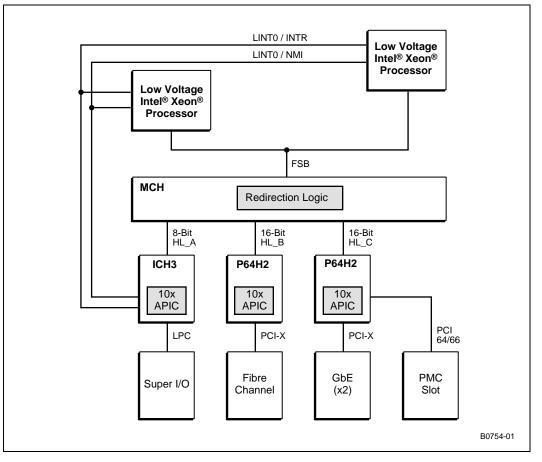

Legacy Interrupt	IRQ assigned
	Master 8259
Internal timer0 output	0
Slave 8259 INTR output	2
Serial Port A	3
	Slave 8259
Internal RTC	0 (8)
Primary IDE	6 (14)
PCI Device Interrupt	IRQ assigned
	HI-A ICH3
Super I/O	SERIRQ
USB 1.1 controller #1	PIRQA#
IPMC_SYSIRQ#	PIRQB#
HI-B P64H2 BTINTR#	PIRQC#
HI-C P64H2 BTINTR#	PIRQD#

Table 22.Interrupt Assignments (Sheet 1 of 2)

Table 22. Interrupt Assignments (Sheet 2 of 2)

Legacy Interrupt	IRQ assigned
	HI-B P64H2
Fibre Channel INTA#	PB_IRQ0
Fibre Channel INTB#	PB_IRQ1
	HI-C P64H2
PMC INTA#	PA_IRQ0
PMC INTB#	PA_IRQ1
PMC INTC#	PA_IRQ2
PMC INTD#	PA_IRQ3
Ethernet #1 INTA#	PB_IRQ0
Ethernet #2 INTA#	PB_IRQ1

Figure 7. Interrupt Signals

3.10.2 Error Reporting

The MCH handles error reporting from the memory subsystem. Errors consist of correctable and uncorrectable bit errors. The ECC algorithms used are capable of correcting any number of bit errors contained within a 4-bit nibble. In addition, any

number of bit errors contained within two 4-bit nibbles is detected. The MCH communicates these errors to the ICH3 via special cycles over the hub link interface. These special cycles indicate to the ICH3 that an MCH-detected error has occurred. The MCH special cycle communicates the type of event that should be generated by the ICH3 when an error is detected. Selection for the generation of an SERR, SMI, or SCI event is provided. Status for these reported errors is then found in the MCH DRAM_FERR (first error) and DRAM_NERR (next error) status registers. Refer to the MCH data sheet for more information (see Appendix A, "Reference Documents").

Correctable memory errors generate an SMI and are logged via IPMI as a SEL. Noncorrectable errors first generate an SMI (which generates a SEL) and then an NMI.

Each P64H2 device reports the PCI errors that occur on the buses to which it is attached. These consist of the PCI error assertions of the PERR# or SERR# signals. The errors are reported by sending the DO_SERR special cycle to the MCH on the Hub Interface. The MCH forwards the error to the ICH3, which generates the appropriate error condition to the processor(s) such as NMI, SMI, or SCI.

PCI address parity errors are considered catastrophic and may abort further data transfers by the P64H2 if that is the programmed response. Parity/ECC is checked on both the Hub Interface and PCI bus transactions. PCI data parity errors are considered less severe and allow transactions to continue. Data parity errors cause the Detected Parity Error" status to be logged and, if enabled, the DO_SERR special cycle is transmitted. In a transaction where a data error occurs, the data being forwarded to the next bus is "poisoned" to ensure the error follows the data to its destination. Poisoned data has bad parity or multi-bit ECC errors introduced before being forwarded to the next bus.

PCI assertions of the SERR# signal also result in the DO_SERR special cycle being generated on the hub interface when enabled. Other potential causes for a DO_SERR special cycle include:

- Parity errors on the target bus during a write.
- A master timeout on a delayed transaction.
- The occurrence of a PCI master abort cycle.

Refer to the P64H2 Data Sheet, section 4.9, for more information on error handling. For details on obtaining this document, see Appendix A, "Reference Documents."

The ICH3 device has the ability to report PCI and hub link errors directly to the processors. When a PERR# or SERR# occurs on the ICH3 local PCI bus, the ICH3 can be programmed to generate NMI or SMI. The ICH3 also fields messages from the MCH and its attached hub devices to indicate errors to the processors on their behalf. The messages may request SMI#, SCI, NMI, or SERR3 to be asserted. Software must check the MCH and attached hub devices to determine the exact cause of the error. Refer to the ICH3 Data Sheet for more information on error handling and generation. For details on obtaining this document, see Appendix A, "Reference Documents."

3.11 ACPI

ACPI gives the operating system direct control over the power management and Plug and Play functions of a computer. The use of ACPI with theMPCBL0001 SBC requires an operating system that provides ACPI support. ACPI features include:

- Plug and Play (including bus and device enumeration) and APM support (normally contained in the BIOS).
- Power management control of individual devices, add-in boards (some PMC cards may require an ACPI-aware driver), and hard-disk drives.
- A soft-off feature that enables the operating system to power off the computer.

• Support for an IPMC firmware command switch.

3.11.1 System States and Power States

Under ACPI, the operating system directs all system and device power state transitions. The operating system puts devices in and out of low-power states based on user preferences and knowledge of how devices are being used by applications. Devices that are not being used can be turned off. The operating system uses information from applications and user settings to put the system as a whole into a low-power state.

Table 23, "Power States and Targeted System Power" on page 55 lists the power states and the associated system power targets supported by the MPCBL0001 SBC. See the ACPI Specification for a complete description of the various system and power states.

3.12 Reset Types

Global States	Sleeping States	Processor States	Device States
G0 – working state	S0 – working	C0 – working	D0 – working state.
G1 – sleeping state	S4 – Suspend to disk. Context saved to disk.	No power	D3 – no power except for wake up logic.
G2/S5	S5 – Soft off. Context not saved. Cold boot is required.	No power	D3 – no power except for wake up logic.
G3 – mechanical off AC power is disconnected from the computer.	No power to the system.	No power	D3 – no power for wake up logic, except when provided by battery or external source.

Table 23. Power States and Targeted System Power

The watchdog timer on the IPMC can be configured and used through standard IPMI v1.5 watchdog timer commands. Refer to Section 3.13.1, "WDT #1" on page 60 for detailed implementation.

3.12.1 Reset Logic

The following topics describe the two types of reset requests and the boot relationships among them. The two types of reset requests available on the MPCBL0001 are:

- · Hard reset request (always results in a cold boot)
- Soft reset request (can result in either a warm or cold boot)

A hard reset request occurs whenever the processor Reset line is asserted and then deasserted. A soft reset occurs whenever an assertion occurs on the processor Init line. Whenever a soft reset request occurs, the BIOS checks two memory locations to determine whether to initiate a warm boot while leaving main memory intact or a cold boot that clears memory.

Whenever the BIOS detects that the reset is either a hard reset or a cold boot, it specifically clears the memory location 40h: 72h so it does not contain a 1234h. Under warm boot conditions, this memory location contains a 1234h (the developer's application writes this value in this location [using /dev/mem] when it is started). If a hard reset occurs (as defined in the hard reset topic below), it is certain that the 40h: 72h location contains a non-1234h value.

3.12.2 Hard Reset Request

A Hard Reset, or CPU Reset, is defined as the assertion of the processor reset signal (see Table 24, "Reset Request" on page 57). This initializes the processor state and registers, disables internal caches, and causes the processor to unconditionally begin execution from the reset vector. A hard reset is initiated by the following events:

- 1. A power up of the SBC. The SMC enables the onboard power supplies.
- 2. The SMC negates the ICH3_PWROK signal (see Note below).
- 3. A "reset" command from the Port CF9h I/O register (refer to the "Intel[®] 82801CA I/O Controller Hub 3 (ICH3-S) Datasheet" for information about this register).
- 4. Watchdog timer (WDT #1) expires and is configured to initiate a hard reset. See "Watchdog Timers (WDTs)" on page 60 for more information.
- 5. Watchdog timer (WDT #3) expires after failure to perform the first instruction fetch.
- 6. A command (cmmset -I bladex -d powerstate -v reset) is issued from MPCMM0001.

Note:

The IPMC can negate the dedicated signal ICH3_PWROK to initiate a processor reset. ICH3_PWROK indicates whether power is OK. If the IPMC deasserts ICH3_PWROK, the hardware asserts the processor reset lines.

3.12.3 Soft Reset Request

The assertion of the processor's INIT signal causes a soft reset or "CPU INIT" (see Table 24, "Reset Request" on page 57). The ICH3 is normally responsible for driving the INIT signal. A CPU INIT event causes the processor(s) to fetch the reset vector at the next instruction boundary. The majority of the processor and all of the cache states are unaffected by an INIT event.

After the INIT event, hardware may be reset (or not reset) under BIOS control. PCI buses are reset using their respective bridge control registers. This signal is then level translated to the processor compatible signal level. INIT may be caused by the following events:

- 1. The reset button is pressed (see Note below). See Figure 14, "MPCBL0001NXX SBC Front Panel" on page 78 for its location.
- 2. A processor shutdown special cycle occurred.
- 3. An INIT command from Port 92h I/O register (refer to the *Intel[®] 82801CA I/O Controller Hub 3 (ICH3-S) Datasheet* for information about this register).
- 4. An INIT command from Port CF9h I/O register.
- 5. A keyboard reset command (ICH3 RCIN# signal asserted).
- 6. The IPMC may also directly assert the INIT signal; WDT #1 expires and is configured for a soft reset.
- 7. Processor BIST is enabled and a hard reset is initiated from the Port CF9h register. This asserts the INIT signal but is not classified as a soft reset since CPU reset is also asserted.
- 8. OS reboot commands (eg: "shutdown -r now" or "reboot" in Linux).
- 9. A processor INIT may also be initiated through an APIC "init" message. This message may target a specific processor or all processors. This "init" is an internally generated event (No INIT signal is asserted) so the IPMC is unable to detect this occurrence.
- *Note:* The reset button (RESET_PB#) is an input to the IPMC. There are also IPMI commands to reset the board and change power states through the software. However, the reset

button is a last resort because the user must be physically present at the chassis to reset the board. When the blade is in M4 state, pressing the front panel reset button for less than 4 seconds will cause a soft reset. However, if the reset button is pressed for more than 4 seconds, the system will be forced power off.

After a Soft Reset/CPU Init, the BIOS code executes and determines if the reset is a warm boot or a cold boot. A warm boot restarts the system and keeps memory above the 8 MByte boundary intact. During a warm boot the MCH is not reset, allowing DRAM refresh to continue during and over the soft reset event. A cold boot sets the state of all peripherals to the same state they would be in if a hard reset were triggered.

Table 24.Reset Request

Reset Request	Signal Activated	Туре
Hard	Reset	Full reboot
Soft	Init	Partial reboot

3.12.4 Warm Boot

A warm boot occurs when the processor is booting after a soft reset request. To qualify as a warm boot, the reset counter located at 40h: D0h must be non-zero (by default, the reset counter and reset flag are initialized to 10 and 1234h by BIOS after a cold boot.) Execution starts at the reset vector. The BIOS initializes and configures all devices except for memory. Memory contents remain intact except for the first 8 MBytes. The BIOS uses the first 8 MBytes during POST, but does not modify the reset flag or the reset counter. MCH is not reset, allowing DRAM refresh to continue during the warm boot.

Note: On every warm boot, BIOS automatically decrements the reset counter by one. When the reset counter reaches zero and the soft reset is initiated, a cold boot occurs instead of warm boot.

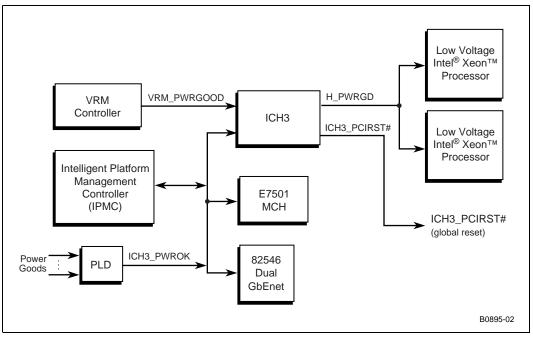
3.12.5 Cold Boot

Any soft reset that does not meet the configuration described in the preceding Warm Boot section is classified as a cold boot. Execution starts at the reset vector, and BIOS initializes and configures all devices, including memory subsystem, as if a hard reset had occurred. See Table 25, "Reset Actions" on page 57.

During a cold boot the BIOS initializes the warm reset counter to 0x0A and clears the reset flag to 1234h. Software can then read the reset flag to determine the type of reset.

Table 25. Reset Actions

Reset Actions	System Function	Memory Status
Warm boot	Partial restart	Preserves memory above 8MB boundary
Cold boot	Full restart	Functionally equivalent to a hard reset.


3.12.6 Power Good

When the MPCBL0001 SBC is inserted into the chassis, the hardware management circuitry is "hot plugged." The hardware management voltage is immediately applied, and the on-board IPMC is reset. After the hardware management reset, the operation of the IPMC and full power-up of the SBC are under firmware control.

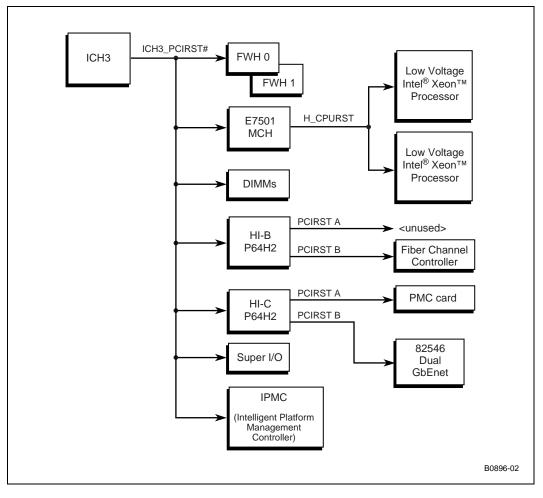
Upon command to power on the module, the IPMC asserts the "power enable" signal to the on-board DC/DC converters. Full power-up of the SBC is sequenced by hardware to ensure device-specific power requirements are followed. Sequencing of specific voltages is required to ensure that devices using multiple voltages are not damaged or stressed.

Figure 8. Power Good Map

As the many voltages power up, each regulator produces a "power good" signal. All of these power good signals are logically OR'd (with the exception of the VRM power good) to produce the ICH3_PWROK signal input to the ICH3 as shown in Figure 8, Power Good Map. When this signal is active, it indicates all on-board power is good.

Next, the VRM power good is gated with the ICH3_PWROK signal in the ICH3 to produce the processor's power good signal input.

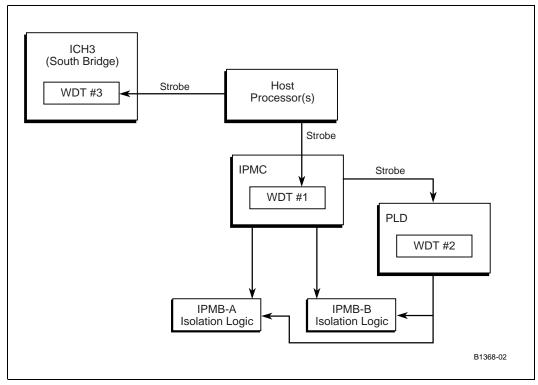
As soon as the ICH3 device is powered, its PCI reset output is asserted. This reset output remains asserted until all power good signals are present (indicated by the ICH3_PWROK signal), the processor VRM power good signal is asserted, and device voltage/clock stabilization times have been satisfied.


Device resets are then released, and processor BIOS execution and boot begins. The PCI reset output of the ICH3 is the source of all other power-up reset signals as shown in Figure 9, "Reset Chain" on page 59

The IPMC is also capable of initiating this power-up or global reset by negating the ICH3_PWROK signal. Additionally, devices on specific PCI buses may be independently reset by software through their associated bridge devices.

When commanded to do so, the IPMC releases device and processor resets, and processor BIOS execution and boot begins.

Figure 9. Reset Chain



3.13 Watchdog Timers (WDTs)

Figure 10, "Watchdog Timers" on page 60 shows the relationship between the three watchdog timers (WDTs) on the MPCBL0001 SBC.

Figure 10. Watchdog Timers

3.13.1 WDT #1

The first WDT (WDT #1) is a hardware timer in the IPMC. WDT #1 is IPMI compliant; its interaction with the host processor BIOS or system software is accomplished through IPMI commands over the Keyboard Controller Style (KCS) interface to the IPMC. The host processor uses the Set Watchdog Timer message to configure WDT #1, then the Reset Watchdog Timer message to strobe the timer.

WDT #1 can be set to any value between 100 ms and 6,553,600 ms in 100 ms intervals. Another configuration parameter is an indicator of which software is controlling WDT #1. This has five state settings:

- 1. BIOS FRB2: Used during fault-resilient booting to detect issues in the BIOS.
- 2. BIOS/POST: Used while the BIOS is running through its POST operations.
- 3. OS Load: Set by the BIOS just before an OS load, then reset by the OS (the OS must be enabled to do so) when it finishes booting.
- 4. SMS/OS: Used by the system management software or the OS.
- 5. OEM: Used by any OEM software.

WDT #1 can also be configured to take various actions before timing out (for example, SMI, NMI, nothing) or after timing out (for example, hard reset, power down, or power cycle). In addition, an event can be logged into the SEL whenever the watchdog timer expires. If WDT #1 expires, the IPMC is not reset. For more details on the watchdog timer commands and settings, see the IPMI Specification version 1.5.

On power up, the initial state is that the IPMI WDT #1 is not running. Normally some code (BIOS or OS level) must send the Reset Watchdog Timer command to start the timer running. The same code sends a Set Watchdog Timer command first to set up the timer to a known state (see the IPMI Specification for more details).

When WDT #1 times out, it logs an event into the SEL, provided that the "Don't Log" flag is false (see the IPMI 1.5 Specification for details). The SEL event also describes the timeout action taken.

If WDT #1 times out and causes a hard reset, the timer state is equivalent to the power-up state (that is, not running; either BIOS or the OS must configure and start it). If the host processor is reset (soft or hard) independent of WDT #1, the firmware disables the watchdog timer.

One of the actions BIOS takes very early in its code is to start the WDT #1 to monitor its boot progress. When it finishes POST, the BIOS turns off WDT #1 during the OS load period.

WDT #1 parameters are altered according to BIOS control parameters, and WDT #1 is not running when the OS first (re)starts. The BIOS sets WDT #1 to a length of time longer than the expected POST time; therefore, BIOS does not actively strobe WDT #1. The flag that determines if a WDT #1 reset must be hard or soft remains over any type of reset, since it is held in the microcontroller.

3.13.2 WDT #2

WDT #2 (implemented in a PLD) must be strobed by the IPMC firmware. If WDT #2 expires, it isolates the SBC from the backplane IPMB buses and resets the IPMC. There is no method for the processor to be explicitly notified that the IPMC is reset. Once the IPMC has reset, the main processors can resume communication with the IPMC. The watchdog timer is set to trigger after 96 seconds, and the IPMC strobes it once a second.

WDT #2 is always running: that is, the counter is always counting. However, a PLD component controls the IPMC reset and IPMB isolation associated with WDT #2 expiration, ignoring any WDT event until the IPMC strobes/enables the LTC4300 IPMB interfaces.

3.13.3 WDT #3

WDT #3 is contained within the ICH3 device. This watchdog timer monitors the processor's first attempt to fetch an instruction after a power up or hard reset. If the processor has not fetched its first instruction within the timeout period, the ICH3 resets the processors. Since the processor has not begun any execution, the ICH3 uses a hard reset.

3.14 LED Status

3.14.1 Health LED

The MPCBL0001 SBC supports one bicolor health LED to indicate the SBC's health status, i.e., whether a fault or error condition has been detected on the SBC. This LED is mounted on the front faceplate and driven by the onboard IPMC. The health LED will

only be driven to an error condition (red) if there is a critical or non-recoverable (major or critical in AdvancedTCA parlance) condition active on the SBC. Alarms could include exceeding sensor thresholds for temperature and on-board logic voltages. The health LED remains red until the sensors return to a normal operating value. Hard-drive failures, boot failures, etc. are not considered critical/major IPMI states, so the IPMC does not explicitly set the health LED in these cases.

Note:

The LED's error state color defaults to red, but the color can be overridden. using PICMG 3.0-defined commands. Refer to Section 3.14.9, "Setting the Default Color for the OOS and Health LEDs" on page 65.

Table 26. Health LED

LED Status (right)	Meaning
Solid Green	Healthy
Solid Amber/Red	Fault or error condition

The default color and override capabilities of the LED follow the LED management requirements defined in Section 3.14.9, "Setting the Default Color for the OOS and Health LEDs" on page 65.

3.14.2 OOS (Out Of Service) LED

The MPCBL0001 SBC supports one bicolor "OOS" LED, mounted on the front faceplate. The LED can be driven to display a red or amber color. When this LED is lit, it indicates that the board is not in service. Its back-end (payload) power could be OFF or ON. Often the OOS state is entered when a critical fault occurs on the board. In this state, the back-end (payload) power is turned OFF. A board could be in this state when its back-end power is OFF but healthy, or when a board is fully powered but not yet deployed, or during the reset process.

Note: Do not extract a board unless the Hot Swap LED is lit.

Table 27.OOS LED (DS9)

LED Status (left)	Meaning
Off	In service
Solid Amber/Red	Fault or error condition

The default color and override capabilities of the LED follow the LED management requirements defined in Section 3.14.9, "Setting the Default Color for the OOS and Health LEDs" on page 65.

3.14.3 Hot-Swap LED

See Section 3.9, "Hot-Swap Process" on page 49.

3.14.4 IDE Drive Activity LED

Table 28.IDE Drive Activity LED

LED Status	Meaning
Off	Normal/No disk access
Green (Blinking)	Disk access (read/write activity)

3.14.5 User Programmable LEDs

The MPCBL0001 SBC provides two bicolor LEDs for user-programmable functions. The LEDs can be driven to display a red, green or amber color. When these LEDs are lit, they indicate a status of a user-defined function.

Table 29. User Programmable LEDs

LED Status (left) LED Status (right)		Meaning
Off	Off	No Status
Red	Red/Green	Active Status of user defined function

The user-programmable LEDs are connected to the GPIO pins on the ICH3 device as follows:

Table 30.GPIO Pin Connections

PIN	GPIO Pin	Default Value	LED Color
User_Prog_LED1_Red#	GPIO21	1	Off
User_Prog_LED1_GRN#	GPIO20	1	Off
User_Prog_LED2_Red#	GPIO28	1	Off
User_Prog_LED2_GRN#	GPIO23	0	Green

By programming the ICH3 GPIO registers as outputs, then selecting the appropriate state (low for illumination, high for off), the user enables the LEDs as required. Refer to the ICH3 datasheet in appendix B for specific GPIO 20, 21, 23, 28 register information.

3.14.6 Network Link/Speed LEDs

The front panel of the SBC provides two LEDs for each Ethernet connection indicating the speed and link activity for that network connection:

Table 31. Network Link LEDs

For Channel A : L2 / For Channel B : L6	
Link LED Status Meaning	
Off	No link
Solid Green	Link established
Blinking Green	Link with activity

Note: Refer to Figure 14 and Figure 15 for LED (L2 and L6) placement on the Front Panel.

Table 32. Network Speed LEDs

For Ethernet controller Channel A : L3 & L4				
Speed LE	Mooning			
L3	L4	Meaning		
Solid Yellow	Off	1 Gbps connection		
Off	Solid Green	100 Mbps connection		
Off	Off	10 Mbps connection		
For Ethernet controller Channel B : L7 & L8				
Speed LED Status				
L7 L8		Meaning		
Solid Yellow	Off	1 Gbps connection		
Off	Solid Green	100 Mbps connection		
Off Off		10 Mbps connection		

Note: Refer to Figure 14 and Figure 15 for LED (L3, L4, L7 and L8) placement on the Front Panel.

3.14.7 Ethernet Controller Port State LEDs

The front panel of the SBC provides a bicolor LED for each Ethernet channel that can light to indicate the Ethernet port state. These LEDs can display a red, green or amber color. The function of the port state LEDs is user definable. The Ethernet Controller SDP[6:7] GPIO bits for each channel are the outputs that control the LEDs. SDP[6] is connected to the Green LED, and SPD[7] is connected to the Red LED.

Refer to the documentation for the $Intel^{(R)}$ 82546 Dual Gigabit Ethernet Controller for information on how to drive these LED signals. Note that existing network drivers may drive these GPIO pins.

Table 33. Ethernet Controller Port State LED

LED Status (L1 and L5)	Meaning
Off	No Status
Red/Green/Amber	Active status of user-defined function

Note: Refer to Figure 14 and Figure 15 for LED (L1 and L5) placement on the Front Panel.

3.14.8 Fibre Channel Port State LEDs

The MPCBL0001 SBC supports two Fibre Channel port state LEDs mounted on the front faceplate. The LEDs are green and yellow. When this LED is lit, it indicates the port state of each Fibre Channel port. LED states are shown in the table as follows:

Table 34.Fibre Channel Port State LED (DS2, DS3)

Yellow LED Status (Fibre Channel 1, left)	Green LED Status (Fibre Channel 2, right)	Meaning
ON	ON	Power On
Flashing	OFF	Loss-of-Sync
ON	OFF	Signal Acquired
OFF	ON	On-Line
FLASH	FLASH	F/W Error

3.14.9 Setting the Default Color for the OOS and Health LEDs

The current default color Health LED in any assertion event is RED. As for the OOS LED, the default color is also RED if there is a fault or error condition.

With the latest IPMC Firmware 1.17, the user has the ability to set the default color to AMBER due to geographical requirements. This default LED color will stay persistent upon IPMC reset.

The PICMG SetFRULedState command used with Function code 0xFC will now persistently save the supplied explicit color and make it the new Local Control "Asserted" state color. This only works with valid colors (not 0x0e or 0x0f).

So, for example, to set the default "Asserted" color of the Health LED from RED to AMBER, the following IPMI command should be issued:

NetFn:	0x2C	PICMG 3.0 Extension
Cmd:	0x07	SetFRULedState command
Data 1:	0x00	PICMG Identifier
Data 2:	0x00	FRU Device ID
Data 3:	0x02	LED ID (LED 2 = Health LED)
Data 4:	0xFC	LED Function (Restore Local Control)
Data 5:	0x00	On-Duration (ignored)
Data 6:	0x04	LED Color (4 = Amber)

After this command is executed, the Health LED will illuminate as AMBER instead of RED on an unhealthy event. The "Unasserted" color will remain GREEN.

Caution: Do not change the Health LED default color to GREEN. Doing so will cause no color change on unhealthy events!

3.15 FRU Payload Control

The MPCBL0001 implements the "FRU Control" command as specified in the PICMG 3.0 Specification. Through this command, the payload can be reset, rebooted, or have its diagnostics initiated.

The FRU payload can be controlled by a command line via the Intel NetStructure[®] MPCMM0001 Chassis Management Module (CMM). The following CMM commands are supported by the MPCBL0001.

Table 35. CMM Commands for FRU Control Options

FRU Control Options	MPCMM0001 equivalent command
Cold Reset	cmmset –I bladex –d frucontrol –v 0
Warm Reset	cmmset –I bladex –d frucontrol –v 1
Graceful Reboot	cmmset –I bladex –d frucontrol –v 2
Diagnostic Interrupt	cmmset –I bladex –d frucontrol –v 3

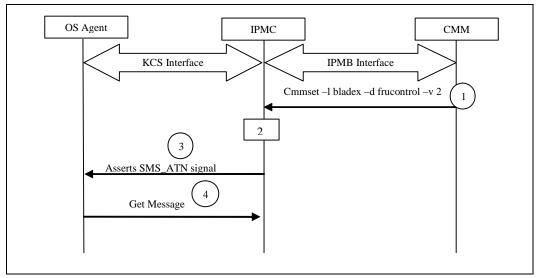
Note: The user may issue an RMCP command to control the FRU payload as well. Refer to Table 102 on page 151 for the associated IPMI command information.

3.15.1 Cold Reset

When this command is initiated, the board will perform a hard reset as described in Section 3.12.2, "Hard Reset Request" on page 56.

3.15.2 Warm Reset

When this command is initiated, the board will perform a soft reset as described in Section 3.12.3, "Soft Reset Request" on page 56.


3.15.3 Graceful Reboot

This specific payload control command is implemented using system interface messaging capability and the SMS_ATN bit of the KCS status registers.

The Receive Message Queue is used to hold message data for system software until the system software can collect it, while the SMS_ATN bit is used to indicate that the IPMC requires attention from the system software.

The flow diagram below will assist the user who will be developing their system software to interact with this command.

Figure 11. Flow Diagram for Graceful Reboot Command

- 1. MM sends a frucontrol=2 command to IPMC, initiating a graceful reboot.
- 2. When the IPMC receives frucontrol=2, it formats a message into the send message queue and sets the SMS attention flag (SMS_ATN) on the KCS status register.
- 3. OS Agent polls for SMS_ATN using Get Message Flags command.
- 4. OS Agent sends a *Get Message* command to the IPMC to retrieve the message from the receive message queue. The *Get Message* command returns the following data:

Table 36. Returned Values from the Get Message Command

Byte	Data	Value	Comments
1	Completion Code	00h	
2	Channel	40h	Administrator privilege, Channel 0 (IPMB 0)
3	NetFN/rsLUN	C2h	NetFn=30h, Responder LUN=02h (SMS)
4	Header checksum	3Eh	2's complement of the previous byte (chk1)
5	BMC Address	(varies)	Board's IPMB address (depends on slot)
6	Sequence/rqLUN	04h	Sequence=01h, Requestor LUN=00h (IPMB)
7	Command	10h	Intel's command for shutdown/reboot
8	Data	02h	Reboot action
9	Data checksum	5F	2's complement of the sum of the previous 4 bytes (chk2)

3.15.4 Diagnostic Interrupt

The following command provides the capability for an end user to issue a non-maskable interrupt (NMI) to the payload.

When issued, the NMI signal to the processor will be asserted. To fully utilize the support of this command, the user needs to have an NMI handler installed.

The implementation details are as below:

CPU (H_NMI) GPIO GPIO CMM IPMB Interface Cmmset -l bladex -d frucontrol -v 3 () Asserts NMI signal

Figure 12. Diagnostic Interrupt Command Implementation

- 1. CMM sends a frucontrol=3 command to IPMC initiating a diagnostic interrupt.
- 2. When the IPMC receives frucontrol=3, it asserts the NMI signal to the CPU via the GPIO pins connected to the H_NMI pin.

3.16 Serial Port Buffering Overview

Serial port buffering occurs when the IPMC on the blade reads and buffers characters coming from a serial console port on the Super I/O chipset used in the SBC. This serial data could be from the operating system, such as Linux, running on the blade. This data could then be read back via IPMI commands via the shelf manager so that an operator can see a "snapshot" of the last few lines of text output by the blade before it crashed or otherwise stopped working.

The buffer in the IPMC used to store the serial information is 2048 (0800h) bytes. It is big enough to hold an 80x25 screen of data with a CR/LF pair at the end of 24 lines. When the buffer fills, it wraps around so that the oldest data is overwritten by newer data.

The board uses a Super I/O controller that has two RS232 serial ports. The first port (COM1) is routed to the front panel of the blade and has no connectivity to the IPMC. The second serial port (COM2) is only connected directly to a serial port on the IPMC. Any data that needs to be buffered, therefore, needs to be directed out the second serial port (COM2). Data coming from COM1 cannot be monitored or buffered by the IPMC.

This feature also provides the capability to filter out certain ANSI escape sequences coming into the serial port. This is so the buffer does not fill with escape sequences that provide no meaningful content. This is particularly true of messages output by BIOS during startup. If only Linux output is desired, then the filtering option is probably not needed.

When enabled, the filter prevents the buffering of the following escape sequences:

Description	PC ANSI Codes
Move cursor up 1 row	ESC [A
Move cursor down 1 row	ESC [B
Move cursor right 1 column	ESC [C
Move cursor left 1 column	ESC [D
Home	ESC [H
End	ESC [K
Clear Display Screen	ESC [2 J
Set cursor position to row; col.	ESC [row;col H
Set Text Attributes	ESC [x;y;z m

Table 37. Escape Sequences Not Buffered with Filter Enabled

3.16.1 Using Serial Port Buffering

3.16.1.1 Configuring the Serial Port

In order for the IPMC to correctly buffer characters it receives from its serial port, the serial ports on the IPMC and also the Super I/O Controller must be configured to use the same serial parameters. This is currently not done automatically, and both sides must be configured separately.

The IPMC's serial port baud rate is limited to five rates: 9600, 19200 (default), 38400, 57600, and 115200. Other IPMC serial port parameters such as number of data bits, parity, and number of stop bits are fixed at 8 data bits, no parity, and 1 stop bit, respectively. The only settable parameter is Baud Rate, which can be set and queried with a subset of the IPMI 1.5 commands Set Serial/Modem Configuration and Get Serial/Modem Configuration. These commands require a Parameter Selector code that determines which parameters will be set/queried. The only supported parameter selector is 0x07 (IPMI Messaging Comm Settings). Any parameters that are set are saved in the IPMC's non-volatile memory and will be restored the next time the IPMC restarts.

Note that Flow Control and DTR Hang-up parameters have no effect on serial buffering. They should be left at none and 0b respectively.

Table 38. Set Serial/Modem Configuration Command: Net Function=0Ch, Command=10h

	Byte	Data Field
	1	[7:4] – Reserved [3:0] – Channel number 4h = Serial channel
	2	Parameter Selector (Must be 07h)
Request Data	3	 [7:6] - Flow control (No affect on serial buffering) 00b = No flow control (Default) 01b = RTS/CTS flow control (hardware handshaking) 10b = XON/XOFF flow control 11b = Reserved [5] - DTR hang-up (No affect on serial buffering) [4:0] - Reserved
	4	[7:4] - Reserved [3:0] - 0-5h = Reserved 6h = 9600 bps 7h = 19.2 kbps (default) 8h = 38.4 kbps 9h = 57.6 kbps Ah = 115.2 kbps Bh-Fh = Reserved
Response Data	1	Completion code

Table 39.Get Serial/Modem Configuration Command: Net Function=0Ch,
Command=11h

	Byte	Data Field
Request Data	1	 [7] - Ob = Get parameter 1b = Get parameter revision only [6:4] - Reserved [3:0] - Channel number 4h = Serial channel
	2	Parameter selector (Must be 07h)
	3	Set selector (Must be 00h)
	4	Block selector (Must be 00h)
Response Data	1	Completion code
	2	Parameter Revision (11h)
	3	 [7:6] - Flow control (No affect on serial buffering) 00b = No flow control 01b = RTS/CTS flow control (hardware handshake) 10b = XON/XOFF flow control 11b = Reserved [5] - DTR hang-up (No affect on serial buffering)) [4:0] - Reserved
	4	[7:4] - Reserved [3:0] - 0-5h = Reserved 6h = 9600 bps 7h = 19.2 kbps (default) 8h = 38.4 kbps 9h = 57.6 kbps Ah = 115.2 kbps Bh-Fh = Reserved

Setting the Super I/O's serial port parameters varies as to which part of the operational sequence is desired to be buffered: BIOS or system.

BIOS message buffering must be configured from the BIOS Setup screen that deals with Remote Access. This is usually available from the Main BIOS Setup menu. The port must be set to COM2 and the Baud Rate and Flow Control must match what is sent to the IPMC via the Set Serial/Modem Configuration command shown above.

System message buffering, such as Linux, requires that the system have a driver that can route system messages to the COM2 port. For Linux, this port is usually /dev/ ttyS1. Linux can be configured to route the output of syslog to various places, including /dev/ttyS1, via the file /etc/syslog.conf. Refer to the man page for syslog.conf for more details. Setting the operating parameters of the serial port under Linux can be accomplished with the stty command (e.g., stty –F /dev/ttyS1 19200). The serial port parameters should be configured in a startup script that the system executes when it starts up. As with the BIOS description above, both the Baud Rate and Flow Control parameters must match those set in the IPMC.

3.16.1.2 Configuration of Buffering/Filtering

Configuration of the Serial Buffering and Filtering features is accomplished with Intelspecific (OEM) IPMI commands: Set Serial Buffer Configuration and Get Serial Buffer Configuration. The Set Serial Buffer Configuration command can enable/disable both filtering and buffering.

The lower seven bits of the first byte of the Set Serial Buffer Configuration command are reserved and should be set to 0. If the most significant bit (80h) is set, then the buffer will be cleared when the parameters are set.

The second data byte defines which parameters will change and what they will change to. Bits 4 and 5 are mask bits that enable the usage of bits 1 and 0 respectively. If 00h is the value of this byte, then no changes in configuration will happen. Bit 0 is used to enable/disable filtering and bit 1 is for enabling/disabling buffering. A 00h value can be used when clearing the buffer without changing any parameters.

Table 40. Set Serial Buffer Configuration Command: Net Function=30h, Command=32h

	Byte	Data Field
Request Data	1	 [7] - 1b = Clear buffer [6] - Reserved [5] - 1b = Use value in [1] to enable/disable buffering Ob = Ignore setting in [1] [4] - 1b = Use value in [0] to enable/disable filtering Ob = Ignore setting in [0] [3:2] - Reserved [1] -1b = Enable buffering if [5] == 1b Ob = Disable buffering if [5] == 1b [0] -1b = Enable filtering if [4] == 1b Ob = Disable filtering if [4] == 1b
Response Data	1	Completion code

Table 41. Get Serial Buffer Configuration Command: NetFn=30h, Cmd=31h

	Byte	Data Field
	1	Completion code
Response Data	2	 [7:2] - Reserved [1] -1b = Buffering is enabled Ob = Buffering is disabled [0] -1b = Filtering is enabled Ob = Filtering is disabled

3.16.1.3 Reading Buffered Data

The buffer has the capability to hold approximately 2048 characters. The buffer is circular so that when it fills, it will automatically start overwriting the oldest data first. This provides a "snapshot" of the last 2048 characters written to the COM2 port.

There is an Intel-specific command to read back the buffer data in chunks of 16 bytes. This command requires a 16 bit offset into the buffer from which to read. System software can invoke this command several times in order to read the entire buffer. A buffer offset of 0 refers to the start of the oldest data in the buffer and not necessarily the physical start of the buffer.

The most significant bit of the first data byte should be set if it is desired to clear the serial buffer after reading the data. The second and third data bytes are the 16 bit offset into the buffer (LSB first) in which to read the data.

The response data starts with a reserved byte with a value of 0 and a second byte that indicates the number of bytes of data following (length). If no bytes are available at the given offset, the length byte will be 0. The number of bytes returned will be the maximum that can be read at the given offset up to a maximum of 16 (10h).

	Byte	Data Field
Request Data	1	[7] – 1b = Clear buffer after reading[6:0] - Reserved
	2	Character offset into buffer (LSB)
	3	Character offset into buffer (MSB)
Response Data	1	Completion code
	2	[7:5] - Reserved[4:0] - 00h = No characters at the given offset01h-10h = Number of characters returned in this response
	4-n	Buffer characters

Table 42. Get Serial Buffer Command: Net Function=30h, Command=30h

3.16.1.4 Examples

Here are some examples of using these commands from the CMM's command line.

- 1. Set the Serial Port Baud Rate to 115200 and Flow Control to none on blade13: cmmset –I blade13 –d ipmicommand –v "0x0c 0x10 0x00 0x07 0x00 0x0A"
- Enable buffering with no filtering and clear the buffer on blade13: cmmset –I blade13 –d ipmicommand –v "0x30 0x32 0xB2"
- Get characters from offset 0x260 in the buffer on blade13: cmmset –I blade13 –d ipmicommand –v "0x30 0x30 0x00 0x60 0x02"
- 4. Clear the serial buffer with no other changes on blade13: cmmset –l blade13 –d ipmicommand –v "0x30 0x32 0x80"

Here is a sample standalone bash script for the CMM to read the contents of the serial buffer into a file on the CMM. The blade number is passed on the command line. Note that this script is very slow to upload the data but gives an example of the procedure.

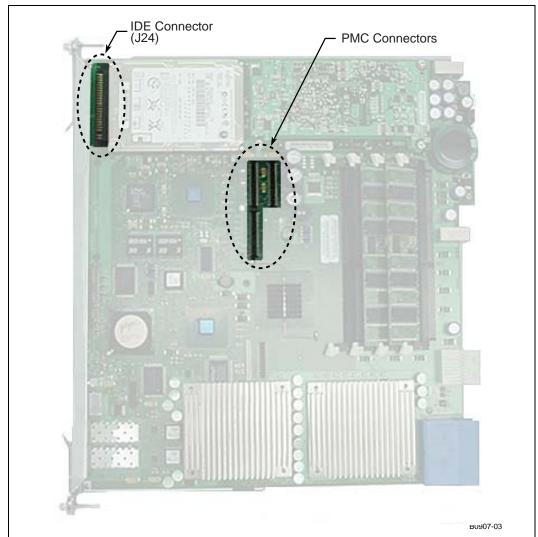
```
#!/bin/bash
#_____
# Print Usage syntax and exit
function PrintUsage()
 echo
 echo "Usage: $0 location"
 echo
 echo "Where: location = the location to read from (i.e. blade3, blade13, etc)"
 echo
 echo "This program reads the entire Serial Buffer from the selected location"
 echo "and saves it under file name: \'location\'.txt Ex: blade3.tx
t"
 echo
 exit 1
}
#
# Convert a decimal number 0-15 to a hex digit
#
function DecToHexNibble ()
ł
   case $1 in
     10) echo a ;;
```



```
11) echo b ;;
      12) echo c ;;
      13) echo d ;;
      14) echo e ;;
      15) echo f ;;
      *) echo $1;;
    esac;
}
#
# Convert a decimal byte to hex digits
#
function DecToHex ()
{
    echo "`DecToHexNibble $((($1&240)>>4))``DecToHexNibble $(($1&15))`"
}
#
# Output the ASCII characters whose decimal values are passed in as
# arguments.
# The first argument is the number of arguments to skip before
# converting.
#
function OutAscii ()
{
    shift $(($1+1))
    while [ ! -z "$1" ]; do
       echo -en "\x`DecToHex $1`"
       shift
    done
}
#---- correct num of args passed? ----
if [ $# -ne 1 ]; then
    PrintUsage
fi
LOC=$1 # Location to read from
SEL_FILENAME="$LOC.txt"
echo
echo "Serial Buffer from $LOC will be saved as $SEL_FILENAME"
echo
rm -f $SEL_FILENAME
declare val
OFFSET_LSB=0
OFFSET MSB=0
TOTAL_BYTES=0
while true; do
    # Read some bytes
    val=(`cmmset -1 $LOC -d ipmicommand -v "0x30 0x30 0 $0FFSET_LSB $0FFSET_MSB"`)
    # If no bytes were read, it is an error
    if [ "${#val}" -eq "0" ]; then
        echo "Error accessing $LOC"
        exit 1
    elif [ "${val[0]}" -eq "0" ]; then
        if [ "${val[1]}" -eq "0" ]; then
          # No more bytes to read. Finished.
          echo ""
          echo "Read $TOTAL_BYTES bytes of Serial Buffer"
          exit O
        fi
        # Output a dot to show progress
```



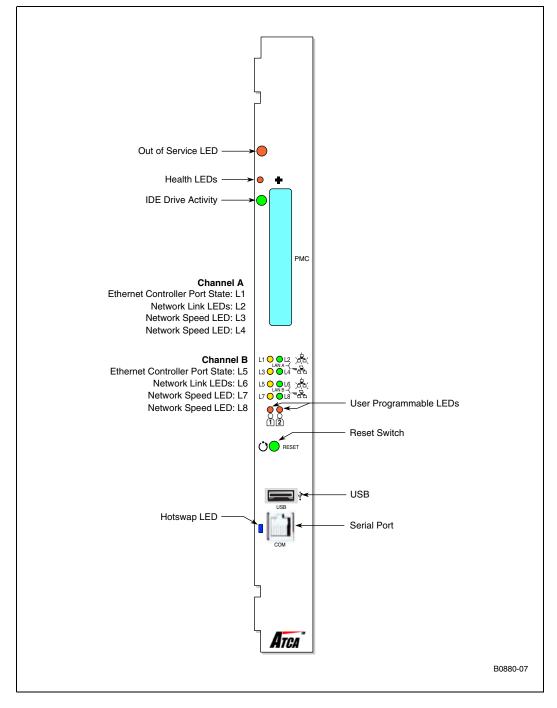
```
echo -n "."
        \ensuremath{\texttt{\#}} Output the data bytes as ASCII characters
        # skipping the first 2 bytes (comp code and length)
        OutAscii 2 ${val[*]} >> $SEL_FILENAME
        # Increment the offset bytes
        lsb=$(( $OFFSET_LSB + ${val[1]} ))
        OFFSET_MSB=$(( $OFFSET_MSB + ( $1sb / 256 ) ))
OFFSET_LSB=$(( $1sb % 256 ))
        TOTAL_BYTES=$(( $TOTAL_BYTES + ${val[1]} ))
    else
        # Completion Code non-0.
        echo
        echo "Error: Completion Code `DecToHex ${val[0]}`h received"
        exit 1
    fi
done
echo
# ***** end of file *****
```



4.0 Connectors

Connectors along the rear edge of AdvancedTCA server blades are divided into three distinct zones, as described in Section 2.3 of the PICMG 3.0 Specification.

- · Zone 1 for system management and power distribution
- Zone 2 for data fabric
- Zone 3 for the rear transition module.

As shown in Figure 13, the MPCBL0001 includes several connectors to interface with application-specific devices. Some of the connectors are available at the front panel.Each connector is described briefly in Table 44 on page 80. A detailed description and pinout for each connector is found in the following sections



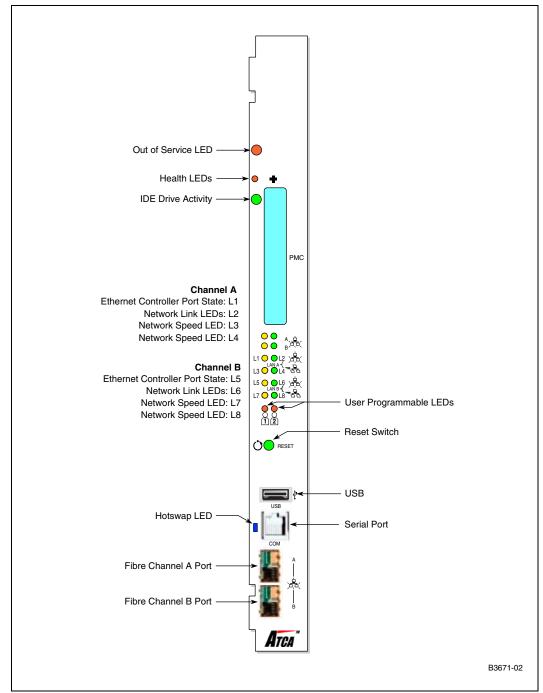

Figure 13. MPCBL0001 SBC Connector Locations

Figure 14. MPCBL0001NXX SBC Front Panel

Figure 15. MPCBL0001FXX SBC Front Panel

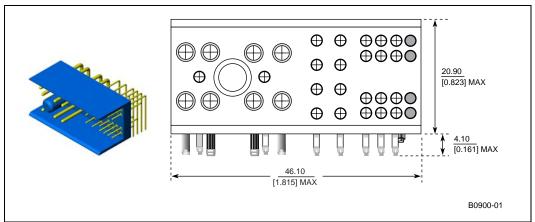
Table 43. LED Descriptions

LED	Description
OOS	Out of Service, bicolor
+	Health, bicolor
IDE Drive Activity	Lights when drive activity occurs.
FC1	Fibre Channel 1 Activity and Status bicolor Yellow /Green
FC2	Fibre Channel 2 Activity and Status bicolor Yellow / Green
s≈ a	Gigabit channel 1, Gigabit Linkup (Activity) Port State / Link
50	Gigabit channel 1 Link 1000 (yellow)/Link 100 (Green) Yellow /Green
ъъ в	Gigabit channel 2, Gigabit Linkup (Activity) Port State / Link
<u> </u>	Gigabit channel 2 Link 1000 (yellow) /Link 100 (Green) Yellow / Green
	User Programmable bicolor LEDs
	Hot Swap LED

Table 44. Connector Assignments

Backplane Connectors	Description	Details
P1	Mezzanine connector P1	2X30 SMT, 60 pin
P2	Mezzanine connector P2	2X30 SMT, 60 pin
P10	Positronic Power Connector	34 pin
P23	Data Transport Connector (Zone 2)	Two 10/100/1000 Ethernet ports Two 2 Gbit Fibre Channel ports
Front Panel Connectors	Description	Details
J12	USB Connector	USB Connector
J17	Serial Port Connector	Serial Port Connector
J25, 26, 27	PMC Connectors	PMC Connectors
J34, J35	Fibre Channel 1 (SFP1), Fibre Channel 2 (SFP2)	SFP Receptacle

4.1 **Backplane Connectors**


4.1.1 **Power Distribution Connector (Zone 1)**

Zone 1 consists of P10, a 34-pin Positronic header connector that provides the following signals:

- Two -48 VDC power feeds (four signals each; eight signals total)
- Two IPMB ports (two signals each, four signals total)
- · Geographic address (eight signals)
- 5.55 Amperes are allocated to MPCBL0001 on the -48 VDC redundant power feeds. • This is equivalent to 200 Watts at the minimum input voltage (-36 VDC). The Zone 1 connector and pin out is compatible with the backplane for *Intel NetStructure*[@] MPCHC0001 14U Shelf Technical Product Specification.

The connector used is Positronic part number VPB30W8M6200A1. Figure 16, "Power Distribution Connector (Zone 1) P10" on page 81 shows the mechanical drawing of the connector. The pin assignments are given in Figure 45, "Power Distribution Connector (Zone 1) P10 Pin Assignments" on page 81.

Figure 16. Power Distribution Connector (Zone 1) P10

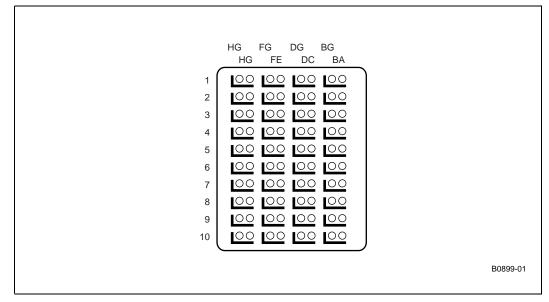
Power Distribution Connector (Zone 1) P10 Pin Assignments Table 45.

Pin #	Signal Name	Description	Pin #	Signal Name	Description
1	Reserved	No Connect	18	Unused	No Connect
2	Reserved	No Connect	19	Unused	No Connect
3	Reserved	No Connect	20	Unused	No Connect
4	Reserved	No Connect	21	Unused	No Connect
5	GA0	Geographic Addr Bit 0	22	Unused	No Connect
6	GA1	Geographic Addr Bit 1	23	Unused	No Connect
7	GA2	Geographic Addr Bit 2	24	Unused	No Connect
8	GA3	Geographic Addr Bit 3	25	EMI_GND	EMI Chassis Ground
9	GA4	Geographic Addr Bit 4	26	LOGIC_GND	Gnd Ref for Card Logic

Note: The analog test and ring voltage pins defined on P10 are left unconnected on MPCBL0001.

10GA5Geographic Addr Bit 527ENABLE_BEnb DC-DC conv, B Feed11GA6Geographic Addr Bit 628VRTN_A-48 V Return, Feed A12GA7/PGeo Adr Bit 7 (Odd Parity)29VRTN_B-48 V Return, Feed B13IPMB_CLK_AIPMB Bus A Clock30- 48 V_EARLY_A-48 V In, Feed A Precharge14IPMB_DAT_AIPMB Bus A Data31-48 V_EARLY_B-48 V In, Feed B Precharge15IPMB_CLK_BIPMB Bus B Clock32ENABLE_AEnb DC-DC conv, A Feed16IPMB_DAT_BIPMB Bus B Data33-48V_A-48 V Input, Feed A17UnusedNo Connect34-48V_B-48 V Input, Feed B				(.,	
12GA7/PGeo Adr Bit 7 (Odd Parity)29VRTN_B-48 V Return, Feed B13IPMB_CLK_AIPMB Bus A Clock30- 48 V_EARLY_A-48 V In, Feed A Precharge14IPMB_DAT_AIPMB Bus A Data31-48 V_EARLY_B-48 V In, Feed B Precharge15IPMB_CLK_BIPMB Bus B Clock32ENABLE_AEnb DC-DC conv, A Feed16IPMB_DAT_BIPMB Bus B Data33-48V_A-48 V Input, Feed A	10	GA5	Geographic Addr Bit 5	27	ENABLE_B	Enb DC-DC conv, B Feed
13IPMB_CLK_AIPMB Bus A Clock30- 48 V_EARLY_A-48 V In, Feed A Precharge14IPMB_DAT_AIPMB Bus A Data31-48 V_EARLY_B-48 V In, Feed B Precharge15IPMB_CLK_BIPMB Bus B Clock32ENABLE_AEnb DC-DC conv, A Feed16IPMB_DAT_BIPMB Bus B Data33-48V_A-48 V Input, Feed A	11	GA6	Geographic Addr Bit 6	28	VRTN_A	-48 V Return, Feed A
14IPMB_DAT_AIPMB Bus A Data31-48 V_EARLY_B-48 V In, Feed B Precharge15IPMB_CLK_BIPMB Bus B Clock32ENABLE_AEnb DC-DC conv, A Feed16IPMB_DAT_BIPMB Bus B Data33-48V_A-48 V Input, Feed A	12	GA7/P	Geo Adr Bit 7 (Odd Parity)	29	VRTN_B	-48 V Return, Feed B
15 IPMB_CLK_B IPMB Bus B Clock 32 ENABLE_A Enb DC-DC conv, A Feed 16 IPMB_DAT_B IPMB Bus B Data 33 -48V_A -48 V Input, Feed A	13	IPMB_CLK_A	IPMB Bus A Clock	30	- 48 V_EARLY_A	-48 V In, Feed A Precharge
16 IPMB_DAT_B IPMB Bus B Data 33 -48V_A -48 V Input, Feed A	14	IPMB_DAT_A	IPMB Bus A Data	31	-48 V_EARLY_B	-48 V In, Feed B Precharge
	15	IPMB_CLK_B	IPMB Bus B Clock	32	ENABLE_A	Enb DC-DC conv, A Feed
17 Unused No Connect 34 -48V_B -48 V Input, Feed B	16	IPMB_DAT_B	IPMB Bus B Data	33	-48V_A	-48 V Input, Feed A
	17	Unused	No Connect	34	-48V_B	-48 V Input, Feed B

Table 45. Power Distribution Connector (Zone 1) P10 Pin Assignments


4.1.2 Data Transport Connector (Zone 2)

Zone 2 consists of one 120-pin HM-Zd connector, labeled P23, with 40 differential pairs. This data transport connector provides the following signals:

- Two 10/100/1000Base-T/TX Ethernet base fabric channels (four differential signal pairs each, 16 signals total).
- Two 2 Gbit Fibre Channel ports on the extended fabric (two differential signal pairs each, eight signals total).

The connector used is AMP/Tyco part number 1469001-1, Intel part number A66621-001. Figure 17, "Data Transport Connector (Zone 2) J23" on page 82 shows a face view of the connector.

Figure 17. Data Transport Connector (Zone 2) J23

The following naming convention describes the signals on this connector. Signal direction is defined from the perspective of MPCBL0001.

P[C]dxp where:

P = Prefix (B=Base Interface [Gigabit Ethernet], F= Fabric Interface [Fibre Channel])

C = Channel (1-2)

d = direction (Tx = Transmit, Rx = Receive)

x = port number (0-1)

Note:

A port is two differential pairs, one Tx and one Rx

p = polarity (+, -)

The BG, DG, FG and HG (G for Ground) columns contain the ground shields for the four columns of differential pairs. They have been omitted from the pin out tables below for simplification. All pins in the BG, DG, FG and HG columns are connected to Logic Ground. The used base fabric (Gigabit Ethernet) channels are shown in light gray while the used extended fabric (Fibre Channel) ports appear in dark gray.

Table 46. Data Transport Connector (Zone 2) P23 Pin Assignments

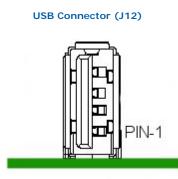
Pin	Α	В	С	D	E	F	G	н
1	No Connect	No Connect	No Connect	No Connect	F[2]Tx0+	F[2]Tx0-	F[2]Rx0+	F[2]Rx0-
2	No Connect							
3	No Connect	No Connect	No Connect	No Connect	F[1]Tx0+	F[1]Tx0-	F[1]Rx0+	F[1]Rx0-
4	No Connect							
5	B[1]Tx0+	B[1]Tx0-	B[1]Rx0+	B[1]Rx0-	B[1]Tx1+	B[1]Tx1-	B[1]Rx1+	B[1]Rx1-
6	B[2]Tx0+	B[2]Tx0-	B[2]Rx0+	B[2]Rx0-	B[2]Tx1+	B[2]Tx1-	B[2]Rx1+	B[2]Rx1-
7	Reserved							
8	Reserved							
9	Reserved							
10	Reserved							

4.1.3 Alignment Blocks

The MPCBL0001 SBC implements the K1 and K2 alignment blocks at the top of Zone 2 and Zone 3, as required in section 2.4.4 of the PICMG 3.0 Specification. These are identified on the silkscreen as GP1 and GP2. GP1 provides the PICMG 3.0-mandated keying value of 11, and is either a Tyco* 1469373 or a Tyco 1469268 component (or equivalent). GP2 has a solid face and is used to ensure that RTMs with protruding connectors are not plugged into the MPCBL0001 SBC or vice versa; the component used for this is either a Tyco 1469374 or a Tyco 1469275-2 (or equivalent).

4.2 Front Panel Connectors

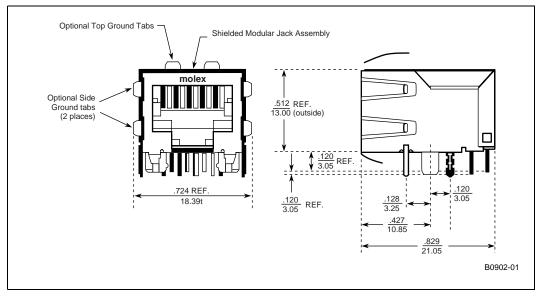
4.2.1 USB Connector (J12)


MOLEX part Number: 67329-0020

The MPCBL0001 SBC has one vertical USB connector that supports USB 1.1. USB connector JX is available at the front panel, as shown in Figure 13, "MPCBL0001 SBC Connector Locations" on page 77. The figure shows its position on the board. See Table 47, "USB Connector (J12) Pin Assignments" on page 84 for pinout information.

Table 47. USB Connector (J12) Pin Assignments

U	SB CONNECTOR
Pin #	Signal Name
1	+5 V
2	-DATA
3	+DATA
4	GND



4.2.2 Serial Port Connector (J17)

A single serial port interface is provided on the front edge of the card using an RJ-45 style shielded connector. See Figure 13, "MPCBL0001 SBC Connector Locations" on page 77 for its position on the board. The default connector is an 8-pin RJ-45.

MOLEX Part Number 43249-8919

Figure 18. Serial Port Connector (J17)

Table 48. Serial Port Connector (J17) Pin Assignments

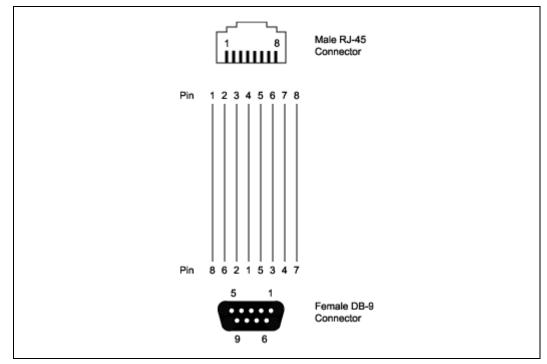

Connector Pin Number	Serial Port Signal
1	RTS
2	DTR
3	TXD
4	GND
5	GND

Table 48. Serial Port Connector (J17) Pin Assignments

6	RXD
7	DSR
8	CTS

Figure 19. DB9 to RJ-45 Pin Translation

4.2.3 Fibre Channel Small Form-Factor Pluggable (SFP) Receptacle (J34 and J35)

AMP part number: 1367073-1

The MPCBL0001 SBC has two SFP receptacles that support either the copper or fiber module interface. Fibre Channel connector J34 and J35 are available at the front panel. See Figure 13, "MPCBL0001 SBC Connector Locations" on page 77 for its position on the board. See Table 50, "Fibre Channel SFP Pin Assignments" on page 87 for pinout information.

Table 49. Fibre Channel SFP Copper Transceiver Module (AMP, J34, J35)

USFibre Channel Connector (J34) Pin Assignments					
	Fibre Channel CONNECTOR				
Pin #	Signal Name				
1	Signal Ground				
2	Transmitter Fault				
3	Transmitter Disable Input				
4	Module Definition 2				
5	Module Definition 1				
6	Module Definition 0				
7	Rate Select (not implemented)				
8	Loss of Signal				
9	Signal Ground				
10	Signal Ground				
11	Signal Ground				
12	Received Data Out Bar				
13	Received Data Out				
14	Signal Ground				
15	Receiver Power Supply				
16	Transmitter Power Supply				
17	Signal Ground				
18	Transmitter Data In				
19	Transmitter Data In Bar				
20	Signal Ground				

Fibre Channel SFP Receptacle (J34, J35)

4.2.4 Fibre Channel SFP Optical Transceiver Module

Refer to the *Intel NetStructure[®] MPCBL0001 Compatibility Report* for a list of SFP optical transceivers that have been validated. The report can be downloaded from http://www.intel.com/design/network/products/cbp/atca/mpcbl0001.htm

Table 50. Fibre Channel SFP Pin Assignments

USFibre Channel Connector (J34, J35) Pin Assignments

Fibre Channel CONNECTOR			
Pin #	Signal Name		
1	Transmitter Ground		
2	Transmitter Fault (not supported)		
3	Transmitter disable		
4	Module Definition 2		
5	Module Definition 1		
6	Module Definition 0		
7	Rate Select		
8	Loss of Signal Indication		
9	Receiver Ground		
10	Receiver Ground		
11	Receiver Ground		
12	Receiver Inverted DATA Out		
13	Receiver Non-Inverted DATA Out		
14	Receiver Ground		
15	Receiver Power Supply		
16	Transmitter Power Supply		
17	Transmitter Ground		
18	Transmitter Non-Inverted DATA In		
19	Transmitter Inverted DATA In		
20	Transmitter Ground		

Fibre Channel SFP Optical Transceiver Module (J34, J35)

4.2.5 PMC Connectors (J25, J26, J27)

There are three 64-pin connectors that make up the PMC card connection:

MOLEX Part Number: 71439-0864

These connectors and pinouts are defined by the following industry standard specifications:

- Draft Standard Physical and Environmental Layers for PCI.. Mezzanine Cards: PMC IEEE (MMSC) P1386.1/Draft 2.3, October 9, 2000
- Draft Standard for a Common Mezzanine Card Family: CMC IEEE (MMSC) P1386/ Draft 2.3, October 9, 2000

The PMC slot is available at the front panel. See Figure 13, "MPCBL0001 SBC Connector Locations" on page 77 for their positions on the board. Pin assignments are listed in Table 51, "PMC Connector Pin Assignments - 32 Bit" on page 88 and Table 52, "PMC Connector Pin Assignments - 64 Bit" on page 88.

Table 51. PMC Connector Pin Assignments - 32 Bit

	J25	32 Bit PC				J26	J26 32 Bit F
in	Signal	Signal	Pin	Pin		Signal	Signal Signal
I	тск	-12 V	2	1		+12 V	+12 V TRST#
3	Ground	INTA#	4	3		TMS	TMS TDO
5	INTB#	INTC#	6	5		TDI	TDI Ground
	BUSMODE1#	+5 V	8	7		Ground	Ground PCI-RSVD
)	INTD#	PCI-RSVD	10	9		PCI-RSVD	PCI-RSVD PCI-RSVD
11	Ground	(n/c) 3.3 Vaux	12	11	E	BUSMODE2#	BUSMODE2# +3.3 V
13	CLK	Ground	14	13	RS	ST#	BUSMODE3#
15	Ground	GNT[0]#	16	15	+3.3	V	V BUSMODE4#
17	REQ[0]#	+5 V	18	17	PME#		Ground
19	+3.3V (V I/O)	AD[31]	20	19	AD[30]		AD[29]
21	AD[28]	AD[27]	22	21	Ground		AD[26]
23	AD[25]	Ground	24	23	AD[24]		+3.3 V
25	Ground	C/BE[3]#	26	25	IDSEL (AI	017)	D17) AD[23]
27	AD[22]	AD[21]	28	27	+3.3 V		AD[20]
29	AD[19]	+5 V	30	29	AD[18]		Ground
31	+3.3V (V I/O)	AD[17]	32	31	AD[16]		C/BE[2]#
33	FRAME#	Ground	34	33	Ground		PMC-RSVD
35	Ground	IRDY#	36	35	TRDY#		+3.3 V
37	DEVSEL#	+5 V	38	37	Ground		STOP#
39	Ground	LOCK#	40	39	PERR#		Ground
41	PCI-RSVD	PCI-RSVD	42	41	+3.3V		SERR#
43	PAR	Ground	44	43	C/BE[1]#		Ground
45	+3.3 V (V I/O)	AD[15]	46	45	AD[14]		AD[13]
47	AD[12]	AD[11]	48	47	M66EN		AD[10]
49	AD[09]	+5 V	50	49	AD[08]		+3.3 V
51	Ground	C/BE[0]#	52	51	AD[07]		PMC-RSVD
53	AD[06]	AD[05]	54	53	+3.3V		PMC-RSVD
55	AD[04]	Ground	56	55	PMC-RSVE)	Ground
57	+3.3 V (V I/O)	AD[03]	58	57	PMC-RSVE)	D PMC-RSVD
59	AD[02]	AD[01]	60	59	Ground		PMC-RSVD
61	AD[00]	+5 V	62	61	ACK64#		+3.3 V
63	Ground	REQ64#	64	63	Ground		PMC-RSVD

PMC Connector Pin Assignments - 64 Bit (Sheet 1 of 2) Table 52.

	J27	64 Bit PCI		
Pin	Signal	Signal	Pin	
1	PCI-RSVD	Ground	2	

Intel NetStructure[®] MPCBL0001 High Performance Single Board Computer Technical Product Specification 88

		•	
3	Ground	C/BE[7]#	4
5	C/BE[6]#	C/BE[5]#	6
7	C/BE[4]#	Ground	8
9	+3.3 V (V I/ O)	PAR64	10
11	AD[63]	AD[62]	12
13	AD[61]	Ground	14
15	Ground	AD[60]	16
17	AD[59]	AD[58]	18
19	AD[57]	Ground	20
21	+3.3 V (V I/ O)	AD[56]	22
23	AD[55]	AD[54]	24
25	AD[53]	Ground	26
27	Ground	AD[52]	28
29	AD[51]	AD[50]	30
31	AD[49]	Ground	32
33	Ground	AD[48]	34
35	AD[47]	AD[46]	36
37	AD[45]	Ground	38
39	+3.3 V (V I/ O)	AD[44]	40
41	AD[43]	AD[42]	42
43	AD[41]	Ground	44
45	Ground	AD[40]	46
47	AD[39]	AD[38]	48
49	AD[37]	Ground	50
51	Ground	AD[36]	52
53	AD[35]	AD[34]	54
55	AD[33]	Ground	56
57	+3.3 V (V I/ O)	AD[32]	58
59	PCI-RSVD	PCI-RSVD	60
61	PCI-RSVD	Ground	62
63	Ground	PCI-RSVD	64

Table 52. PMC Connector Pin Assignments - 64 Bit (Sheet 2 of 2)

4.3 On-board Connectors

4.3.1 IDE Connector (J24)

Table 53. IDE Connector Pin Assignments

Pin #	Signal Name		
1	Reset IDE		
3	Host Data 7		
5	Host Data 6		
7	Host Data 5		
9	Host Data 4		
11	Host Data 3		
13	Host Data 2		
15	Host Data 1		
17	Host Data 0		
19	Ground		
21	DDRQ		
23	I/O Write		
25	I/O Read		
27	IOC HRDY		
29	DDACK		
31	IRQ		
33	Addr 1		
35	Addr 0		
37	Chip Select 1P (1S)		
39	Activity		
41	IDE LED (DS1)		

Pin #	Signal Name
2	Ground
4	Host Data 8
6	Host Data 9
8	Host Data 10
10	Host Data 11
12	Host Data 12
14	Host Data 13
16	Host Data 14
18	Host Data 15
20	Кеу
22	Ground
24	Ground
26	Ground
28	Cable select pull-up
30	Ground
32	No Connect
34	GPIO_DMA66_Detect
36	Addr 2
38	Chip Select 3P (3S)
40	Ground
42	+5V

5.0 Addressing

5.1 Configuration Registers

5.1.1 Configuration Address Register MCH CONFIG_ADDRESS

I/O Address:	0x0CF8 Accessed as a Dword
Default Value:	0x0000000
Access:	Read/Write
Size:	32 bits

CONFIG_ADDRESS is a 32-bit I/O register that can be accessed only as a Dword. A byte or word reference passes through the Configuration Address Register and hub link interface HI_A onto the PCI_A bus as an I/O cycle. The CONFIG_ADDRESS register contains the Bus Number, Device Number, Function Number, and Register Number for which a subsequent PCI configuration access is intended. This register is defined by the PCI Bus Specification.

Table 54. Configuration Address Register Bit Assignments

Bit	31	30	24	23	16	15	11	10	8	7	2	10	
	0	R		0		0		0		0		R	Default

Bit	Description
31	Configuration Enable (CFGE): When this bit is set to 1, accesses to the PCI configuration space are enabled. When this bit is reset to 0, accesses to the PCI configuration space are disabled.
30:24	Reserved (These bits are read only and have a value of 0).
23:16	Bus Number: Contains the bus number being targeted by the configuration cycle.
15:11	Device Number: Selects one of the 32 possible devices per bus.
10:8	Function Number: Selects one of eight possible functions within a device.
7:2	Register Number: This field selects one register within a particular bus, device, and function as specified by the other fields in the Configuration Address Register. This field is mapped to A[7:2] during HI_A-D configuration cycles.
1:0	Reserved.

5.1.2 Configuration Data Register MCH CONFIG_ADDRESS

I/O Address:	0x0CFC
Default Value:	0x0000000
Access:	Read/Write
Size:	32 bits

CONFIG_DATA is a 32-bit read/write window into the PCI configuration space. The portion of configuration space that is referenced by CONFIG_DATA is determined by the contents of CONFIG_ADDRESS.

Table 55. Configuration Data Register Bit Assignments

Bit	Description
31:0	Configuration Data Window (CDW) : If bit 31 of CONFIG_ADDRESS is set to 1, any I/O access to the CONFIG_DATA register is mapped to configuration space pointed to by the contents of CONFIG_ADDRESS.

5.2 I/O Address Assignments

I/O port addresses are divided among the on-board devices. These devices include:

- ICH3
- ISP2312 Fibre Channel controller
- 82546 Ethernet controller
- SMSC LPC47B272 SIO
- MCH
- IPMC

Please refer to the respective device specifications for specific I/O address usage.

The MCH uses only I/O ports 0xCF8 and 0xCFC for PCI configuration cycle generation. These registers were shown in Section 5.1.1 and Section 5.1.2. The P64H2 forwards applicable I/O transactions to its attached PCI buses. The ISP2312 may be programmed to map its 256-byte bank of registers to memory and/or I/O space.

Table 56 lists document references to I/O descriptions. Please refer to Appendix A, "Reference Documents" for a list of the referenced documents and their complete titles, revisions, and document numbers.

Table 56. I/O Address Cross-References

Device	Document Title/Number	Section/Page/Table
ICH3	ICH3 EDS	Section 7.3, Table A2 and A3
МСН	E7501 MCH EDS	Section 4.3.5 and 4.3.6
ISP2312	ISP2312 Design Guide	Section 6.6.9 and 6.7
LPC47B272	LPC47B27x Datasheet	(Throughout datasheet)
IPMC	Intel IPMC EDS	Section 4.3.7
82546	Developer's Manual, OR2941	Section 3.1.1.4

5.3 Memory Map

Table 57.Memory Map (Sheet 1 of 2)

Memory Device	Address	Size
Top of addressable memory	OxFFFF_FFF	
Firmware Hub Devices (x2)	0xFFE0_0000	Up to 16 Mbit
Firmware Hub Device 0	0xFFF0_0000	8 Mbit/1 MB

Table 57.Memory Map (Sheet 2 of 2)

Memory Device	Address	Size
Firmware Hub Device 1	0xFFE0_0000	8 Mbit/1 MB
HI-B P64H2 IOAPIC B	0xFEC0_4000	256 bytes
HI-B P64H2 IOAPIC A	0xFEC0_3000	256 bytes
HI-C P64H2 IOAPIC B	0xFEC0_2000	256 bytes
HI-C P64H2 IOAPIC A	0xFEC0_1000	256 bytes
ICH3 IOAPIC	0xFEC0_0000	256 bytes
Top of main memory		<system dependent=""></system>
Top of Low Memory		<system dependent=""></system>
TEM-TSEG		
0100_0000	16 MB	
00F0_0000	15 MB	
0010_0000	1 MB	
FWH ¹ 0/1	0xE_0000	128 KB
(PCI option ROMs, top-down allocations)		
	0xA_0000	
Main memory	0x0_0000	Up to 4 GB

Note: The OS may need to be recompiled to support memory above 4 Gbytes.

The Firmware Hub(s) also appears at the aliased address of (4 Gbyte – 4 Mbyte).

The MCH provides the capability to reclaim the physical memory overlapped by memory-mapped I/O devices, BIOS, and I/O APICs that reside just below 4 Gbytes. This memory may be remapped to physical memory at the address defined by the TOLM register.

5.4 IPMC Addresses

The IPMC supports 6 $\rm I^2C/SMB$ buses. IPMC buses 0 and 1 provide redundant IPMB connections.

The ADM1026 device is connected to SMBus 3 and provides voltage measurement capability and additional board configuration status.

Table 58. SMBus Addresses

8-bit Ad <u>d</u> ress (W/R)	SMBus	Description
5C/5D	3	ADM1026
A8/A9	3	SEL EEPROM

Specifications 6.0

This chapter defines the MPCBL0001 operating and nonoperating environments. It also documents the procedures followed to determine the reliability of MPCBL0001.

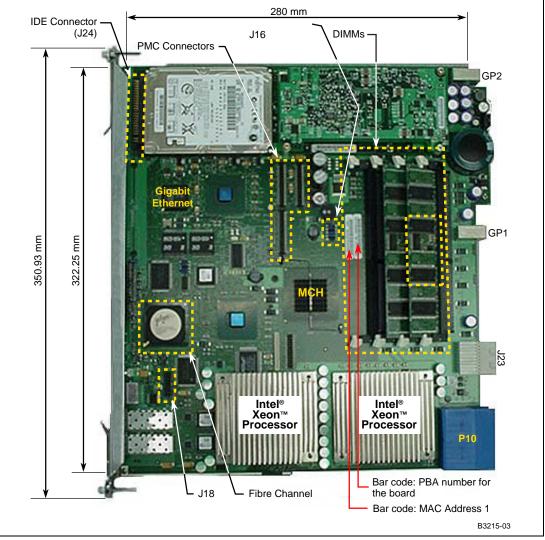
6.1 **Mechanical Specifications**

6.1.1 **Board Outline**

Figure 20 and Figure 21 are annotated illustrations of the MPCBL0001 SBC showing the locations of major components. The board dimensions are 280 mm x 322.25 mm. The board pitch is 1.2" (30.48 mm).

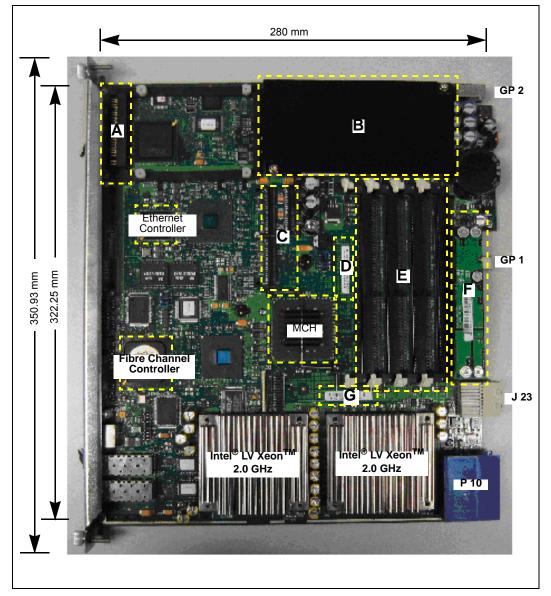
Figure 20 is applicable to the following SKU and TA numbers:

- MPCBL0001F04 with TA number C55360-011 or below.
- MPCBL0001N04 with TA number C13354-010 or below.


Figure 21 is applicable to the following SKU and TA numbers:

- MPCBL0001F04 with TA number C55360-014 or below.
- MPCBL0001N04 with TA number C13354-013 or below.

95


Figure 20. Component Layout (#1)

Note: MAC Address 2 is an incremental value of MAC Address 1.

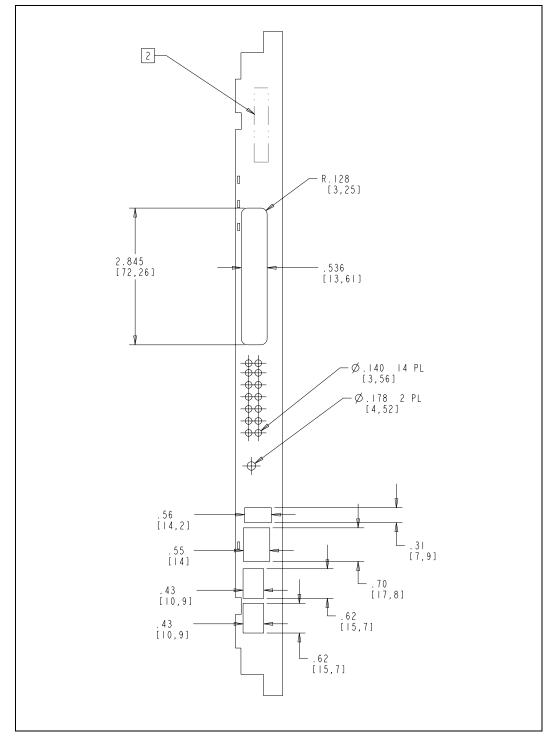
Figure 21. Component Layout (#2)

Components Illustrated Above:

- A IDE connector (J24)
- B Power mezzanine card + cover C PMC connectors
- D Barcode: serial number + PBA version number
- E DIMM banks F EMI filter mezzanine
- G Barcode: MAC Address 1 (Note: MAC Address 2 is an incremental value of MAC Address 1. This MAC Address labeling applies to boards with TA# C13354-015 and C55360-016 (or below).)

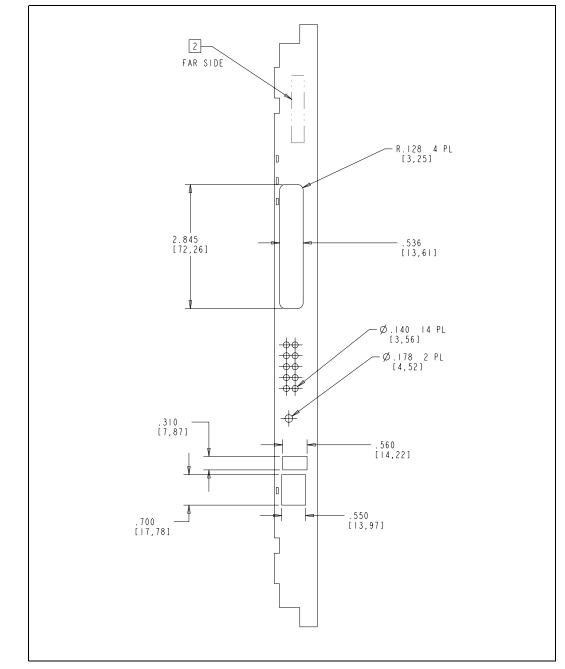
6.1.2 Backing Plate

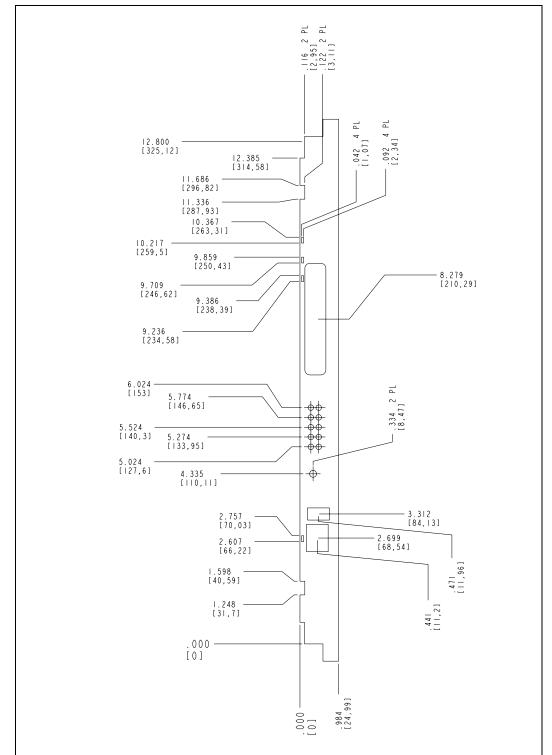
The MPCBL0001 SBC has a rugged metal backing plate that forms a single-piece face plate. This backing plate is made of 1.2 mm (0.048") steel which has been zinc post-plated to resist corrosion and rust. The solid backing plate provides PCB stiffening, enhanced EMI protection from adjacent boards, and protection during flame tests. The backing plate improves serviceability by making the SBC more durable.


Four holes are provided in the bottom of the backing plate for mounting an optional hard drive in the provided hard drive carrier (with the included M3 screws). Four additional holes are provided for securing an optional PMC through the front or rear standard mounting positions.

Caution: Removing the backing plate can damage the components on the board and may void the warranty. No user-serviceable parts are available under the PCB. Do not remove the face plate/backing plate.

6.1.3 Component Height


Figure 22 on page 99 and Figure 23 on page 100 detail maximum component heights on both the primary and secondary sides of the MPCBL0001 SBC.


Figure 22. Front Panel Dimensions – FC SKU (PMC and Connectors)

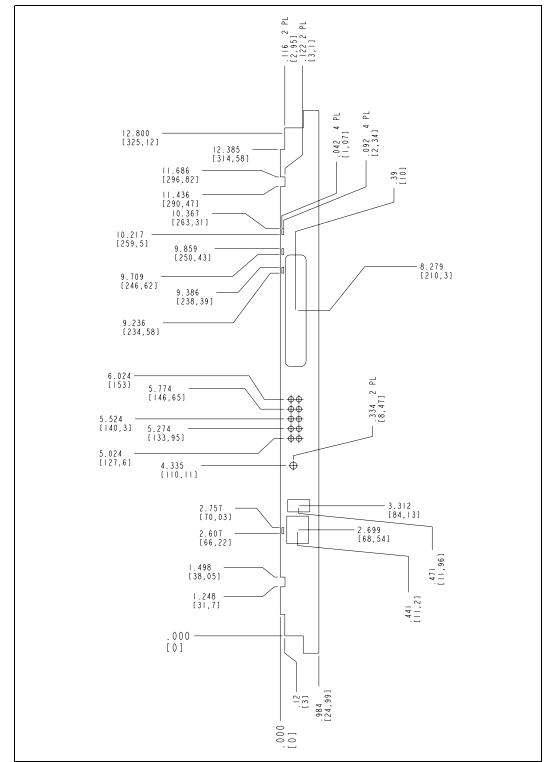

Figure 23. Front Panel Dimensions – FC SKU (Screws and LEDs)

Figure 24. Front Panel Dimensions – Non FC SKU (PMC and Connectors)

Figure 25. Front Panel Dimensions – Non-FC SKU (Screws and LED)

6.2 Environmental Specifications

The MPCBL0001 SBC meets the board-level specifications as specified in the Intel Environmental Standards Handbook – Telco Specification Document No. A78805-01. The test methodology is a combination of Intel and NEBs test requirements with the intent that the product will pass pure system-level NEBs testing. Intel will not be completing NEBs testing on the SBC. The following table summarizes environmental limits, both operating and nonoperating.

Table 59. Environmental Specifications

Parameter	Conditions	Detailed Specification
Temperature (Ambient)	Operating (normal)	5 to 40° C
	Operating (short term)	-5 to 55° C
	Storage	-40 to 70° C
Airflow	Operating	300 linear feet per minute (LFM) minimum
Humidity	Operating	10-85% noncondensing
	Storage	10-95% noncondensing
Unpackaged Vibration	Operating	5 Hz @ 0.01 g2/Hz to 20 Hz @ 0.02g2/Hz (slope up) 20 Hz to 500 Hz @ 0.02 g2/Hz (flat) Input acceleration = 3.13 gRMS
	Storage	Not specified in current bluebook.
Shock	Unpackaged	50 g

6.3 Reliability Specifications

6.3.1 Mean Time Between Failure (MTBF) Specifications

Calculation Type:	MTBF/FIT Rate
Standard:	Telcordia Standard SR-332 Issue 1
Methods:	Method I, Case I, Quality Level II

The calculation results were generated using the references and assumptions listed. This report and its associated calculations supersede all other released MTBF and Failure in Time (FIT) calculations of earlier report dates. The reported failure rates do not represent catastrophic failure. Catastrophic failure rates will vary based on application environment and features critical to the intended function.

Note: Incorporating an optional IDE Hard-disk Drive (HDD) will significantly impact the Reliability Specifications.

Table 60.Reliability Estimate Data

Failure Rate (FIT)	8,000	Failures in 10 ⁹ hours
MTBF	125,000	Hours

6.3.1.1 Environmental Assumptions

- Failure rates are based on a 40° C ambient temperature.
- Applied component stress levels are 50 percent (voltage, current, and/or power).
- Ground, fixed, controlled environment with an environmental adjustment factor equal to 1.0.

6.3.1.2 General Assumptions

- Component failure rates are constant.
- Board-to-system interconnects included within estimates.
- Non-electrical components (screws, mechanical latches, labels, covers, etc.) are not included within estimations.
- Printed circuit board is considered to have a 0 FIT rate.

6.3.1.3 General Notes

- Method I, Case I = Based on parts count. Equipment failure is estimated by totaling device failures rates and quantities used.
- Quality Level II = Devices purchased to specifications, qualified devices, vendor lotto-lot controls for AQLs and DPMs.
- Where available, direct component supplier predictions or actual FIT rates have been used.
- The SBC MTBF does not include addition of the 2.5" HDD. The product MTBF could be significantly impacted by adding a HDD. Please contact the HDD manufacturer for specific component and relevant operational MTBF information.

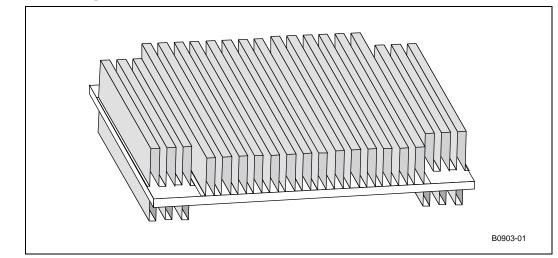
6.3.2 Power Consumption

The power consumed by the Intel NetStructure[®] MPCBL0001 High Performance Single Board Computer SBC is dependent on the type and speed of processors used and the amount of memory installed. Table 61, "Total Measured Power" on page 104 is based on the use of two Low Voltage Intel[®] Xeon[™] processors. Typical values were obtained by running the Windows* 2000*-based application "Drive Reaper" against networked shared drives. "Max" values were obtained by running Intel's DOS* based "Maxpower" utility, version 6.0.

- *Note:* A TriEMS card was installed for all power management tests. The TriEMS dissipates 550 mW typical.
- Note: A TriEMS card was installed for all power management tests. The TriEMS dissipates 550 mW typical. The power level that was sent to the shelf manager at M3 state is 152W.
 10W margin from the maximum power was an allowance for different model of PMC and DIMMs module.

Table 61.Total Measured Power

Memory	Dual 2.0 GHz (400 Mhz FSB)
8GByte (Four 2-GByte DIMMs)	Typical power = 127 W Max power = 142 W


6.3.3 Cooling Requirements

The Intel NetStructure[®] MPCBL0001 High Performance Single Board Computer SBC should be installed vertically in a chassis, with bottom-to-top airflow. Airflow is expected to be evenly distributed across the bottom edge of the installed MPCBL0001 blade and maintain at least 300 LFM average airflow.

Most components on the MPCBL0001 blade are specified to operate with a localized ambient temperature up to 70° C and do not require heat sinks. The MPCBL0001 blade uses two custom heat sinks, one per processor (see Figure 26, "Low Voltage Intel[®] Xeon[™] Processor Heatsink" on page 105.) The rate of airflow specified above is critical to ensuring that the blade operates as designed.

Figure 26. Low Voltage Intel[®] Xeon[™] Processor Heatsink

6.4 Board Layer Specifications

Material: TG180 FR4

Layers: 14

Copper:

- Outer layers 1 and 14 are 1 oz copper
- Middle planes 7 & 8 are 2 oz copper
- All others are 1 oz copper.

6.5 Weight

The weight of the baseboard (N04 and F04) is 3.0645 kg (6.75 lbs.) without any packaging materials.

7.0 BIOS Features

7.1 Introduction

The Intel NetStructure[®] MPCBL0001 High Performance Single Board Computer SBC uses an Intel/AMI BIOS, which is stored in flash memory and updated using a disk-based program. In addition to the BIOS and BIOS setup program, the flash memory contains POST and Plug and Play support.

The BIOS displays a message during POST identifying the type of BIOS and a revision code. Refer to the specification update for the latest default settings.

7.2 BIOS Flash Memory Organization

MPCBL0001 contains two Firm Ware Hub (FWH) devices (see Figure 1, "Block Diagram" on page 16). The first one is the Primary FWH, which holds the BIOS code that executes during POST. The second is the Backup FWH, which recovers the system when the Primary FWH is corrupted. The N82802AC FWH includes an 8 Mbit (1024 KByte) symmetrical flash memory device. Internally, the device is grouped into sixteen 64-KByte blocks that are individually erasable, lockable, and unlockable.

7.3 Complementary Metal-Oxide Semiconductor (CMOS)

CMOS RAM is a nonvolatile storage that stores data needed by the BIOS. The data consists of certain onboard configurable settings, including time and date. CMOS resides in the ICH3 and is powered by the Supercap when the blade is power off. The settings in the BIOS setup menu are stored in the CMOS RAM and are often called CMOS settings.

7.3.1 Copying and Saving CMOS Settings

The BIOS/CMOS flash update utility (flashInx or flashdos) loads a fresh copy of the BIOS into flash ROM. It has the capability to save the CMOS settings from the MPCBL0001 SBC. The CMOS settings file can be copied to a file. This file can be saved in a directory specified by the user. The filename also can be specified by user, such as CMOS.BIN.

With the BIOS/CMOS flash utility and CMOS.bin file, user is able to copy CMOS settings to another MPCBL0001 SBC, thus minimizing the effort to reconfigure the preferred CMOS settings across all boards.

This BIOS/CMOS flash utility that is designed to run under MontaVista* Carrier Grade Linux* 3.0 should be on the local hard disk of the MPCBL0001. Any user who is able to communicate with the MPCBL0001 via Telnet would be able to execute to copy and save the CMOS remotely.

The utility is part of the BIOS release package and can be downloaded from the Intel web site at http://www.intel.com/design/network/products/cbp/software/bios/mpcbl0001.htm. Refer to Chapter 10.0, "Operating the Unit," for more information.

7.4 Redundant BIOS Functionality

MPCBL0001 hardware has two flash banks for BIOS where redundant copies are stored. BIOS bank selection logic is connected to the IPMC, and the IPMC firmware allows selection of the BIOS bank.

By default, firmware selects BIOS bank 0. BIOS executes code off this flash and performs checksum validation of its operational code. This checksum occurs in the boot block of the BIOS. If the boot block detects a checksum failure in the remainder of the BIOS, it notifies the IPMC of the failure. In case of failure, the IPMC firmware:

- 1. Asserts the RESET pin on the processor.
- 2. Switches the flash bank.
- 3. Deasserts the RESET pin on the processor, allowing BIOS to execute off the second flash bank.

7.5 System Management BIOS (SMBIOS)

SMBIOS is a Desktop Management Interface-compliant method for managing computers in a managed network.

The main component of SMBIOS is the management information format database, which contains information about the computing system and its components. Using SMBIOS, a system administrator can obtain the following information for system components:

- System types.
- · Capabilities.
- · Operational status.
- Installation dates.

The management information format database defines the data and provides the method for accessing this information. The BIOS enables applications such as third-party management software to use SMBIOS. The BIOS stores and reports the following SMBIOS information:

- BIOS data, such as the BIOS revision level.
- Fixed-system data, such as peripherals, serial numbers, and asset tags.
- Resource data, such as memory size, cache size, and processor speed.

Non-Plug and Play operating systems, such as Linux or Windows NT^{*}, require an additional interface for obtaining the SMBIOS information. The BIOS supports an SMBIOS table interface for such operating systems. Using this support, an SMBIOS service-level application running on a non-Plug and Play operating system can obtain the SMBIOS information.

7.6 Legacy USB Support

Legacy USB support enables USB devices such as keyboards, mice, and hubs to be used even when the operating system's USB drivers are not yet available. Legacy USB support is used to access the BIOS Setup program and install an operating system that supports USB. Legacy USB support is set to Enabled by default.

Note: Legacy USB support is for keyboards, mice and hubs only. Other USB devices are not supported in legacy mode except bootable devices like CD-ROM drives and floppy disk drives.

Legacy USB support operates as follows:

- 1. When you apply power to the computer, legacy support is disabled.
- 2. POST begins.
- 3. Legacy USB support is enabled by the BIOS, allowing you to use a USB keyboard.
- 4. POST completes.
- 5. The operating system loads. USB keyboards and mice are recognized and may be used to configure the operating system. Keyboards and mice are not recognized during this period if Legacy USB support was set to Disabled in the BIOS Setup program.
- 6. After the operating system loads the USB drivers, all legacy and non-legacy USB devices are recognized by the operating system. Legacy USB support from the BIOS is no longer used.

To install an operating system that supports USB, verify that Legacy USB support in the BIOS Setup program is set to Enabled and follow the operating system's installation instructions.

7.7 BIOS Updates

The BIOS can be updated using either of the following utilities, which are available on the Intel Web site:

- Intel[®] Linux* BIOS Update utility, which enables automated updating while in the Linux environment. Using this utility, the BIOS can be updated from:
 - A file on a hard disk
 - 1.44 MByte diskette
 - CD-ROM
 - The file location on the Web
- Intel $^{\ensuremath{\mathbb{R}}}$ DOS* BIOS Update utility, which enables automated updating while in the DOS environment.

Both utilities support the following BIOS maintenance functions:

- Updating the main BIOS.
- Verifying that the updated BIOS matches the target system to prevent accidentally installing an incompatible BIOS.

Refer to Section 10.2, "BIOS Image Updates" on page 137 for a complete upgrade procedure.

Note: Review the instructions distributed with the upgrade utility before attempting a BIOS update.

7.7.1 Language Support

English is the only supported language.

7.8 Recovering BIOS Data

Some types of failure can destroy the BIOS. For example, the data can be lost if a power outage occurs while the BIOS is being updated in flash memory. The BIOS can be recovered from Backup BIOS. Recovery mode is active when BIOS checksum fails and notifies the IPMC to failover to the backup BIOS.

7.9 Boot Options

In the BIOS Setup program, the user can choose to boot from available boot devices, with each boot device having options for removable media, CD-ROM, hard drive, IBA2, or IBA1. In every POST, the BIOS detects all available boot devices, then displays them on the boot order screen, with the exception of the IBA, which displays even if the LAN cable is not connected.

The default settings are:

- 1st Boot Device: removable media
- 2nd Boot Device: CD-ROM
- 3rd Boot Device: hard drive
- 4th Boot Device: IBA2 Intel[®] Boot Agent (IBA) 2
- 5th Boot Device: IBA1 Intel[®] Boot Agent (IBA) 1

7.9.1 CD-ROM and Network Boot

Booting from CD-ROM is supported in compliance with the El Torito bootable CD-ROM format specification. Under the Boot menu in the BIOS Setup program, USB CD-ROM is listed as a boot device (removable media). Boot devices are defined in priority order.

Accordingly, if there is not a bootable CD in the CD-ROM drive, the system attempts to boot from the next defined drive.

The network can be selected as a boot device. This Intel[®] Boot Agent (IBA) selection allows booting from the onboard LANs if connected to a network. Typically, MPCBL0001's Gigabit Ethernet is routed through the AdvancedTCA backplane to the front panel of an AdvancedTCA switch, which is then connected to a LAN.

7.9.2 Booting without Attached Devices

For use in embedded applications, the BIOS has been designed so that after passing the POST, the operating system loader is invoked even if the video adapter (via PMC), keyboard, or mouse are not present:

7.10 Fast Booting Systems

7.10.1 Quick Boot

Use of the following BIOS Setup program settings reduces the POST execution time.

In the Boot Menu:

- Disable Option—ROM(s) if the user configuration does not use IBA(PXE) boot, or there is no Fibre Channel drive in the system.
- Disable Quiet Boot eliminates display of the logo splash screen. This could save several seconds of painting complex graphic images and changing video modes.
- Enable Quick Boot bypasses memory count and the search for a removable drive.
- *Note:* It is possible to optimize the boot process to the point where the system boots so quickly that the Intel logo screen (or a custom logo splash screen, if implemented) is be seen. Monitors and hard disk drives with minimum initialization times can also contribute to a boot time that might be so fast that necessary logo screens and POST messages cannot be seen.

Note: This boot time may be so fast that some drives might be not be initialized at all. If this occurs, it is possible to introduce a programmable delay ranging from 3 to 30 seconds using the BIOS Setup program, IDE Configuration Submenu, Advanced Menu, IEDE Detect Time Out feature.

7.11 BIOS Security Features

The BIOS includes security features that restrict access to the BIOS Setup program and booting the computer. A supervisor password and a user password can be set for the BIOS Setup program and for booting the computer, with the following restrictions:

- The supervisor password gives unrestricted access to view and change all the Setup options in the BIOS Setup program. This is the supervisor mode.
- The user password gives restricted access to view and change Setup options in the BIOS Setup program. This is the user mode.
- If only the supervisor password is set, pressing the <Enter> key at the password prompt of the BIOS Setup program allows the user restricted access to Setup.
- If both the supervisor and user passwords are set, users can enter either the supervisor password or the user password to access Setup. Users have access to Setup respective to which password is entered.
- Setting the user password restricts who can boot the computer. The password prompt is displayed before the computer is booted. If only the supervisor password is set, the computer boots without asking for a password. If both passwords are set, the user can enter either password to boot the computer.

The table below shows the effects of setting the supervisor password and user password. This table is for reference only and is not displayed on the screen.

Table 62. Supervisor and User Password Functions

Password Set	Supervisor Mode	User Mode Password Enter Setu		Password During Boot
None	Any user can change all options	Any user can change all options	None	None
Supervisor and user	Can change all options	Based on user access level: No Access, View Only, Limited, Full Access	Supervisor or user	If password check option is set to Setup then no password required. Otherwise requires either supervisor or user password.
Supervisor only	Can change all options	Based on user access level: No Access, View Only, Limited, Full Access.	Supervisor (for supervisor mode) or enter only (for user mode)	If password check option is set to Setup then no password required. Otherwise requires either supervisor password or enter only.
User only	Can't get into supervisor mode until user pass- word is cleared.	Can change all options	User	If password check option is set to Setup then no password required. Otherwise requires user password.

7.12 Remote Access Configuration

Remote access using serial console redirection allows users to monitor the MPCBL0001 boot process and run the MPCBL0001 BIOS setup from a remote serial terminal. Connection is made directly through a serial port.

The console redirection feature is useful in cases where it is necessary to communicate with a processor board in an embedded application without video support.

Table 63 shows the escape code sequences that may be useful for things like BIOS Setup if function keys cannot be directly sent from a terminal application:

Table 63.	Function	Key	Escape	Code	Equivalents

Кеу	Escape Sequence	Note
F1	ESC OP	
F2	ESC OQ	
F3	ESC OR	
F4	ESC OS	To enter BIOS Setup
F5	ESC OT	
F6	ESC OU	
F7	ESC OV	
F8	ESC OW	
F9	ESC OX	
F10	ESC OY	To save and exit Setup
F11	ESC OZ	
F12	ESC OI	PXE boot

8.0 BIOS Setup

8.1 Introduction

The BIOS Setup program can be used to view and change the BIOS settings for the computer. The BIOS Setup program is accessed by pressing the $\langle F2 \rangle$ key after the Power-On Self-Test (POST) begins and before the operating system boot begins. Table 64 lists the BIOS Setup program menu features.

Table 64. BIOS Setup Program Menu Bar

Main	Advanced	Boot	Security	Exit
Allocates resources	Configures advanced	Selects boot	Sets passwords	Saves or discards
for hardware	features available	options and power	and security	changes to Setup
components	through the chipset	supply controls	features	program options

Table 65 lists the function keys available for menu screens.

Table 65. BIOS Setup Program Function Keys

BIOS Setup Program Function Key	Description		
< ↔> 0r < →>	Selects a different menu screen (moves the cursor left or right).		
<↑> or <↓>	Selects an item (moves the cursor up or down).		
<tab></tab>	Selects a field (not implemented).		
<enter></enter>	Executes command or selects the submenu.		
<f9></f9>	Loads the default configuration values for the current menu.		
<f10></f10>	Saves the current values and exits the BIOS Setup program.		
<esc></esc>	Exits the menu.		

8.2 Main Menu

To access this menu, select Main on the menu bar at the top of the screen.

Main	Advanced	Boot	Security	Exit
------	----------	------	----------	------

Table 66 describes the Main menu. This menu reports processor and memory information and is used for configuring the system date and system time.

Table 66. Main Menu

Feature	Options	Description
BIOS ID	AMIBIOS Version Build Date ID	Displays the BIOS ID.
Processor	Type Speed Count	Reports processor type, speed, CPUID and L2 Cache size.
System Memory Size	Size	Displays system memory size.
System Time	Hour, minute, and second	Specifies the current time.
System Date	Day of week Month/day/year	Specifies the current date.

8.3 Advanced Menu

To access this menu, select Advanced on the menu bar at the top of the screen.

Main	Advanced	Boot	:	Security	Exit
CPU Configuratio	on				
IDE Configuratio	on				
SuperIO Configur	ration				
ACPI Configurati	ion				
System Managemer	nt Configuration	L			
Event Logging Co	onfiguration				
Fibre Channel Ro	outing (PICMG)				
Remote Access Configuration					
USB Configuration					
PCI Configuratio	on				

Under the Advanced Menu, the following warning message appears:

WARNING: Setting the wrong values in the sections that follow may cause the system to malfunction.

This is a warning message to users to not modify the settings unless they are familiar with the items. To restore factory defaults, go to "Exit > Load Optimal Defaults".

Table 67 describes the Advanced menu. This menu sets advanced features that are available through the chipset.

Table 67. **Advanced Menu**

Feature	Options	Description
CPU Configuration	Select to display submenu	Display CPU details, Enable/Disable Hyper-Threading Technology [†] .
IDE Configuration	Select to display submenu	Display the primary IDE master and primary IDE slave drive.
SuperIO Configuration	Select to display submenu	Set the serial port 1 & 2 ¹ address/interrupt.
ACPI Configuration	Select to display submenu	Enable/Disable ACPI support for OS, Enable/Disable additional ACPI 2.0 tables.
System Management Configuration	Select to display submenu	Display FRU board and product information, Display BMC device and FW information.
Event Logging Configuration	Select to display submenu	Enable/Disable error logging.
Fibre Channel Routing (PICMG)	Select to display submenu	Select Fibre Channel connections.
Remote Access Configuration	Select to display submenu	Set remote access type, select serial port ¹ , set serial port settings, Enable/Disable redirection after booting to DOS.
USB Configuration	Select to display submenu	Enable/Disable USB devices.
PCI Configuration	Select to display submenu	Enable/Disable onboard Fibre Channel option.

Note: 1. Only available under BIOS version P06-0019 and above.

8.3.1 **CPU Configuration Submenu**

To access this submenu, select Advanced on the menu bar, then CPU Configuration.

Main	Advanced	Boot	Security	Exit
CPU Configur	ation			
Manufacturer				
Brand String	ſ			
Frequency				
HyperThreadi	ng			

The submenu represented in the following table is used for configuring the CPU.

Table 68. CPU Configuration Submenu

Feature	Options	Description	
Manufacturer		Display CPU Manufacturer	
Brand String		Display CPU Brand String	
Frequency		Display CPU Frequency	
HyperThreading Technology [†]	Disabled, Enabled	Enable/Disable Hyper-Threading Technology [†] .	

Note: Bold text indicates default setting.

8.3.2 IDE Configuration Submenu

To access this submenu, select Advanced on the menu bar, then IDE Configuration.

Main	Advanced	Boot	Security	Exit
CPU Configuration	n			
IDE Configuration	n			
Primary IDE Mast	er/Slave			
Floppy Configura	tion			
SuperIO Configur	ation			
ACPI Configurati	on			
Advanced ACPI Co	nfiguration			
System Managemen	t Configuration			
Event Logging Co	nfiguration			
Fibre Channel Ro	uting (PICMG)			
Remote Access Configuration				
USB Configuration				
PCI Configuration	n]	

Table 69 shows IDE device configuration options.

Table 69.IDE Configuration Submenu (Sheet 1 of 2)

Feature	Options	Description
On Board PCI IDE Controller	Disabled Primary	Enable/Disable on board Primary IDE Controller.Disabled: disables the integrated IDE Controller.Primary: enables only the Primary IDE Controller.
Primary IDE Master		Display the primary IDE master drive.While entering setup, BIOS auto detects the presence of IDE devices. This displays the status of the auto detection of IDE devices.
Primary IDE Slave		Display the primary IDE slave drive.While entering setup, BIOS auto detects the presence of IDE devices. This displays the status of the auto detection of IDE devices.
Hard Disk Write Protect	Disabled Enabled	Enable/Disable Hard Disk device write protection. This is effective only if the device is accessed through BIOS.

Table 69.IDE Configuration Submenu (Sheet 2 of 2)

Feature	Options	Description
IDE Detect Time Out	0 5 10 15 20 25 30 35	Select the time out value for detecting ATA/ATAPI device(s).
ATA(PI) 80Pin Cable Detect.	Host&Device Host	Select the mechanism for detecting 80Pin ATA(PI) Cable.

Note: Bold text indicates default setting.

8.3.2.1 Primary IDE Master/Slave Submenu

Main	Advanced	Boot	Security	Exit
CPU Configuration	n			
IDE Configuration	n			
Primary IDE Mast	er/Slave			
Floppy Configura	tion			
SuperIO Configura	SuperIO Configuration			
ACPI Configuration	on			
System Managemen	t Configuration			
Event Logging Con	nfiguration			
Fibre Channel Ro	uting (PICMG)			
Remote Access Configuration				
USB Configuration				
PCI Configuration				

Table 70. Primary IDE Master/Slave Submenu

Feature	Options	Description	
Device		Display IDE device.	
Vendor		Display IDE vendor name.	
Size		Display IDE device size.	
LBA Mode		Display IDE LBA Mode status.	
Block Mode		Display IDE Block Mode status.	
PIO Mode		Display PIO Mode status.	
Async DMA		Display Async DMA status.	
Ultra DMA		Display Ultra DMA-5 status.	
S.M.A.R.T		Display S.M.A.R.T status.	
Туре	Not installed Auto CDROM ARMD	Select the type of IDE device connected.	
LBA/Large Mode	Disabled Auto	Disable: Disable LBA ModeAuto: Enable the LBA Mode if the device supports it and the devices is not already formatted with LBA Mode disable.	
Block (Multi-Sector Transfer)	Disabled Auto	Disable: The data transfer from and to the device occurs one sector at a time. Auto: The data transfer from and to the device occurs multiple sectors at a time if the device supports it.	
PIO Mode	Auto 0/1/2/3/4	Select PIO Mode	
DMA Mode	Auto SWDMA0 SWDMA1 SWDMA2 MWDMA0 MWDMA1 MWDMA2 UDMA0 UDMA1 UDMA2 UDMA3 UDMA4	Select DMA Mode Auto: Auto detected SWDMAn: SingleWordDMAn MWDMAn: MultiWordDMAn UDMAn: UltraDMAn	
S.M.A.R.T	Auto Disabled Enabled	Enable/Disable S.M.A.R.T. Auto: Enable S.M.A.R.T if the device supports it.	
32 Data Transfer	Disabled Enabled	Enable/Disable 32-bit Data Transfer.	
ARMD Emulation Type	Auto FloppyHard Disk	Select ARMD device emulation type by BIOS.	

Note: Bold text indicates default setting.

8.3.3 Floppy Configuration Submenu

To access this submenu, select Advanced on the menu bar, then Floppy Configuration.

Main	Advanced	Boot	Security	Exit
CPU Configuratio	n			
IDE Configuratio	n			
Floppy Configura	tion			
SuperIO Configur	ation			
ACPI Configurati	on			
System Managemen	t Configuration			
Event Logging Co	nfiguration			
Fibre Channel Ro	uting (PICMG)			
Remote Access Configuration				
USB Configuration				
PCI Configuratio	n			

Table 71 shows floppy device configuration options.

Table 71. Floppy Configuration Submenu

Feature	Options	Description
Floppy A	Disabled 360 KByte 1.2 MByte 720 KByte 1.44 MByte 2.88 MByte	Set the floppy A type.

SuperIO Configuration Submenu 8.3.4

To access this submenu, select Advanced on the menu bar, then SuperIO Configuration.

Main	Advanced	Boot	Security	Exit
CPU Configuration	n			
IDE Configuration	n			
Floppy Configura	tion			
SuperIO Configura	ation			
ACPI Configuration	on			
System Managemen	t Configuratio	on		
Event Logging Con	nfiguration			
Fibre Channel Ro	uting (PICMG)			
Remote Access Configuration				
USB Configuration				
PCI Configuration	n			

Table 72 shows SuperIO configuration options.

Table 72. SuperIO Configuration Submenu

Feature	Options	Description
OnBoard Floppy Controller	Disabled Enabled	Enable or disable Floppy Controller.
Serial Port1 Address	Disabled 3F8/IRQ4 3E8/IRQ4 2E8/IRQ3	Set the serial port 1 address/interrupt.
Serial Port 2 Address ¹	Disabled 2F8/IRQ3 3E8/IRQ4 2E8/IRQ3	Set the Serial port 2 address/interrupt

 Note:
 Bold text indicates default setting.

 1.
 Only available under BIOS version P06-0019 and above.

8.3.5 ACPI Configuration Submenu

To access this submenu, select Advanced on the menu bar, then ACPI Configuration.

Main	Advanced	Boot	Security	Exit
CPU Configuratio	n			
IDE Configuratio	n			
Floppy Configura	tion			
SuperIO Configur	ation			
ACPI Configurati	on			
Advanced ACPI Co	nfiguration			
System Managemen	t Configuration			
Event Logging Co	nfiguration			
Fibre Channel Ro	uting (PICMG)			
Remote Access Configuration				
USB Configuratio	USB Configuration			
PCI Configuratio	n]	

Table 73 shows ACPI configuration options.

Table 73.ACPI Configuration Submenu

Feature	Options	Description
ACPI Aware O/S	No Yes	Enable/Disable ACPI support for OS. Enable: If OS supports ACPI. Disable: If OS does not support ACPI.

8.3.5.1 Advanced ACPI Configuration Submenu

To access this submenu, select Advanced on the menu bar, then ACPI Configuration.

Main	Advanced	Boot	Security	Exit
CPU Configuratio	n			
IDE Configuratio	n			
Floppy Configura	tion			
SuperIO Configur	ation			
ACPI Configurati	on			
Advanced ACPI Co	nfiguration			
System Managemen	t Configurati	on		
Event Logging Co	nfiguration			
Fibre Channel Ro	uting (PICMG)			
Remote Access Configuration				
USB Configuratio	USB Configuration			
PCI Configuratio	PCI Configuration			

Table 74 shows ACPI configuration options.

Table 74. Advanced ACPI Configuration Submenu

Feature	Options	Description
ACPI 2.0 Support	No Yes	Add additional ACPI 2.0 tables as per ACPI2.0 specifications.
ACPI APIC support	Disabled Enabled	Include ACPI APIC table pointer to RSDT pointer list.
BIOS→AML ACPI table	Disabled Enabled	Include BIOS
Headless Mode	Disabled Enabled	Enable/Disable Headless operation mode through ACPI.

8.3.6 System Management Configuration Submenu

To access this submenu, select Advanced on the menu bar, then System Management Configuration.

Main	Advanced	Boot	Security	Exit
CPU Configuratio	n			
IDE Configuratio	n			
Floppy Configura	ition			
SuperIO Configur	ation			
ACPI Configurati	.on			
System Managemen	t Configuration			
Event Logging Co	onfiguration			
Fibre Channel Ro	outing (PICMG)			
Remote Access Configuration				
USB Configuration				
PCI Configuration				

Table 75 shows System Management configuration options.

Table 75. System Management Configuration Submenu

Feature	Options	Description
FRU Board Information Area		Display FRU Board Information.
Board Product Name		
Board Serial Number		
Board Part Number		
FRU Product Information Area		Display FRU Product Information.
Product Name		
Product Part/Model		
Product Version Number		
Product Serial Number		
BMC Device and FW Information		Display BMC Device and FW Information.
BMC Device ID		
BMC Firmware Revision		
BMC Revision		
SDR Revision		

8.3.7 Event Logging Configuration Submenu

To access this submenu, select Advanced on the menu bar, then Event Logging Configuration.

Main	Advanced	Boot	Security	Exit
CPU Configuration	n			
IDE Configuration	n			
Floppy Configura	tion			
SuperIO Configur	ation			
ACPI Configurati	on			
System Managemen	t Configuration			
Event Logging Co	nfiguration			
Fibre Channel Ro	uting (PICMG)			
Remote Access Configuration				
USB Configuration				
PCI Configuration				

Table 76 shows event logging configuration options.

Table 76.Event Logging Configuration Submenu

Feature	Options	Description
Event Logging	Disabled Enabled	Enable/Disable fatal error event logging.
ECC Memory Event Logging	Disabled Enabled	Enable/Disable MBE/SBE error logging.
Non-Fatal Event Logging	Disabled Enabled	Enable/Disable Non-fatal error logging.
Assert NMI on Fatal Error	Disabled Enabled	Enable/Disable NMI assertion on fatal error events.
Clear Sel Event Log		Option to clear the event logs.

8.3.8 Fibre Channel Routing (PICMG) Configuration Submenu

To access this submenu, select Advanced on the menu bar, then Fibre Channel Routing (PICMG) Configuration.

Main	Advanced	Boot	Security	Exit
CPU Configuration				
IDE Configuration	n			
Floppy Configura	tion			
SuperIO Configura	ation			
ACPI Configuration	on			
System Managemen	t Configuration			
Event Logging Co	nfiguration			
Fibre Channel Ro	uting (PICMG)			
Remote Access Configuration				
USB Configuration				
PCI Configuration				

Table 77 shows how to configure Fibre Channel routing options.

Table 77. Fibre Channel Routing (PICMG) Submenu

Feature	Options	Description
Fibre Channel A	Front Back Disabled	Select Front/Back panel FC A connection.
Fibre Channel B	Front Back Disabled	Select Front/Back panel FC B connection.
Actual Fibre Channel Port A State	NA	Display actual Fibre Channel Port A routing.
Actual Fibre Channel Port B State	NA	Display actual Fibre Channel Port B routing.

Remote Access Configuration Submenu 8.3.9

To access this submenu, select Advanced on the menu bar, then Remote Access Configuration.

Main	Advanced	Boot	Security	Exit
CPU Configuration	n			
IDE Configuration	n			
Floppy Configura	tion			
SuperIO Configur	ation			
ACPI Configurati	on			
System Managemen	t Configuration			
Event Logging Co	nfiguration			
Fibre Channel Ro	uting (PICMG)			
Remote Access Configuration				
USB Configuration				
PCI Configuration				

Table 78 shows remote access configuration options.

Table 78. **Remote Access Configuration Submenu**

Feature	Options	Description
Remote Access	Disabled Enabled	Select remote access type.
Serial Port Mode	115200 8, n, 57600 8, n, 19200 8, n, 9600 8, n, 1	Serial port settings.
Flow Control	None Hardware Software	Select flow control for console redirection.
Redirection After BIOS POST	Disabled Boot Loader Always	Select the redirection method after the POST boot loader.
Terminal Type	ANSI VT 100 VT-UTF8	Select the target terminal type.
Send Carriage Return	Disabled Enabled	Enable this support if the target terminal has more than 80 columns.
VT-UTF8 Combo Key Support	Disabled Enabled	Enable VT-UTF8 Combination Key support for ANSI/VT100 terminals.
SOL Support	Disabled ² Enabled	Enable BIOS to automatically redirect the console redirection information to serial port dedicated for SOL when SOL session is active.

Notes: 1.

Bold text indicates default setting. This support is only available and introduced in BIOS P13-0028 or above. 2.

8.3.10 USB Configuration Submenu

To access this submenu, select Advanced on the menu bar, then USB Configuration.

Main	Advanced	Boot	Security	Exit
CPU Configuration	CPU Configuration			
IDE Configuration	n			
Floppy Configura	tion			
SuperIO Configur	ation			
ACPI Configurati	on			
System Managemen	t Configuration			
Event Logging Co	nfiguration			
Fibre Channel Ro	uting (PICMG)			
Remote Access Configuration				
USB Configuration				
PCI Configuration]	

USB configuration options.

Table 79. USB Configuration Submenu

Feature	Options	Description
Legacy USB Support	Disabled Enabled	Enable legacy USB support.
USB Keyboard Legacy Support	Disabled Enabled	Enable legacy support of USB Keyboard.
USB Mouse Legacy Support	Disabled Enabled	Enable legacy support of USB Mouse.
USB Storage Device Legacy Support	Disabled Enabled	Enable legacy support of USB Mass Storage.
USB Mass Storage Reset Delay	10 sec 20 sec 30 sec 40 sec	Number of seconds POST waits for USB mass storage device after unit command.
USB Beep Message	Disabled Enabled	Enable the beep during USB device enumeration.

8.3.10.1 USB Mass Storage Device Configuration

Main	Advanced	Boot	Security	Exit
CPU Configuration				
IDE Configuration				
Floppy Configurati	on			
SuperIO Configurat	ion			
ACPI Configuration	L			
System Management	Configuration			
Event Logging Conf	iguration			
Fibre Channel Rout	ing (PICMG)			
Remote Access Conf				
USB Configuration	USB Configuration			
USB Mass Storage Device Configuration				

Table 80. USB Mass Storage Device Configuration

Feature	Options	Description
Device #		Display USB Mass Storage device(s) Name
Emulation Type	Auto Floppy Forced FDD Hard Disk CDROM	If Auto, USB devices less than 530 MByte are emulated as Floppy and remaining as hard drive. Forced FDD option can be used to force a HDD formatted drive to boot as FDD (Ex. ZIP drive).

8.3.11 PCI Configuration

To access this submenu, select Advanced on the menu bar, then USB Configuration.

Main	Advanced	Boot	Security	Exit
CPU Configuration	CPU Configuration			
IDE Configuratio	n			
Floppy Configura	tion			
SuperIO Configur	ation			
ACPI Configurati	on			
System Managemen	t Configuration			
Event Logging Co	nfiguration			
Fibre Channel Ro	uting (PICMG)			
Remote Access Co	nfiguration			
USB Configuration				
USB Mass Storage Device Configuration				
PCI Configuration	PCI Configuration			

The menu represented in the following table is used to configure USB options.

Table 81. PCI Configuration Submenu

Feature	Options	Description
Onboard Fibre Channel	Disabled Enabled	Enable/Disable Onboard Fibre Channels Option-ROM.
Onboard Gigabit LAN	Disabled Enabled	Enable/Disable Onboard Gigabit LAN Option-ROM

8.4 Boot Menu

To access this menu, select Boot from the menu bar at the top of the screen.

Main	Advanced	Boot	Security	Exit
Boot Settings Configuration				
Boot Device Priority				
Hard	Hard Disk Drive Priority			
Remov	Removable Device Priority			

The menu represented in the following table is used to set the boot features and the boot sequence.

Table 82. Boot Menu

Feature	Options	Description
Boot Settings Configuration	Select to display submenu	Set boot options
Boot Device Priority	Select to display submenu	Set first, second and last boot device.
Hard Disk Drive	Select to display submenu	Set first, second and last hard drive
OS Load Timeout Timer	Select to display submenu	Set first, second and last removable device

8.4.1 Boot Settings Configuration Submenu

To access this submenu, select Boot on the menu bar, then Boot Settings Configuration.

Main	Advanced	Boot	Security	Exit
Boot Settings Configuration				
Boot	Boot Device Priority			
Hard	Hard Disk Drives			
OS Load Timeout Timer				

The menu represented in the following table is used to configure Boot Settings.

Table 83.Boot Settings Configuration Submenu

Feature	Options	Description	
Quick Boot	Disabled Enabled	Disable/Enable the BIOS to skip certain tests while booting, to decrease the time needed to boot the system.	
Quiet Boot	Disabled Enabled	Display normal POST messaged/OEM logo.	
AddOn ROM Display Mode	Force BIOS Keep Current	Set display mode for Option ROM	
Bootup Num-Lock	Off On	Set power-on state for num-lock.	
Typematic Rate	Slow Fast	Select keyboard Typematic Rate	
System Keyboard	Absent Present	Enable/Disable all keyboards attached to the system.	
Boot To OS/2	No Yes	OS/2 Compatibility mode.	
Wait For 'F1' If Error	Disabled Enabled	Disable/enable waiting for F1 key to be pressed if error occurs.	
Hit 'DEL' Message Display	Disabled Enabled	Display "Press DEL to run Setup" in POST.	
Soft Reset	Disabled Enabled	Enable/Disable Soft Reset feature.	
Interrupt 19 Capture	Disabled Enabled	Disable/enable the ability for option ROMs to trap interrupt 19.	

Note: Bold text indicates default setting.

8.4.2 Boot Device Priority Submenu

To access this submenu, select Boot on the menu bar, then Boot Device Priority.

Main	Advanced	Boot	Security	Exit
Boot Settings Configuration				
Boot Dev	Boot Device Priority			
Hard Dis	Hard Disk Drives			
OS Load Timeout Timer				

The menu represented in the following table is used to configure boot device priority.

Table 84. Boot Device Priority Submenu

Feature	Options	Description
1 st Boot Device	Hard Drive IBA 2 IBA 1	Set the first boot device.
2 nd Boot Device	Same options as first boot device.	Set the second boot device.
Last Boot Device	Same options as first boot device.	Set the last boot device.

Note: A device only shows as an option if it is installed and detected by the BIOS during boot.

8.4.3 Hard Disk Drive Submenu

To access this submenu, select Boot on the menu bar, then Hard Disk Drive Priority.

Main	Advanced	Boot	Security	Exit
Boot Settings Configuration				
Boot Device Priority				
Hard Disk Drives				
OS Load Timeout Timer				

The menu represented in the following table is used to configure hard disk drive priority.

Table 85.Hard Disk Drive Priority Submenu

Feature	Options	Description
1 st Hard Drive	IDE Hard Drive USB Hard Drive FC1 Hard Drive FC2 Hard Drive	Set the first hard drive.
2 nd Hard Drive	Same options as first hard drive.	Set the second hard drive.

Note: A device only shows as an option if it is installed and detected by the BIOS during boot.

8.4.4 OS Load Timeout Timer

To access this submenu, select Boot on the menu bar, then OS Load Timeout Timer.

Main	Advanced	Boot	Security	Exit
Boot Settings Configuration				
Boot Device Priority				
Hard	Hard Disk Drives			
OS Load Timeout Timer				

Table 86. OS Load Timeout Timer Submenu

Feature	Options	Description
OS Load Timeout	Disabled 60sec 120 sec 150 sec 240 sec 480 sec 600 sec	Select the timeout value for OS load timer.
OS Load Action	Stay On Reset Power Off Power Cycle	Controls the action upon timeout.

8.5 Security Menu

To access this menu, select Security from the menu bar at the top of the screen.

Main Advanced Boot Security Exit			Main	Advanced	Boot	Security	
----------------------------------	--	--	------	----------	------	----------	--

The menu represented by the following table is for setting passwords and security features.

Table 87. Security Menu

Feature	Options	Description
Supervisor Password		Display the Supervisor Password status. Installed/Not Installed
User Password		Display the Supervisor Password status. Installed/Not Installed
Change Supervisor Password		Set the supervisor password.
Change User Password		Set the user password.
Clear User Password		Clear the user password.
Boot Sector Virus Protection	Disabled Enabled	Disable/enable boot sector virus protection.

Note: Bold text indicates default setting.

8.6 Exit Menu

To access this menu, select Exit from the menu bar at the top of the screen.

Main	Advanced	Security	Boot	System Management	Exit

The menu represented in the following table is for exiting the BIOS Setup program, saving changes, and loading and saving defaults.

Table 88. Exit Menu

Feature	Options	Description
Save Changes and Exit		Exit system setup after saving changes. Use this to save your configured settings to the CMOS and Flash.
Discard Changes and Exit		Exit system setup without saving changes.
Discard Changes		Discard changes without exiting.
Load Optimal Defaults		Load optimal default values.
Load FailSafe Defaults		Load failsafe default values.
Load Custom Defaults		Load custom default values.
Save Custom Defaults		Save custom default values. Use this feature to create a private copy of CMOS settings, which can be loaded using "Load Custom Defaults". Note: The values in the CMOS will be reset to factory settings after every BIOS update.

9.0 Error Messages

9.1 BIOS Error Messages

The following table lists the error messages.

Table 89.BIOS Error Messages

Error Message	Explanation of Error Message
Timer Error	This timer is based on 8254 resides in ICH-3. Error message indicates an error while programming the count register of the timer. This may indicate a problem with the timer in ICH-3
CMOS Battery LowBIOS will report this error message when status bit (RTC_REGD.Bit7) in ICH3 is low. bit is hardwired to RTC power, so it will be low when the voltage in SuperCAP is low.	
CMOS Settings Wrong	BIOS will load default value after it detects CMOS corruption. Error message is triggered if BIOS fails to load the default value to CMOS.
CMOS Checksum Bad	CMOS contents failed the checksum check. Error message indicates that the CMOS data has been changed by a program other than the BIOS or the CMOS is not retaining it's data due to hardware malfunction
RAM R/W test failed	Error message indicates BIOS fail to read/write to memory content during RAM R/W test. RAM R/W test is executed during POST.
CMOS Date/ Time Not Set	Error message indicates BIOS has detected an invalid value in date & time register. (e.g.: Invalid date = $50h$ or invalid month = $13h$.
Clear CMOS Jumper installed	Error message indicates that Jumper J16-3 to 5 is set
Clear Password Jumper installed	Error message indicates that Jumper J16-1 to 3 is set
MFG Jumper installed	Error message indicates that Jumper J16-9 to 10 is set. (Jumper is used only in manufacturing test)
BMC is in Update Mode	Error message indicates that Jumper J16-2 to 4 is set.
BMC does not respond to BIOS IPMI command	Error message appears when BIOS issue an IPMI command to IPMC, but IPMC is not responsive to the command and does not return successful completion code to BIOS.
System Event Log is Full	Error message indicates the System Event Log storage is full.
Refresh timer test failed	This timer is a counter based on 82C54 which provides memory refresh request signal periodically. Memory content need to be refreshed to compensate for the gradual leakage of charge from the capacitors which stores the data.
KBC BAT Test failed	Error message indicates that Keyboard controller BAT test has failed.

Note:

If user enabled "Wait for F1 Error" under BIOS setup screen and any of the above error message was observed, the BIOS will wait for user input before proceeding with the boot up except:

1. CMOS Checksum BAD

- 2. Clear CMOS Jumper enabled
- 3. MFG Jumper installed.

9.2 Port 80h POST Codes

During the POST, the BIOS generates diagnostic progress codes (POST-codes) to I/O port 80h. If the POST fails, execution stops and the last POST code generated is left at port 80h. This code is useful for determining the point where an error occurred.

Displaying the POST codes requires an add-in card, often called a POST card (PCI, not ISA). The POST card decodes the port and displays the contents on a medium such as a seven-segment display.

Table 91, Table 92, and Table 93 offer descriptions of the POST codes generated by the BIOS. They define the uncompressed INIT code checkpoints, the boot block recovery code checkpoints, and the runtime code uncompressed in F000 shadow RAM.

Note: Some codes are repeated in the tables because they apply to more than one operation.

Table 90. Bootblock Initialization Code Checkpoints

Checkpoint	Description
Before D1	Early chipset initialization is done. Early super I/O initialization is done, including RTC and keyboard controller. NMI is disabled.
D1	Perform keyboard controller BAT test. Check if waking up from power management suspend state. Save power-on CPUID value in scratch CMOS.
DO	Go to flat mode with 4 GByte limit and GA20 enabled. Verify the bootblock checksum.
D2	Disable CACHE before memory detection. Execute full memory sizing module. Verify that flat mode is enabled.
D3	If memory sizing module not executed, start memory refresh and do memory sizing in Bootblock code. Do additional chipset initialization. Re-enable CACHE. Verify that flat mode is enabled.
D4	Test base 512 KByte memory. Adjust policies and cache first 8 GBytes. Set stack.
D5	Bootblock code is copied from ROM to lower system memory and control is given to it. BIOS now executes out of RAM.
D6	Both key sequence and OEM-specific methods are checked to determine if BIOS recovery is forced. Main BIOS checksum is tested. If BIOS recovery is necessary, control flows to checkpoint E0.
D7	Restore CPUID value back into register. The Bootblock-Runtime interface module is moved to system memory and control is given to it. Determine whether to execute serial flash.
D8	The Runtime module is uncompressed into memory. CPUID information is stored in memory.
D9	Store the Uncompressed pointer for future use in PMM. Copying Main BIOS into memory. Leaves all RAM below 1 MByte Read-Write including E000 and F000 shadow areas but closing SMRAM.
DA	Restore CPUID value back into register. Give control to BIOS POST (ExecutePOSTKernel). See Table 91, "POST Code Checkpoints" on page 134 for more information.
E1-E8 EC-EE	OEM memory detection/configuration error. This range is reserved for chipset vendors and system manufacturers. The error associated with this value may different from one platform to the next.

Table 91.POST Code Checkpoints (Sheet 1 of 2)

Checkpoint	Description	
03	Disable NMI, parity, video for EGA, and DMA controllers. Initialize BIOS, POST, runtime data area. Also initialize BIOS modules on POST entry and GPNV area. Initialized CMOS as mentioned in the kernel variable.	
04	Check CMOS diagnostic byte to determine if battery power is OK and CMOS checksum is OK. Verify CMOS checksum manually by reading storage area. If the CMOS checksum is bad, update CMOS with power-on default values and clear passwords. Initialize status register A. Initializes data variables that are based on CMOS setup questions. Initializes both the 8259 compatible PICs in the system.	
05	Initializes the interrupt controlling hardware (generally PIC) and interrupt vector table.	
06	Do R/W test to CH-2 count reg. Initialize CH-0 as system timer. Install the POSTINT1Ch handler. Enable IRQ-0 in PIC for system timer interrupt. Traps INT1Ch vector to "POSTINT1ChHandlerBlock."	
08	Initializes the CPU. The BAT test is being done on KBC. Program the keyboard controller command byte is being done after Auto detection of KB/MS using AMI KB-5.	
CO	Early CPU Init Start Disable Cache - Init Local APIC.	
C1	Set up bootstrap processor Information.	
C2	Set up bootstrap processor for POST.	
C5	Enumerate and set up application predecessors.	
C6	Re-enable cache for bootstrap processor.	
C7	Early CPU Init Exit.	
0A	Initializes the 8042-compatible Keyboard Controller.	
OB	Detects the presence of PS/2 mouse.	
OC	Detects the presence of Keyboard in KBC port.	
OE	Testing and initialization of different Input Devices. Also, update the Kernel Variables. Traps the INT09h vector, so that the POST INT09h handler gets control for IRQ1. Uncompress all available language, BIOS logo, and Silent logo modules.	
13	Early POST initialization of chipset registers.	
24	Uncompress and initialize any platform specific BIOS modules.	
30	Initialize System Management Interrupt.	
2A	Initializes different devices through DIM. See Table 92, "DIM Code Checkpoints" on page 136 for more information.	
2C	Initializes different devices. Detects and initializes the video adapter installed in the system that have optional ROMs.	
2E	Initializes all the output devices.	
31	Allocate memory for ADM module and uncompress it. Give control to ADM module for initialization. Initialize language and font modules for ADM. Activate ADM module.	
33	Initializes the silent boot module. Set the window for displaying text information.	
37	Displaying sign-on message, CPU information, setup key message, and any OEM-specific information.	
38	Initializes different devices through DIM. See Table 92, "DIM Code Checkpoints" on page 136 for more information.	
39	Initializes DMAC-1 & DMAC-2.	
3A	Initialize RTC date/time.	
3B	Test for total memory installed in the system. Also, check for DEL or ESC keys to limit memory test. Display total memory in the system.	
3C	Mid POST initialization of chipset registers.	

Table 91.POST Code Checkpoints (Sheet 2 of 2)

Checkpoint	Description
40	Detect different devices (Parallel ports, serial ports, and coprocessor in CPU, etc.) successfully installed in the system and update the BDA, EBDA, etc.
50	Programming the memory hole or any kind of implementation that needs an adjustment in system RAM size if needed.
52	Updates CMOS memory size from memory found in memory test. Allocates memory for Extended BIOS Data Area from base memory.
60	Initializes NUM-LOCK status and programs the KBD typematic rate.
75	Initialize Int-13 and prepare for IPL detection.
78	Initializes IPL devices controlled by BIOS and option ROMs.
7A	Initializes remaining option ROMs.
7C	Generate and write contents of ESCD in NVRam.
84	Log errors encountered during POST.
85	Display errors to the user and gets the user response for error.
87	Execute BIOS setup if needed.
8C	Late POST initialization of chipset registers.
8D	Build ACPI tables (if ACPI is supported).
8E	Program the peripheral parameters. Enable/Disable NMI as selected.
90	Late POST initialization of system management interrupt.
A0	Check boot password if installed.
A1	Clean-up work needed before booting to OS.
A2	Takes care of runtime image preparation for different BIOS modules. Fill the free area in F000h segment with 0FFh. Initializes the Microsoft IRQ Routing Table. Prepares the runtime language module. Disables the system configuration display if needed.
A4	Initialize runtime language module.
A7	Displays the system configuration screen if enabled. Initialize the CPUs before boot, which includes the programming of the MTRRs.
A8	Prepares CPU for OS boot, including final MTRR values.
A9	Waits for user input at config display if needed.
AA	Uninstalls POST INT1Ch vector and INT09h vector. Deinitializes the ADM module.
AB	Prepares BBS for Int 19 boot.
AC	End of POST initialization of chipset registers.
B1	Saves system context for ACPI.
00	Passes control to OS Loader (typically INT19h).

Table 92. DIM Code Checkpoints

Checkpoint	Description	
2A	 Initializes different buses and performs the following functions: Function 0: Reset, Detect, and Disable - Disables all device nodes, PCI devices, and PnP ISA cards. Assigns PCI bus numbers. Function 1: Static Device Initialization - initializes all static devices that include manual configured onboard peripherals, memory and I/O decode windows in PCI-PCI bridges, and noncompliant PCI devices. Reserves static resources. Function 2: Boot Output Device Initialization - Searches for and initializes any PnP, PCI, or AGP video devices. 	
38	 Initializes different buses and performs the following functions: Function 3: Boot Input Device Initialization - Searches for and configures PCI input devices and detects if system has standard keyboard controller. Function 4: IPL Device Initialization - searches for and configures all PnP and PCI boot devices. Function 5: General Device Initialization - Configures all onboard peripherals that are set to automatic configuration and configures all remaining PnP and PCI devices. 	

Table 93. ACPI Runtime Checkpoints

Checkpoint	Description	
AC	First ASL check point. Indicates the system is running in ACPI mode.	
AA	System is running in APIC mode.	
01, 02, 03, 04, 05	Entering sleep state S1, S2, S3, S4, or S5.	
10, 20, 30, 40, 50 Waking from sleep state S1, S2, S3, S4, or S5.		

The following table describes the beep codes implemented in the MPCBL0001 BIOS.

Table 94. BIOS Beep Codes

Number of Beeps	Description
1 short	Refresh timer test failed
1 long, 3 short	RAM R/W test failed
1 long, 6 short	KBC BAT test failed
3 short	Memory configuration error

10.0 Operating the Unit

10.1 BIOS Configuration

See Chapter 7.0, "BIOS Features," for BIOS configuration options and Chapter 8.0, "BIOS Setup," for information about using the BIOS Setup program. See Section 2.2.3.1, "Memory Ordering Rule for the MCH" on page 20 for information about installing DIMMs.

10.2 BIOS Image Updates

At times, new BIOS images will be released to add additional features to the SBC. The release package contains the flash utility, which comes in two versions. They are "flashdos" for DOS and "flashInx" for Linux OS. The package also contains the BIOS ROM image. Below is a step-by-step procedure on how to update the BIOS:

- 1. Copy the flash utility and the Pxx-xxxx.rom file to a DOS bootable floppy disk.
- 2. Boot MPCBL0001from a USB floppy disk (connected to the USB port) to a DOS prompt.
- Copy flash utility and BIOS ROM image to RAM disk, which is automatically generated (C: drive).
- 4. Issue the command "flashdos /b Pxx-xxxx (xx= build type version, xxxx=build identifier).
- 5. Enter "Y" to overwrite the BIOS on the board.
- 6. Enter "Y" to clear the current COMS settings on the board.
- 7. Enter "Y" to reboot the system after the BIOS has been upgraded successfully.

10.3 Procedures to Copy and Save BIOS (Including CMOS Settings)

The CMOS settings, together with the BIOS binary image, can be copied to a file with a file name specified by the user.

10.3.1 Copying BIOS.bin from the SBC

- Copy the flashInx utility to the SBC running MontaVista* Carrier Grade Linux*. (This SBC is the one with custom CMOS settings that will be used to update other SBCs.)
- 2. Issue the command "./flashInx -r -afff20000 -s917504 BIOS.bin" to copy the BIOS with the customized CMOS settings to the same directory from which flashInx is executed. All user-preferred settings (including the BIOS image) will be saved in the file named BIOS.bin.

Note: "BIOS.bin" is a generic file name used here to illustrate the command line used to perform the operation. The user may wish to use the BIOS version (e.g., P08-0021.bin) as the file name instead of BIOS.bin.

10.3.2 Saving BIOS.bin to the SBC

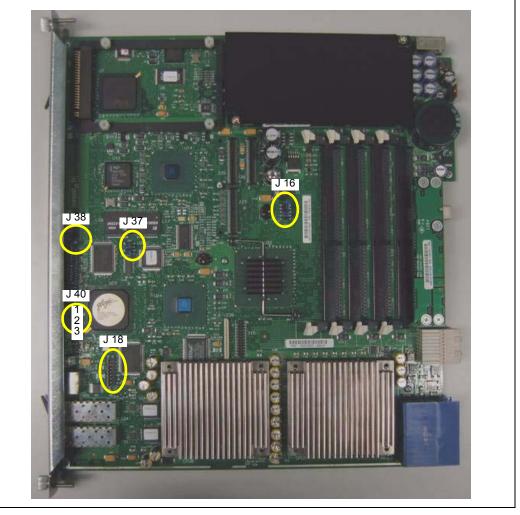
- 1. Copy the flashInx utility and BIOS.bin to the SBC running MontaVista Carrier Grade Linux.
- 2. Execute "chmod +x flashInx" to change the file attribute to executable form.
- 3. Execute "./flashInx -b -zc BIOS.bin" to copy the BIOS.bin file to the FWH and CMOS.
- 4. Upon completion, perform a reset to ensure the new CMOS settings and BIOS are loaded.
- *Caution:* To ensure that the BIOS.bin file is not corrupted, Intel strongly suggests performing these steps before major deployment of any SBCs running in a live network environment.

10.3.3 Error Messages

The table below describes an error message that may occur while copying or saving the BIOS.

Table 95. Error Message

Message	Definition	Notes
Data ID not found	CMOS area is not detected in BIOS.	Only applies to boards having this feature.



10.4 Jumpers

The MPCBL0001 contains several jumper posts that allow the user to configure certain options not configurable through the BIOS Setup Utility. The "Jumper Locations" figure below shows the placement of the MPCBL0001 jumpers. See Table 99, "J40 Jumper Assignments" on page 140 for the function of each jumper.

Note: The MPCBL0001 is shipped pre-configured—jumper positions do not need to be altered.

Figure 27. Jumper/Connector Locations

Note: Pin 2 is directly beside pin 1 and is marked on the board silkscreen. The back row has odd-numbered pins and the front row has even-numbered pins.

Table 96.J18 Pin Assignments

	Lattice* Compatible JTAG Header	PS/2 Keyboard/Mouse Header
1	+3.3 VSB	2 MDAT (PS/2 mouse data)
3	TDO	4 MCLK (PS/2 mouse clock)
5	TDI (H0_SKTOCC#)	6 GND
7	ISPEN#	8 +5 V (through polyswitch)
9	Key - no pin or connection	10 KBDAT (PS/2 keyboard data)
11	TMS (H1_SKTOCC#)	12 KBCLK (PS/2 keyboard clock)
13	GND	14 Key—no pin or connection
15	TCK (WDT_EN)	16 GND

Note: Processors must be removed before using the Lattice JTAG interface.

Table 97.J16 Jumper Assignments

Jumper	Function		
J16-1 to 3	CLEAR_PASSWD: This jumper is used in the event the system will not boot because the BIOS password is unknown.		
J16-3 to 5	CLEAR_CMOS: This jumper is used in the unlikely event a CMOS data corruption keeps the system from booting (or getting to SETUP).		
J16-4 to 6	RTC_RST: Hardware Reset of RTC. When asserted, this signal resets register bits i the RTC well and sets the RTC_PWR_STS bit (bit 2 in GEN_PMCON3 register).		
J16-2 to 4	FRC_UPD (IPMC F/W): This jumper is used to put the firmware into a forced update mode. Administrators could use this feature to force the firmware to enter into update mode and wait for an update through the KCS interface. Useful when some of the SDR or firmware needs to change. Please note that Sensor scanning/ monitoring is disabled in this mode. Administrators will have to remember to disable the jumper after an update, or the board will boot again into this update mode.		
J16-3 to 4 and J16-7 to 9 (Default)	Storage posts for jumpers not in use.		
J16-8 to 7	Only for debug purposes.		
J16-10 to 9	Manufacturing jumper (for testing during board assembly).		

Table 98. J37 Jumper Assignments

Jumper	Function	
J37-1 to 2	Use IPMC to control which BIOS ROM to use (default).	
J37-3 to 4 Select redundant FWH to be used (FWH1).		
J37-5 to 6	Not supported	
J37-7 to 8	Not supported	

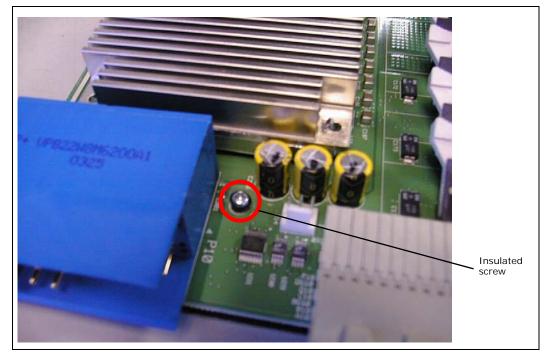
Table 99. J40 Jumper Assignments

Jumper	Function		
J40-1 to 2 Boot block unprotected.			
J40-2 to 3	IPMC Boot block has been protected (Default). If user were to update the IPMC boot block, the jumper needs to be connected to 1-2.		

Note: This jumper is only applicable to the following versions of MPCBL0001 boards:

- MPCBL0001F04 TA# (or above) C55360-014
- MPCBL0001N04 TA# (or above) C13354-013
- MPCBL0001F04Q TA# D17324-003
- MPCBL0001N04Q TA# D18530-003

10.5 Digital Ground to Chassis Ground Connectivity


In the default grounding for the MPCBL0001xxx, digital ground is isolated from the chassis ground.

To connect the digital ground to the chassis ground, follow this procedure:

- 1. Remove the screw with the black insulation washer (circled in red in Figure 28 below).
- 2. Remove the black insulation washer and store it in a safe place. It will be needed if you want to isolate the digital ground from chassis ground in the future.
- 3. Reinstall the screw and tighten to 4 lb-in.

Note: Digital ground is also called logic ground. Chassis ground is also known as shelf ground.

Figure 28. Connecting Digital Ground to Chassis Ground

11.0 Serial Over Lan (SOL)

Serial over LAN (SOL) is a packet format and protocol defined in the IPMI v2.0 specification for transmitting serial port data over Ethernet using IPMI over LAN (RMCP+) messages. This two-way redirection of a blade's serial port data over Ethernet is independent of the operating system or any applications executing on it. The BIOS also supports redirection of its console over serial port, which can be redirected over the network for remote access.

The SOL mechanism, coupled with a SOL client utility executing on a remote node, allows viewing of serial port data from any IPMI v2.0 based, SOL-enabled blade, thus providing a virtual remote terminal server for accessing the blade's serial port character stream.

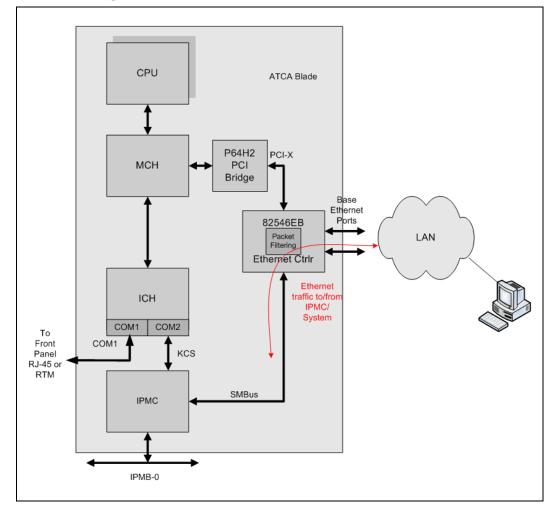
Note: 1) This feature is supported on all MPCBL0001N04 boards with TA# C13354-013 (or above) and MPCBL0001F04 boards with TA# C55360-014 (or above) only.

2) The latest BIOS - Version P13-0028 (or above) and IPMC firmware - Version 1.17 (or above) is needed to ensure this feature works.

11.1 References

- Intelligent Platform Management Interface Specification v2.0. dated June 1, 2004
- AES Advanced Encryption Standard. http://csrc.nist.gov/publications/fips/ fips197/fips-197.pdf

11.2 SOL Architecture


The SOL implementation on the Intel NetStructure[®] MPCBL0001 High Performance Single Board Computer blade is based on the definition in Section 15 of the IPMI v2.0 specification.

Serial over LAN (SOL) enables suitably designed blades and servers to transparently redirect serial character stream of a baseboard UART to/from a remote client via LAN over RMCP+ sessions. This enables users at remote consoles to access the serial port of a blade/server and interact with a text-based BIOS console, operating system, command line interfaces, and serial text-based applications.

Figure 29 is a block diagram of the SOL implementation on the blade:

This architecture requires the following three components to perform Serial over LAN operations.

- SOL capable firmware executing on the Intelligent Platform Management Controller (IPMC). The IPMC also provides a dedicated SMBus connection to base interface Ethernet controller. This connectivity is not shared with IPMB-0 or any other I²C/ SMBus/IPMB connections that the IPMC may provide on the blade for hardware management.
- 2. Base interface Ethernet controller that provides a Total Cost of Ownership (TCO) sideband interface to IPMC over which SOL traffic is redirected. The Ethernet controller also filters packets based on either MAC address, RMCP port number, or IP address and forwards them to IPMC over the sideband interface.
- 3. Client software running on any remote node that has LAN access to the blade whose serial port data is to be accessed. The IPMC is responsible for controlling the serial hardware MUX, the transformation of serial data to and from network packets, and the transmission and reception of SOL network packets through the Ethernet controller TCO port.

11.2.1 Architectural Components

11.2.1.1 IPMC

As shown in the block diagram in Figure 29, the IPMI controller on the blade provides a UART interface to the blade's serial port (COM2). This interface is used by the IPMC firmware to receive the blade's serial port data written by BIOS or the operating system or to write date to the blade's serial port. The serial port may be connected to either a front panel RJ-45 connector or to the IPMI controller. Switching of the serial port between front-panel and the IPMC's UART is automatically detected by the BIOS.

IPMC also provides a dedicated SMBus connection to the Ethernet controller, whose ports are connected to the base Ethernet interface.

The KCS interface is used for interaction between IPMC firmware and software executing on the OS (for example, OpenIPMI or OpenHPI) by sending/receiving IPMI messages, and does not play a role during SOL communication. The KCS interface, however, may be used for SOL-related IPMC configuration, as described below.

11.2.1.2 Ethernet Controller

The Ethernet controller provides advanced pass-through mode of operation whereby the controller allows the external IPMC to communicate over the Ethernet ports using a sideband SMBus port called a TCO port.

The Ethernet controller is available with the payload power, so the viewing of serial data console can be visible to a user after the board reaches the M4 state.

11.2.2 BIOS

For Serial Over LAN to work, the latest BIOS release (BIOS P13-0028) is required to control the serial port switching between COM1 and COM2. The BIOS will switch the serial redirection path between COM1 and COM2 according to the following table.

Setting	Console Redirection Setting (From BIOS setup menu)	SOL Support (From BIOS setup menu)	IPMC request for SOL (User Initiate)	Front Panel Redirection (User Initiate)	SOL Redirection
1	Disabled	х	х	No	No
2	Enabled	No	х	Yes	No
3	Enabled	Yes	No	Yes	No
4	Enabled	Yes	Yes	No	Yes

Note: x = does not matter

From the table above, the serial over LAN can only be activated if a user configures the BIOS correctly. By default, the console redirection setting is enabled and the SOL support is set to "Disabled".

If a user has a serial session active via the front panel and a user initiates a SOL session on this blade, the serial data on the front panel will be deactivated automatically. The serial data will be sent via the LAN interface to the SOL client system. On the serial console connected to the front panel, the BIOS will send the message "Serial Over LAN session is active" to inform the active user that the serial data has been switched.

11.3 Theory of Operation

11.3.1 Front Panel Serial Port

By default, the serial console data will be connected to the front panel.

11.3.2 Serial Over LAN

The SOL feature is disabled by default at manufacturing time. A user needs to configure the relevant SOL settings using the reference_cfg script supplied in the IPMC Firmware 1.17 release package (downloadable from this website under "Software Downloads": http://support.intel.com/support/network/computeboards/mpcbl0001).

With the reference_cfg file, a user can use this script to configure the serial port settings (baud rate, parity bits, data bits, stop bits, flow control), user name and password for RMCP+ sessions. Refer to Section 11.6.1, "SOL Configuration Reference Script (reference_cfg)" on page 147 for further details on this script

The IP address to be used by IPMC can be configured at initial setup of the blade in the system.

The IP address, once configured, is stored in a non-volatile memory and is persistent across IPMC update and payload resets. IP addresses are assigned to the IPMC independently of the host (OS) IP addresses and they need not match. IP addresses used by the OS are not visible to the IPMC.

To start SOL communication, the user invokes the SOL client utility with the IP address of the blade and a series of authentication parameters (username, password, privilege level, cipher suite, etc). The IPMI v2.0 specification allows for AES encryption algorithms for encryption of payload data sent over the network, including AES-128, which uses 128-bit cipher keys.

The SOL client utility initializes a RMCP+ session with the blade and activates SOL. When authentication is successfully completed, IPMC firmware collects serial port data from the blade's serial port, formats it into network packets, and forwards it to the SOL client utility over the SOL session. The SMBus TCO port between the IPMC and base interface Ethernet controller is used for this purpose. The SOL client utility receives the packets, extracts the serial port data, and displays it on the screen. The IPMC extracts the serial port data received from the SOL client utility and writes it to the serial port of the blade. This allows network redirection of blade's serial port data stream independent of the host OS or BIOS. The Ethernet controller plays a critical role in redirecting the packets meant for the IPMC, based on receive filters.

The maximum baud rate supported by the IPMC for SOL is 115.2 kbps. There will be a minimal improvement between the baud rate of 19.2kbps to 115.2kbps. This is due to a combination of all the software overhead of creating/breaking down IP packets in the IPMC as well as a slower link between the IPMC and the NIC (I2C).

If a user configures the SOL configuration without modifying the reference_cfg file, the default baud rate is 9.6 kbps.

Note: The BIOS default baud rate is 9.6 kbps, so if SOL is configured for a different baud rate, the BIOS output will not be seen using the SOL client until the BIOS baud rate is set to match the SOL client baud rate.

11.4 Utilities

The SOL client establishes an IPMI-over-LAN connection with the IPMC on the blade. It then activates SOL, which effectively switches the board hardware to redirect serial traffic to the IPMC instead of the serial port. Any outbound characters from the UART now are packetized by the IPMC and sent over the network to the SOL client via the TCO port. Conversely, any input on the SOL client is packetized by the client and sent over the network to the IPMC, which is responsible for conveying it to the UART.

SOL data is carried over the network in UDP datagrams. IPMI 2.0 defines the specification of packet formats and protocols for SOL. As per the IPMI 2.0 specification, RMCP+ is the packet format when the Payload Type is set to "SOL". Authentication, integrity, and encryption for SOL are part of the RMCP+ specification.

Two utilities are provided to support configuring the SOL capability on the MPCBL0001 SBC blade. .

- ipmitool an SOL client utility (must be version 1.8.7 or above). This tool can be downloaded from http://sourceforge.net
- reference_cfg a SOL configuration reference script.
- reference_func a library function file for reference_cfg

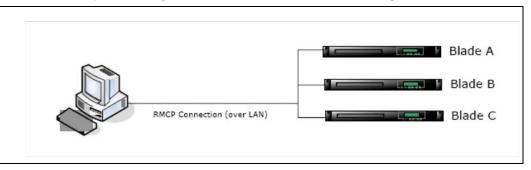
The SOL configuration reference script (reference_cfg) sends a sequence of IPMI commands to configure an SBC to enable the SOL feature. This script can be executed on a payload CPU for local configuration, or on a node that has network connectivity to the target SBC. Without this IPMC configuration, the SOL client utility will not be able to communicate with the SBC. This script is provided to customers as an example of a semi-automated method to configure systems and is not meant for use in production environments.

The ipmitool utility enables a user to establish a RMCP+ session with a SBC's management controller and activate two-way SOL packet communication.

It is important to note that while ipmitool is a supported utility, reference_cfg is provided as an unsupported reference to be modified at will by customers to suit their specific environments and integration needs.

11.5 Supported Usage Model

Customers are expected to use Serial Over LAN to accomplish the following:


- BIOS console redirection
- · As a remote terminal for OS setup and viewing text console output

The ipmitool utility runs on a remote network node and communicates over the LAN interface. The remote node and the target SBC may be on the same subnet or on different subnets.

The reference script can be run on the remote node.

Figure 30. Reference Script Running on Remote Node, Communicating over LAN

Note:

The machine or "remote node" running ipmitool may also be an MPCBL0001 SBC within the chassis itself.

11.5.1 Configuring the Blade for SOL

In order to configure a blade for SOL, the machine on which the configurator is installed (typically the remote node) needs to establish an RMCP connection with the SBC. The configurator sends commands and configuration settings to the SBC in order to configure and enable SOL operation. In order to configure a blade for SOL, reference_cfg needs to run either on the same blade as the IPMC and communicate via the KCS interface, or on a remote node. In the latter case, the script sends IPMI messages over the LAN to the SBCs shelf manager, which in turn bridges data to the IPMC's IPMB-0 interface.

The minimal per-blade configuration that must be set up includes the following:

- an IP/MAC address, subnet mask, default gateway
- ARP configuration
- user ID and password to authenticate access
- channel, user, payload, and SOL privilege levels

The configuration utility is referring to the reference_cfg script described above.

11.6 Installation and Configuration

11.6.1 SOL Configuration Reference Script (reference_cfg)

The reference script can run with no special setup. The script uses built-in bash commands as well as grep and awk. The environment in which the script runs must have bash installed at /bin/bash (or a symbolic link at that location), and must include grep and awk in the path.

The reference script is implemented as two separate bash files: reference_cfg, which contains the necessary IPMI commands, and reference_func, a library of supporting functions. The scripts need to be extracted from the included tar archive file "reference_cfg-1.3.0.2.tar" and copied/moved to appropriate directories. The recommended locations for these files are as follows:

/usr/lib/sbcutils/reference_funcs

/usr/bin/reference_cfg

The reference_cfg file looks in three specific places for the reference_func file:

- the current working directory
- /usr/lib/sbcutils
- /home/scripts

If reference_cfg cannot find the reference_func file in any of these locations, it terminates with an error message. The reference_cfg file may actually be located in any directory that is in the user's execution path.

When running the reference script on a remote node over RMCP via a shelf manager, RMCP to IPMB bridging must be enabled on the shelf manager. If using the Intel NetStructure® MPCMM0001 Chassis Management Module Shelf Manager, then the cmdPrivillige.ini file included in the tar archive needs to be installed in the /etc directory of the Shelf Manager. This is needed to ensure that the RMCP Server on the Shelf Manager will correctly forward the configuration commands to the blade.

Note: When executing the reference_cfg script to configure the MPCBL0001 blade, you must specify the "-g" option on the command line. This enables Gratuitous ARPs from the blade. Not specifying this switch will result in the script exiting with an error. If it is not desirable to have the blade emit Gratuitous ARPs, then a seperate command will need to be issued to disable them.

RMCP and KCS communication requires the OpenIPMI application library, version 1.4 or later. KCS communication further requires the OpenIPMI driver.

11.6.2 SOL Client (ipmitool)

Use this command:

ipmitool -I lanplus -L operator -H <HostIP> -U <UserName> -P <Password> sol activate

Where:

HostIP = IP address of the ethernet interface on the IPMC (MPCBL0001 blade) that has been configured for SOL access.

UserName = User name of an authorized SOL client user. The configuration helper "reference_cfg" creates such a client with UserName = solusername.

Password = Password assigned for 'UserName'. The configuration helper "reference_cfg" assigns Password = soluserpassword for UserName = solusername.

Note: Using the "-C 0" parameter can be helpful when testing or investigating SOL connectivity issues. This forces the use of CipherSuite 0, which means that all text, including exchange of the session password, will be in clear text. This "-C 0" parameter can be used only under User privilege level and when authentication type is set to "None". If this is not specified, ipmitool and the IPMC will negotiate to use the highest security compatible cipher suite.

For more information on the ipmitool, see http://ipmitool.sourceforge.net

11.6.3 BIOS and OS Configuration

If a user requires access to BIOS setup menus via SOL, the BIOS must be configured manually for SOL.

In the BIOS configuration menu, "Redirection After BIOS POST" shall be set to "ALWAYS". The terminal type should be "ANSI" and the "Send Carriage Return" and "VT-UTF8 Combo Key Support" options should both be disabled. The serial channel must be set to hardware flow control, and a bit rate of 9.6 kbps.

Note: The BIOS bit rate must match the rate configured by the reference script.

All BIOS settings listed above must be set manually. The SOL configuration script does not alter BIOS settings, only IPMC settings.

If a user requires access to the operating system (OS) via SOL, the OS must be configured for SOL. OS configuration for SOL is outside of the scope of this document. Areas of configuration required for operating systems include the boot loader, kernel, serial port (bit rate, start/stop/data bits, flow control, interrupts), a login monitoring process (for example, getty), and serial-aware utilities. See http://www.faqs.org/docs/Linux-HOWTO/Remote-Serial-Console-HOWTO.html for more information.

11.7 Executing the Script (reference_cfg)

11.7.1 Default Behavior

To configure a blade for SOL communications, many configurations are required (for example, user information, channel parameters, LAN parameters, and SOL parameters). Most of the values used for configuration appear as hard-coded default values.

11.7.2 SOL User Information

Intel's SBCs implement four different users, User1 through User4. User1 has null username which is not editable. The script configures User2. User2 is enabled and specifically enabled for SOL payloads.

The user name is "solusername", zero-padded to a length of 16 bytes as per the IPMI specification. The password is "soluserpassword", zero-padded to 20 bytes as per the IPMI 2.0 extension.

11.7.3 LAN Parameters

The reference script configures IPMI channel one. The IPMI channel number used by reference_cfg can be changed to any IPMI LAN channel supported by the target SBC.

For the MPCBL0001 SBC, channels one and two are LAN channels on the Base Interface and are enumerated by the OS as eth0 and eth1, respectively.

Since reference_cfg uses IPMI channel one, this means that for any SBC, eth0 will be routed to a switch in slot seven (may vary on different chassis implementations). If a user needs to route the serial data over IPMI LAN channel 2 (eth1 on the OS level), then the LAN channel default value in the reference_cfg script shall be changed to "2".

Since the IPMC must directly send and receive IP packets (RMCP+), it needs certain information about its LAN connection in order to fill in the packets correctly. It gets this information via the Set LAN Configuration Parameters command. This one command can set many parameters based on the value of the Parameter Selector byte in the command. The following table shows which Parameter Selectors are necessary for establishing an SOL session. Note that each table entry requires a separate instance of the command.

	•	•
Parameter Selector	Parameter	Remarks
3	IP Address	Required
5	MAC Address	Required
6	Subnet Mask	Required
12	Default Gateway Address	Required if a blade needs to be accessed from different subnets
13	Default Gateway MAC Address	Required if a blade needs to be accessed from different subnets
20	802.1q VLAN ID	Required only if VLAN is configured
21	802.1q VLAN Priority	Optional (Default = 0)

Table 101. IPMI V2.0 Set LAN Configuration Parameters Command Settings

Note: Refer to the IPMI 2.0 Specification for further details on each of the configuration parameters above.

IP and MAC addresses supplied to the IPMC are specified on the command line as specified in Table 102. IP source is set to "static" and the subnet mask is set for a class C subnet. The Gateway IP and MAC address should be specified in the command to enable RMCP communication across subnets. If the IP or MAC address options are missing from the command line, those parameters will not be changed on the IPMC.

If VLAN (802.1q) is being used, then the 12 bit VLAN ID must be configured and bit 7 of the VLAN ID MSB must be set. When VLAN is enabled, all incoming packets must have a VLAN ID matching the configured 12 bit VLAN ID value. Incoming packets without a VLAN header will be dropped when VLAN is enabled. The priority field in incoming VLAN packets is ignored. All outgoing packets will have the specified VLAN ID and priority values inserted into the MAC header.

11.7.4 SOL Parameters

The SOL payload type is enabled with a privilege level of operator. Neither payload encryption nor payload authentication is forced. Serial characters are accumulated for as long as 40 milliseconds or as many as 50 characters. SOL packets are retried every 100 milliseconds, up to seven times. The SOL bit rate is 9.6 kbps.

11.7.5 Channel Parameters

Channel 1 is configured as "always available", meaning that all RMCP traffic to the SBC LAN adaptor is routed exclusively to the IPMC and not to system software.

For channel 1, User2 is enabled for general IPMI messaging (as opposed to SOL only messaging). User2 has a privilege level of operator on channel 1.

11.7.6 Command Line Options

Available command-line options for the reference script are given in the following table.

Option	Meaning
-h	"help" - display usage, version number and a list of options. When this option is specified, all other options are ignored.
-1	"location" - specifies which blade to configure. When running on an Intel NetStructure MPCMM0001 Chassis Management Module (CMM), this value should be one of ["blade1""blade14"]. When running on a remote node, this value should be the IPMB address. When running on the local processor, this option is ignored.
-m	"MAC" - specifies what MAC address should be used to configure the blade. The MAC address should be given in the form ##:##:##:##:## where "##" is a hexadecimal number from 00 to FF. Note: The MAC address must match the actual MAC address of the LAN adaptor.
-i	"IP" - specifies which IP address should be used to configure the blade. The IP address should be given in the form ###.###.### where "###" is a decimal number from 0 to 255
-j	Specifies the IP address of the subnet's gateway.
-n	Specifies the MAC address of the subnet's gateway.
-g	"Gratuitous ARPs" - Turns on gratuitous ARPs. This switch must be specified for the MPCBL0001 blade.

Table 102. SOL Configuration Reference Script Command-line Options

11.7.7 Executing the SOL Client (ipmitool)

To start a SOL console, a user must first connect with the command:

ipmitool -I lanplus -L operator -H <HostIP> -U <UserName> -P <Password> sol activate

The first argument given in this command line is the host name or IP address of the system on which ipmitool is running.

The next two arguments are the SOL configured username and password on the SBC. These values must match the current IPMC settings as set by the SOL configuration reference script.

11.8 **Operating Environment**

The SOL client utility supports the following operating system environments:

• MontaVista* Carrier Grade Linux* (CGE 3.1)

12.0 Maintenance

12.1 Supervision

There are four main components that perform hardware monitoring of voltages and timers. They are listed in the table below.

Table 103. Hardware Monitoring Components

Component	Function	Monitors
Intelligent Platform Management Controller	WDT #1	Commands from the BIOS. If the timer expires (times out), causes a soft or hard reset.
Heceta-5 (ADM1026)	Analog-to-Digital converter	Voltages: +1.2 V, +1.5 V, +1.8 V, +3.3 VSB, +5 VSB, VCPU, VTTDDR, +2.5 V, +12 V, -12 V, +5 V, SuperCap (VBAT), IPMB_V, +1.8 VSB.
ICH3 (82801CA I/O Controller Hub 3)	WDT #3	The first attempt to fetch an instruction after a power failure.
PLD (2064VE)	WDT #2	Strobes by IPMC firmware. If it expires, it isolates MPCBL0001 from the backplane IPMB buses and resets the IPMC.

12.2 Diagnostics

12.2.1 In-Target Probe (ITP)

The ITP connector allows connection of a tool that helps you observe and control the step-by-step execution of your program for debugging hardware and software. Debugging includes finding a hardware or software error and identifying the location and cause of the error so it can be corrected.

Intel continually looks for ways to maximize the development and delivery of missioncritical tools to our internal validation teams and strategic OEM customers. As a result, Intel has put together a third-party vendor program team which works with third-party vendors to develop and deliver specific tools formerly supplied by Intel to internal and external customers.

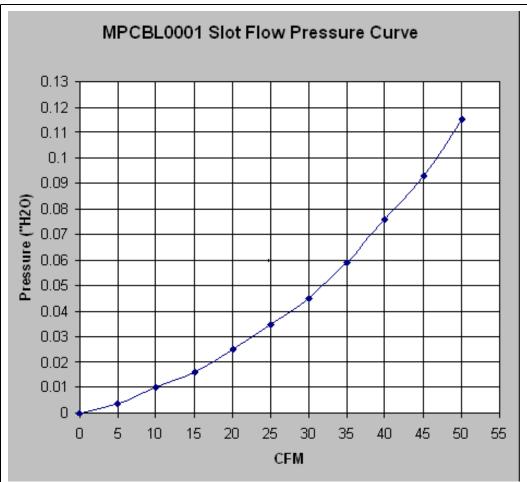
Intel recommends visiting any of the Website URLs below, and selecting a vendor of your choice to provide in-circuit emulation hardware and software.

 American Arium* currently develops in-circuit emulation and run control tools for Intel processors for use by Intel BIOS and driver teams, Intel manufacturing, and OEM customers.

http://www.arium.com/

 Agilent Technologies* currently develops logic analyzer and probing tools for Intel processors for use by Intel validation teams (chip, system, platform) and OEM customers.

http://we.home.agilent.com


 Tektronix* currently develops logic analyzer and probing tools for Intel processors for use by Intel validation teams (chip, system, platform) and OEM customers.
 http://www.tek.com/Measurement/logic_analyzers/index.html

13.0 Thermals

The pressure drop curves versus the flow rate in Figure 31 represents flow impedance of the slot This information is provided in accordance with Section 5 of the PICMG 3.0 Specification. It will aid the system integrator in using the MPCBL0001 SBC in various AdvancedTCA shelves.

14.0 Component Technology

The main components implemented on the Intel NetStructure[®] MPCBL0001 High Performance Single Board Computer are listed in the table below.

Table 104. Main Components

Code Name	Brand Name	Package Type
LP Prestonia	Low Voltage Intel [®] Xeon™ processor	FCPGA2, Socket 604
ICH3	Intel [®] 82801CA I/O Controller Hub 3	421-ball, BGA
P64H2	Intel [®] 82870P2 64-bit PCI/PCI-X Controller Hub 2	567-ball, FC-BGA
Plumas 533	Intel [®] E7501 chipset	N/A
Plumas MCH	Intel [®] E7501 Memory Controller Hub	1005-ball, FC-BGA
Anvik	Intel [®] 82546 Dual Gigabit Ethernet Controller	364 -ball, TFBGA
Super I/O	Standard Microsystems Corp.* LPC47B272	100-pin, QFP
Fibre Channel Controller	Qlogic Corp. * ISP2312	388-ball, EPBGA-T
Fibre Channel Controller SRAM	Micron Semiconductor* MT58L256L118F	165-ball, FBGA
IPMC	Intel [®] IPMC	156-ball, BGA
FWH	Intel [®] 82802AC Firmware Hub	32-pin, PLCC.

15.0 Warranty Information

15.1 Intel NetStructure[®] Compute Boards and Platform Products Limited Warranty

Intel warrants to the original owner that the product delivered in this package will be free from defects in material and workmanship for two (2) year(s) following the latter of: (i) the date of purchase only if you register by returning the registration card as indicated thereon with proof of purchase; or (ii) the date of manufacture; or (iii) the registration date if by electronic means provided such registration occurs within 30 days from purchase. This warranty does not cover the product if it is damaged in the process of being installed. Intel recommends that you have the company from whom you purchased this product install the product.

THE ABOVE WARRANTY IS IN LIEU OF ANY OTHER WARRANTY, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ANY WARRANTY OF INFRINGEMENT OF ANY OTHER PARTY'S INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

This warranty does not cover replacement of products damaged by abuse, accident, misuse, neglect, alteration, repair, disaster, improper installation or improper testing. If the product is found to be otherwise defective, Intel, at its option, will replace or repair the product at no charge except as set forth below, provided that you deliver the product along with a return material authorization (RMA) number (see below) either to the company from whom you purchased it or to Intel. If you ship the product, you must assume the risk of damage or loss in transit. You must use the original container (or the equivalent) and pay the shipping charge. Intel may replace or repair the product with either a new or reconditioned product, and the returned product becomes Intel's property. Intel warrants the repaired or replaced product to be free from defects in material and workmanship for a period of the greater of: (i) ninety (90) days from the return shipping date; or (ii) the period of time remaining on the original two (2) year warranty.

This warranty gives you specific legal rights and you may have other rights which vary from state to state. All parts or components contained in this product are covered by Intel's limited warranty for this product. The product may contain fully tested, recycled parts, warranted as if new.

15.2 Returning a Defective Product (RMA)

Before returning any product, contact an Intel Customer Support Group to obtain either a Direct

Return Authorization (DRA) or Return Material Authorization (RMA). Return Material

Authorizations are only available for products purchased within 30 days.

Return contact information by geography:

15.3 For the Americas

Return Material Authorization (RMA) credit requests e-mail address: requests.rma@intel.com

Direct Return Authorization (DRA) repair requests e-mail address: uspss.repair@intel.com

DRA on-line form: http://support.intel.com/support/motherboards/draform.htm

Intel Business Link (IBL): http://www.intel.com/ibl

Telephone No.: 1-800-INTEL4U or 480-554-4904

Office Hours: Monday - Friday 0700-1700 MST Winter / PST Summer

15.3.1 For Europe, Middle East, and Africa (EMEA)

Return Material Authorization (RMA) e-mail address EMEA.Returns@Intel.com

Direct Return Authorization (DRA) for repair requests e-mail address: EMEA.Returns@Intel.com

Intel Business Link (IBL): http://www.intel.com/ibl

Telephone No.: 00 44 1793 403063

Fax No.: 00 44 1793 403109

Office Hours: Monday - Friday 0900-1700 UK time

15.3.2 For Asia and Pacific (APAC)

RMA/DRA requests e-mail address: apac.rma.front-end@intel.com

Telephone No.: 604-859-3111 or 604-859-3325

Fax No.: 604-859-3324

Office Hours: Monday - Friday 0800-1700 Malaysia time

Return Material Authorization (RMA) requests e-mail address: rma.center.jpss@intel.com

Telephone No.: 81-298-47-0993 or 81-298-47-5417

Fax No.: 81-298-47-4264

Direct Return Authorization (DRA) for repair requests, contact the JPSS Repair center.

E-mail address: sugiyamakx@intel.co.jp

Telephone No.: 81-298-47-8920

Fax No.: 81-298-47-5468

Office Hours: Monday - Friday 0830-1730 Japan time

If the Customer Support Group verifies that the product is defective, they will have the Direct Return Authorization/Return Material Authorization Department issue you a DRA/ RMA number to place on the outer package of the product. Intel cannot accept any product without a DRA/RMA number on the package. Limitation of Liability and Remedies

INTEL SHALL HAVE NO LIABILITY FOR ANY INDIRECT OR SPECULATIVE DAMAGES (INCLUDING, WITHOUT LIMITING THE FOREGOING, CONSEQUENTIAL, INCIDENTAL AND SPECIAL DAMAGES) ARISING FROM THE USE OF OR INABILITY TO USE THIS PRODUCT, WHETHER ARISING OUT OF CONTRACT, NEGLIGENCE, TORT, OR UNDER ANY WARRANTY, OR FOR INFRINGEMENT OF ANY OTHER PARTY'S INTELLECTUAL PROPERTY RIGHTS, IRRESPECTIVE OF WHETHER INTEL HAS ADVANCE NOTICE OF THE POSSIBILITY OF ANY SUCH DAMAGES, INCLUDING, BUT NOT LIMITED TO LOSS OF USE, BUSINESS INTERRUPTIONS, AND LOSS OF PROFITS. NOTWITHSTANDING THE FOREGOING, INTEL'S TOTAL LIABILITY FOR ALL CLAIMS UNDER THIS AGREEMENT SHALL NOT EXCEED THE PRICE PAID FOR THE PRODUCT. THESE LIMITATIONS ON POTENTIAL LIABILITIES WERE AN ESSENTIAL ELEMENT IN SETTING THE PRODUCT PRICE. INTEL NEITHER ASSUMES NOR AUTHORIZES ANYONE TO ASSUME FOR IT ANY OTHER LIABILITIES.

Some states do not allow the exclusion or limitation of incidental or consequential damages, so the above limitations or exclusions may not apply to you.

16.0 Customer Support

16.1 Customer Support

This chapter offers technical and sales assistance information for this product. Information on returning an Intel NetStructure[®] product for service is in the following chapter.

16.2 Technical Support and Return for Service Assistance

For all product returns and support issues, please contact your Intel product distributor or Intel Sales Representative for specific information.

16.3 Sales Assistance

If you have a sales question, please contact your local Intel NetStructure Sales Representative or the Regional Sales Office for your area. Address, telephone and fax numbers, and additional information is available at Intel's web site located at:

http://www.intel.com/network/csp/sales/

Intel Corporation Telephone (in U.S.) 1-800-755-4444 Telephone (Outside U.S.) 1-973-993-3030 Fax 1-973-967-8780

16.4 Product Code Summary

Table 105 presents the MPCBL0001 product codes.

Table 105. MPCBL0001 Product Code Summary

Product Code	MM#	Description
MPCBL001F04	855965	2.0 GHz DP SBC with Fibre Channel
MPCBL001N04	855964	2.0 GHz DP SBC without Fibre Channel
MPCBL0001F04Q	875601	2.0GHz DP SBC with Fibre Channel (RoHS compliant)
MPCBL0001N04Q	875602	2.0GHz DP SBC without Fibre Channel (RoHS compliant)

17.0 Certifications

The Intel NetStructure[®] MPCBL0001 High Performance Single Board Computer has the following approvals:

- UL/cUL 60950
- EN/IEC 60950
- EN55024
- VCCI
- AS/NZS3548
- BSMI

For the The Intel NetStructure[®] MPCBL0001N04 Single Board Computer and Intel NetStructure[®] MPCBL0001F04 Single Board Computer, all boards with the TA# C13354-010 and C55360-011 (or below) respectively have the following approvals:

- EN55022 Class A
- FCC CFR47 Part 15 Class A

Refer to Section 18.0, "Agency Information—Class A" on page 161 for specific details.

For the MPCBL0001N04 and MPCBL0001F04 Single Board Computers, all boards with the TA# C13354-013 and C55360-014 (or above) respectively have the following approvals:

- EN55022 Class B
- FCC CFR47 Part 15 Class B

Refer to Section 19.0, "Agency Information—Class B" on page 164 for specific details.

The Intel NetStructure[®] MPCBL0001F04Q Single Board Computer and Intel NetStructure[®] MPCBL0001N04Q Single Board Computer have been verified to be compliant with the European Directive 2002/95/EC, officially titled "The Restriction on the Use of Hazardous Substances (RoHS) in Electrical and Electronic Equipment" or RoHS. Specifically, this product uses only RoHS compliant parts and Pb-free solder and may take advantage of certain exemptions referenced within the Directive. Refer to Appendix C for the Material Declaration Data Sheet (MDDS) for these two products.

18.0 Agency Information—Class A

18.1 North America (FCC Class A)

FCC Verification Notice

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

For questions related to the EMC performance of this product, contact:

Intel Corporation 5200 N.E. Elam Young Parkway Hillsboro, OR 97124 1-800-628-8686

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the use will be required to correct the interference at his own expense.

18.2 Canada – Industry Canada (ICES-003 Class A) (English and French-translated)

CANADA - INDUSTRY CANADA

Cet appareil numérique respecte les limites bruits radioélectriques applicables aux appareils numériques de Classe A prescrites dans la norme sur le matériel brouilleur: "Appareils Numériques", NMB-003 édictée par le Ministre Canadian des Communications.

(English translation of the notice above) This digital apparatus does not exceed the Class A limits for radio noise emissions from digital apparatus set out in the interference-causing equipment standard entitled "Digital Apparatus," ICES-003 of the Canadian Department of Communications.

18.3 Safety Instructions (English and French-translated)

18.3.1 English

CAUTION: This equipment is designed to permit the connection of the earthed conductor of the d.c. supply circuit to the earthing conductor at the equipment. See installation instructions. If this connection is made, all of the following conditions must be met:

-This equipment shall be connected directly to the DC supply system earthing electrode conductor or to a bonding jumper from an earthing terminal bar or bus to which the DC supply system earthing electrode conductor is connected.

-This equipment shall be located in the same immediate area (such as adjacent cabinets) as any other equipment that has a connection between the earthed conductor of the same DC supply circuit and the earthing conductor, and also the point of earthing of the DC system. The DC system shall not be earthed elsewhere.

-The DC supply source shall be located within the same premises as this equipment.

-Switching or disconnecting devices shall be in the earthed circuit conductor between the DC source and the point of connection of the earthing electrode conductor.

18.3.2 French

Cet appareil est conçu pour permettre le raccordement du conducteur relié à la terre du circuit d'alimentation c.c. au conducteur de terre de l'appareil. Cet appareil est conçu pour permettre le raccordement du conducteur relié à la terre du circuit d'alimentation c.c. au conducteur de terre de l'appareil. Pour ce raccordement, toutes les conditions suivantes doivent être respectées:

- Ce matériel doit être raccordé directement au conducteur de la prise de terre du circuit d'alimentation c.c. ou à une tresse de mise à la masse reliée à une barre omnibus de terre laquelle est raccordée à l'électrode de terre du circuit d'alimentation c.c.

- Les appareils dont les conducteurs de terre respectifs sont raccordés au conducteur de terre du même circuit d'alimentation c.c. doivent être installés à proximité les uns des autres (p.ex., dans des armoires adjacentes) et à proximité de la prise de terre du circuit d'alimentation c.c. Le circuit d'alimentation c.c. ne doit comporter aucune autre prise de terre. matériel. - Il ne doit y avoir.

– La source d'alimentation du circuit c.c. doit être située dans la même pièce que le aucun dispositif de commutation ou de sectionnement entre le point de raccordement au conducteur de la source d'alimentation c.c. et le point de raccordement à la prise de terre.

18.4 Taiwan Class A Warning Statement

警告使用者 : 這是甲類的資訊產品, 在居住的環境中使用時, 可能會造成射頻干擾, 在這種情況下,使用者會 被要求採取某些適當的對策,

18.5 Japan VCCI Class A

この装置は、情報処理装置等電波障害自主規制協議会(VCCI)の基準 に基づくクラスA情報技術装置です。この装置を家庭環境で使用すると電波 妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ず るよう要求されることがあります。

18.6 Korean Class A

기종별	사용자 안내문			
A급 기기	이기기는 업무용으로 전자파적합등록을 한 기			
(업무용 정보통신기기)	기이오니 판매자 또는 사용자는 이 점을 주의			
	하시기 바라며 만약 잘못 판매 구입 하였을 때			
5	에는 가정용으로 교환하시기 바랍니다.			

18.7

Australia, New Zealand

19.0 Agency Information—Class B

19.1 North America (FCC Class B)

FCC Verification Notice

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

For questions related to the EMC performance of this product, contact:

Intel Corporation 5200 N.E. Elam Young Parkway Hillsboro, OR 97124 1-800-628-8686

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the use will be required to correct the interference at his own expense.

19.2 Canada – Industry Canada (ICES-003 Class B) (English and French-translated)

CANADA - INDUSTRY CANADA

Cet appareil numérique respecte les limites bruits radioélectriques applicables aux appareils numériques de Classe B prescrites dans la norme sur le matériel brouilleur: "Appareils Numériques", NMB-003 édictée par le Ministre Canadian des Communications.

(English translation of the notice above) This digital apparatus does not exceed the Class B limits for radio noise emissions from digital apparatus set out in the interference-causing equipment standard entitled "Digital Apparatus," ICES-003 of the Canadian Department of Communications.

19.3 Safety Instructions (English and French-translated)

19.3.1 English

CAUTION: This equipment is designed to permit the connection of the earthed conductor of the d.c. supply circuit to the earthing conductor at the equipment. See installation instructions. If this connection is made, all of the following conditions must be met:

-This equipment shall be connected directly to the DC supply system earthing electrode conductor or to a bonding jumper from an earthing terminal bar or bus to which the DC supply system earthing electrode conductor is connected.

-This equipment shall be located in the same immediate area (such as adjacent cabinets) as any other equipment that has a connection between the earthed conductor of the same DC supply circuit and the earthing conductor, and also the point of earthing of the DC system. The DC system shall not be earthed elsewhere.

-The DC supply source shall be located within the same premises as this equipment.

-Switching or disconnecting devices shall be in the earthed circuit conductor between the DC source and the point of connection of the earthing electrode conductor.

19.3.2 French

Cet appareil est conçu pour permettre le raccordement du conducteur relié à la terre du circuit d'alimentation c.c. au conducteur de terre de l'appareil. Cet appareil est conçu pour permettre le raccordement du conducteur relié à la terre du circuit d'alimentation c.c. au conducteur de terre de l'appareil. Pour ce raccordement, toutes les conditions suivantes doivent être respectées:

- Ce matériel doit être raccordé directement au conducteur de la prise de terre du circuit d'alimentation c.c. ou à une tresse de mise à la masse reliée à une barre omnibus de terre laquelle est raccordée à l'électrode de terre du circuit d'alimentation c.c.

- Les appareils dont les conducteurs de terre respectifs sont raccordés au conducteur de terre du même circuit d'alimentation c.c. doivent être installés à proximité les uns des autres (p.ex., dans des armoires adjacentes) et à proximité de la prise de terre du circuit d'alimentation c.c. Le circuit d'alimentation c.c. ne doit comporter aucune autre prise de terre. matériel. - Il ne doit y avoir

– La source d'alimentation du circuit c.c. doit être située dans la même pièce que le aucun dispositif de commutation ou de sectionnement entre le point de raccordement au conducteur de la source d'alimentation c.c. et le point de raccordement à la prise de terre.

19.4 Japan VCCI Class B

この装置は、情報処理装置等電波障害自主規制協議会(VCCI)の基準 に基づくクラスB情報技術装置です。この装置は、家庭環境で使用すること を目的としていますが、この装置がラジオやテレビジョン受信機に近接して 使用されると、受信障害を引き起こすことがあります。 取扱説明書に従って正しい取り扱いをして下さい。

19.5Korean Class B

기종별	사용자안내문
B급 기기	이 기기는 가정용으로 전자파적합등록
(가정용 정보통신기기)	을 한 기기로서 주거지역에서는 물론
	모든 지역에서 사용할 수 있습니다.

19.6 Australia, New Zealand

20.0 Safety Warnings

Caution: Review the following precautions to avoid personal injury and prevent damage to this product or products to which it is connected. To avoid potential hazards, use the product only as specified.

Read all safety information provided in the component product user manuals and understand the precautions associated with safety symbols, written warnings, and cautions before accessing parts or locations within the unit. Save this document for future reference.

AC AND/OR DC POWER SAFETY WARNING: The AC and/or DC Power cord is the unit's main AC and/or DC disconnecting device, and must be easily accessible at all times. Auxiliary AC and/or DC On/Off switches and/or circuit breaker switches are for power control functions only (NOT THE MAIN DISCONNECT).

IMPORTANT: See installation instructions before connecting to the supply.

<u>For AC systems</u>, use only a power cord with a grounded plug and always make connections to a grounded main. Each power cord must be connected to a dedicated branch circuit.

For DC systems, this unit relies on the building's installation for short circuit (overcurrent) protection. Ensure that a Listed and Certified fuse or circuit breaker no larger than 72VDC, 15A is used on all current carrying conductors. For permanently connected equipment, a readily accessible disconnect shall be incorporated in the building installation wiring. For permanent connections, use copper wire of the gauge specified in the system's user manual.

The enclosure provides a separate Earth ground connection stud. Make the Earth ground connection prior to applying power or peripheral connections and never disconnect the Earth ground while power or peripheral connections exist.

To reduce the risk of electric shock from a telephone or Ethernet* system, connect the unit's main power before making these connections. Disconnect these connections before removing main power from the unit.

RACK MOUNT ENCLOSURE SAFETY: This unit may be intended for stationary rack mounting. Mount in a rack designed to meet the physical strength requirements of NEBS GR-63-CORE and NEBS GR 487. Disconnect all power sources and external connections prior to installing or removing the unit from a rack.

System weight may be minimized prior to mounting by removing all hot-swappable equipment. Mount your system in a way that ensures even loading of the rack. Uneven weight distribution can result in a hazardous condition. Secure all mounting bolts when rack mounting the enclosure.

<u>Warning</u>: Verify power cord and outlet compatibility: Use the appropriate power cords for your power outlet configurations. Visit the following web site for additional information: http://kropla.com/electric2.htm.

Warning: Avoid electric overload, heat, shock, or fire hazard: Only connect the system to a to a properly rated supply circuit as specified in the product user manual. Do not make connections to terminals outside the range specified for that terminal. See the product user manual for correct connections.

Warning: Avoid electric shock: Do not operate in wet, damp, or condensing conditions. To avoid electric shock or fire hazard, do not operate this product with enclosure covers or panels removed.

Warning: Avoid electric shock: For units with multiple power sources, disconnect all external power connections before servicing.

Warning: Power supplies must be replaced by qualified service personnel only.

Caution: System environmental requirements: Components such as Processor Boards, Ethernet Switches, etc., are designed to operate with external airflow. Components can be destroyed if they are operated without external airflow. External airflow is normally provided by chassis fans when components are installed in compatible chassis. Never restrict the airflow through the unit's fan or vents. Filler panels or air management boards must be installed in unused chassis slots. Environmental specifications for specific products may differ. Refer to product user manuals for airflow requirements and other environmental specifications.

Warning: Device heatsinks may be hot during normal operation: To avoid burns, do not allow anything to touch heatsinks.

Warning: Avoid injury, fire hazard, or explosion: Do not operate this product in an explosive atmosphere.

<u>Caution</u>: Lithium batteries. There is a danger of explosion if a battery is incorrectly replaced or handled. Do not disassemble or recharge the battery. Do not dispose of the battery in fire. When the battery is replaced, the same type (CR2032) or an equivalent type recommended by the manufacturer must be used. Used batteries must be disposed of according to the manufacturer's instructions.

Warning: Avoid injury: This product may contain one or more laser devices that are visually accessible depending on the plug-in modules installed. Products equipped with a laser device must comply with International Electrotechnical Commission (IEC) 60825.

20.1 Mesures de Sécurité

Veuillez suivre les mesures de sécurité suivantes pour éviter tout accident corporel et ne pas endommager ce produit ou tout autre produit lui étant connecté. Pour éviter tout danger, veillez à utiliser le produit conformément aux spécifications mentionnées.

Lisez toutes les informations de sécurité fournies dans les manuels de l'utilisateur des produits composants et veillez à bien comprendre les mesures associées aux symboles de sécurité, aux avertissements écrits et aux mises en garde avant d'accéder à certains éléments ou emplacements de l'unité. Conservez ce document comme outil de référence.

AVERTISSEMENT CONCERNANT LA SÉCURITÉ DE L'ALIMENTATION C.A. ET/OU

C.C. : le câble d'alimentation C.A. et/ou C.C. constitue le dispositif de déconnexion principal de l'alimentation électrique de l'unité et doit être facilement accessible à tous moments. Les commutateurs de marche/arrêt C.A. et/ou C.C. et/ou les commutateurs disjoncteurs auxiliaires permettent uniquement de contrôler l'alimentation (ET NON LA DÉCONNEXION PRINCIPALE).

IMPORTANT: reportez-vous aux instructions d'installation avant de connecter le bloc d'alimentation.

<u>Pour les systèmes C.A.</u>, utilisez uniquement un câble d'alimentation avec une prise de terre et établissez toujours les connexions à une prise secteur mise à la terre. Chaque câble d'alimentation doit être connecté à un circuit terminal dédié.

Pour les systèmes C.C., la protection de cette unité repose sur les coupe-circuits (surintensité) du bâtiment. Assurez-vous d'utiliser un fusible ou un disjoncteur répertorié et certifié ne dépassant pas 72 VCC et 15 A pour tous les conducteurs de courant. Pour les équipements connectés en permanence, un sectionneur facilement accessible doit être incorporé au câblage du bâtiment. Pour les connexions permanentes, utilisez des câbles en cuivre d'un calibre conforme à celui spécifié dans le manuel de l'utilisateur du système.

Le boîtier fournit un connecteur de mise à la terre séparé. Établissez la connexion à la terre avant de mettre le système sous tension ou de connecter des périphériques. Veillez à ne jamais déconnecter la mise à la terre tant que le système est sous tension ou si des périphériques sont connectés.

Pour réduire le risque d'un choc électrique en provenance d'un téléphone ou d'un système Ethernet*, connectez l'alimentation principale de l'unité avant d'établir ces connexions. De même, déconnectez-les avant de couper l'alimentation principale de l'unité.

SÉCURITÉ DU BOÎTIER POUR UN MONTAGE EN BAIE : cette unité peut être destinée à un montage en baie stationnaire. Le montage en baie doit satisfaire aux exigences sur la résistance physique des normes NEBS GR-63-CORE et NEBS GR 487. Déconnectez toutes les sources d'alimentation et les connexions externes avant d'installer ou de supprimer l'unité d'une baie.

Minimisez la masse du système avant le montage en retirant l'équipement permutable à chaud. Assurez-vous que le système est réparti de manière uniforme sur la baie. Une distribution inégale de la masse du système peut présenter des risques. Fixez tous les boulons lors de l'installation du boîtier dans une baie.

<u>Avertissement</u>: vérifiez que le câble d'alimentation et la prise sont compatibles. Utilisez les câbles d'alimentation correspondant à la configuration de vos prises de courant. Pour de plus amples informations, visitez le site Web suivant : http://kropla.com/electric2.htm.

Avertissement : évitez toute forme de surcharge, chaleur, choc électrique ou incendie. Connectez uniquement le système à un circuit d'alimentation dûment répertorié conformément aux spécifications du manuel de l'utilisateur du produit. N'établissez pas de connexions à des terminaux en dehors des limites spécifiées pour ce terminal. Reportez-vous au manuel de l'utilisateur du produit pour les connections adéquates.

Avertissement : évitez les chocs électriques. N'utilisez pas ce produit dans des endroits humides, mouillés ou provoquant de la condensation. Pour éviter tout risque de choc électrique ou d'incendie, n'utilisez pas ce produit si les couvercles ou les panneaux du boîtier ne sont pas en place.

<u>Avertissement</u> : évitez les chocs électriques. Pour les unités comportant plusieurs sources d'alimentation, déconnectez toutes les sources d'alimentation externes avant de procéder aux réparations.

<u>Avertissement</u> : les blocs d'alimentation doivent être remplacés exclusivement par des techniciens d'entretien qualifiés.

Attention : exigences environnementales du système : les composants tels que les cartes de processeurs, les commutateurs Ethernet, etc., sont conçus pour fonctionner avec un flux d'air externe. Les composants peuvent être détruits s'ils fonctionnent dans d'autres conditions. Le flux d'air externe est généralement produit par les ventilateurs des châssis lorsque les composants sont installés dans des châssis compatibles. Veillez à ne jamais obstruer le flux d'air alimentant le ventilateur ou les conduits de l'unité. Des boucliers ou des panneaux de gestion de l'air doivent être installés dans les connecteurs inutilisés du châssis. Les spécifications environnementales peuvent varier d'un produit à un autre. Veuillez-vous reporter au manuel de l'utilisateur pour déterminer les exigences en matière de flux d'air et d'autres spécifications environnementales.

<u>Avertissement</u> : les dissipateurs de chaleur de l'appareil peuvent être chauds lors d'un fonctionnement normal. Pour éviter tout risque de brûlure, veillez à ce que rien n'entre en contact avec les dissipateurs de chaleur.

Avertissement : évitez les blessures, les incendies ou les explosions. N'utilisez pas ce produit dans une atmosphère présentant des risques d'explosion.

Attention : les batteries au lithium. Celles-ci peuvent exploser si elles sont incorrectement remplacées ou manipulées. Veillez à ne pas désassembler ni à recharger la batterie. Veillez à ne pas jeter la batterie au feu. Lors du remplacement de la batterie, utilisez le même type de batterie (CR2032) ou un type équivalent recommandé par le fabricant. Les batteries usagées doivent être mises au rebut conformément aux instructions du fabricant.

Avertissement : évitez les blessures. Ce produit peut contenir un ou plusieurs périphériques laser visuellement accessibles en fonction des modules plug-in installés. Les produits équipés d'un périphérique laser doivent être conformes à la norme IEC (International Electrotechnical Commission) 60825.

20.2 Sicherheitshinweise

Lesen Sie bitte die folgenden Sicherheitshinweise, um Verletzungen und Beschädigungen dieses Produkts oder der angeschlossenen Produkte zu verhindern. Verwenden Sie das Produkt nur gemäß den Anweisungen, um mögliche Gefahren zu vermeiden.

Lesen Sie alle Sicherheitsinformationen in den Benutzerhandbüchern der zu dem Produkt gehörenden Komponenten und machen Sie sich mit den Hinweisen zu den Sicherheitssymbolen, schriftlichen Warnungen und Vorsichtsmaßnahmen vertraut, ehe Sie Teile oder Stellen des Geräts anfassen. Bewahren Sie dieses Dokument gut auf, um später darin nachlesen zu können.

SICHERHEITSWARNUNG FÜR WECHSELSTROM UND/ODER GLEICHSTROM: Die Stromversorgung des Gerätes wird über das Wechselstrom- und/oder Gleichstromkabel unterbrochen und muss daher jederzeit leicht zugänglich sein. Zusätzliche Ein-/Aus-Schalter für Wechselstrom und/oder Gleichstrom und/oder Leistungsschalter dienen lediglich der Steuerung der Stromversorgung (NICHT ABER DER UNTERBRECHUNG DER STROMVERSORGUNG).

WICHTIG: Lesen Sie vor dem Anschließen der Stromversorgung die Installationsanweisungen!

<u>Wechselstromsysteme</u>: Verwenden Sie nur ein Stromkabel mit geerdetem Stecker und verbinden Sie dieses immer nur mit einer geerdeten Steckdose. Jedes Stromkabel muss an einen eigenen Stromkreis angeschlossen werden.

<u>Gleichstromsysteme</u>: Dieses Gerät basiert auf dem im Gebäude installierten Schutz vor Kurzschlüssen (Netzüberlastung). Stellen Sie sicher, dass für alle stromführenden Leiter eine zertifizierte Sicherung oder ein Leistungsschalter mit nicht mehr als 72V Gleichstrom, 15A verwendet wird. Für Geräte, die ständig angeschlossen sind, sollte in der Gebäudeverkabelung ein leicht zugänglicher Trennschalter installiert werden. Für eine permanente Verbindung verwenden Sie Kupferdraht der im Benutzerhandbuch des Systems angegebenen Stärke.

Das Gehäuse verfügt über einen eigenen Erdungs-Verbindungsbolzen. Stellen Sie die Erdungsverbindung her, ehe Sie das Stromkabel oder Peripheriegeräte anschließen, und trennen Sie die Erdungsverbindung niemals, so lange Strom- und Peripherieverbindungen angeschlossen sind.

Um die Gefahr eines durch ein Telefon oder Ethernet*-System bedingten elektrischen Schlags zu verringern, schließen Sie das Stromkabel des Geräts an, ehe Sie diese Verbindungen einrichten. Trennen Sie diese Verbindungen, ehe Sie die Hauptstromversorgung des Geräts unterbrechen.

SICHERHEITSHINWEISE BEI GESTELLMONTAGE: Dieses Gerät kann stationär in einem Gestell angebracht werden. Das Gestell muss den Anforderungen an eine physische Stärke laut NEBS GR-63-CORE und NEBS GR 487 entsprechen. Trennen Sie vor der Installation oder dem Abbau des Geräts in einem Gestell alle Strom- und externen Verbindungen.

Das Gewicht des Systems kann vor dem Einbau verringert werden, indem man alle während des Betriebs austauschbaren Elemente entfernt. Achten Sie darauf, das System so aufzustellen, dass das Gestell gleichmäßig belastet wird. Eine ungleiche Verteilung des Gewichts kann gefährlich werden. Befestigen Sie alle Sicherungsbolzen, wenn Sie das Gehäuse in einem Gestell montieren.

Warnung: Überprüfen Sie, ob Stromkabel und Steckdose kompatibel sind: Verwenden Sie die Ihrer Stromkonfiguration entsprechenden Stromkabel. Weitere Informationen finden Sie auf folgender Website: http://kropla.com/electric2.htm.

Warnung: Vermeiden Sie elektrische Überlastung, Hitze, elektrischen Schlag oder Feuergefahr: Schließen Sie das System nur an einen den Spezifikationen des Produkt-Benutzerhandbuchs entsprechenden Stromkreis an. Stellen Sie keine Verbindung zu Terminals her, die nicht den jeweiligen Spezifikationen entsprechen. Für die korrekten Verbindungen siehe das Benutzerhandbuch des Produkts.

Warnung: Vermeiden Sie einen elektrischen Schlag: Unterlassen Sie den Betrieb in nassen, feuchten oder kondensierenden Betriebsumgebungen. Um die Gefahr eines elektrischen Schlags oder eines Feuers zu vermeiden, betreiben Sie dieses Produkt nicht ohne Gehäuse oder Abdeckungen.

Warnung: Vermeiden Sie einen elektrischen Schlag: Trennen Sie bei Geräten mit mehreren Stromquellen vor der Wartung alle externen Stromverbindungen.

Warnung: Netzteile dürfen nur von qualifizierten Servicemitarbeitern ausgewechselt werden.

Vorsicht: Anforderungen an die Systemumgebung: Komponenten wie Prozessor-Boards, Ethernet-Schalter usw. sind auf den Betrieb mit externer Luftzufuhr ausgelegt. Diese Komponenten können bei Betrieb ohne externe Luftzufuhr beschädigt werden. Wenn die Komponenten in einem kompatiblen Gehäuse installiert sind, wird Luft von außen normalerweise durch Gehäuselüfter zugeführt. Blockieren Sie niemals die Luftzufuhr der Gerätelüfter oder ventilatoren. In ungenutzten Gehäusesteckplätzen müssen Füllelemente oder Luftsteuerungseinheiten eingesetzt werden. Die Betriebsbedingungen können zwischen den verschiedenen Produkten variieren. Für die Anforderungen an die Belüftung und andere Betriebsbedingungen siehe die Benutzerhandbücher der jeweiligen Produkte.

Warnung: Die Kühlkörper des Geräts können sich während des normalen Betriebs erhitzen: Um Verbrennungen zu vermeiden, sollte jeder Kontakt mit den Kühlkörpern vermieden werden.

Warnung: Vermeiden Sie Verletzungen, Feuergefahr oder Explosionen: Unterlassen Sie den Betrieb dieses Produkts in einer explosionsgefährdeten Betriebsumgebung.

Vorsicht: Lithiumbatterien. Bei unsachgemäßem Austausch oder Umgang mit Batterien besteht Explosionsgefahr. Zerlegen Sie die Batterie nicht und laden Sie diese nicht wieder auf. Entsorgen Sie die Batterie nicht durch Verbrennen. Beim Auswechseln der Batterie muss dasselbe oder ein der Händlerempfehlung gleichwertiges Modell verwendet werden (CR2032). Gebrauchte Batterien müssen entsprechend den Anweisungen des Herstellers entsorgt werden.

Warnung: Vermeiden Sie Verletzungen: Dieses Produkt kann ein oder mehrere Lasergeräte enthalten, die abhängig von den installierten Plug-In-Modulen optisch zugänglich sind. Mit einem Lasergerät ausgestattete Produkte müssen der International Electrotechnical Commission (IEC) 60825 entsprechen.

20.3 Norme di Sicurezza

Leggere le norme seguenti per prevenire lesioni personali ed evitare di danneggiare questo prodotto o altri a cui è collegato. Per evitare qualsiasi pericolo potenziale, usare il prodotto unicamente come indicato.

Leggere tutte le informazioni sulla sicurezza fornite nella guida per l'utente relativa al componente e comprendere le norme associate ai simboli di pericolo, agli avvisi scritti e alle precauzioni da adottare prima di accedere a componenti o aree dell'unità. Custodire il presente documento per usi futuri.

AVVISO DI SICUREZZA RELATIVO ALL'ALIMENTAZIONE IN C.A. E/O C.C. Il cavo di alimentazione in c.a. e/o c.c. rappresenta il dispositivo principale per interrompere l'alimentazione in c.a. e/o c.c. dell'unità e deve sempre essere facilmente accessibile. Gli interruttori di accensione/spegnimento ausiliari per l'alimentazione in c.a. e/o c.c. hanno l'unico scopo di controllare l'alimentazione (NON INTERROMPONO L'ALIMENTAZIONE PRINCIPALE).

IMPORTANTE: prima di collegare l'unità alla fonte di alimentazione, leggere le istruzioni di installazione.

<u>Per i sistemi CA</u>, usare solo un cavo di alimentazione con una spina provvista di una messa a terra e collegarsi sempre a prese provviste di una messa a terra. Ogni cavo di alimentazione deve essere collegato ad un circuito derivato dedicato.

<u>Per i sistemi CC</u>, la presente unità può usufruire dell'eventuale installazione integrata nell'edificio per la protezione contro i cortocircuiti (sovratensione). Assicurarsi della presenza di un fusibile o di un circuito derivato non superiore a 72 V c.c., 15 A, certificato e conforme alla normativa in vigore, in tutti i conduttori portanti. Per gli apparecchi collegati in modo permanente, è necessario inserire nel circuito dell'edificio un interruttore ad accesso immediato. Per i collegamenti permanenti, usare il filo di rame del diametro specificato nella guida per l'utente relativa al sistema.

Il materiale fornito comprende un perno per il collegamento della messa a terra. Assicurare il collegamento della messa a terra prima di alimentare l'unità o prima di collegarla alle periferiche e non scollegare mai la messa a terra quando l'unità è alimentata o collegata a periferiche.

Per ridurre il rischio di scariche elettriche da parte della linea telefonica o dalla rete Ethernet*, collegare l'unità all'alimentazione principale prima di effettuare tale collegamento. Rimuovere i collegamenti prima di togliere l'alimentazione principale all'unità.

NORME DI SICUREZZA PER LE UNITÀ MONTATE IN UN RACK. Questa unità può essere alloggiata in modo permanente in un rack. Il montaggio in rack deve essere conforme ai requisiti di resistenza fisica delle norme NEBS GR-63-CORE e NEBS GR 487.Prima di installare o rimuovere l'unità da un rack, rimuovere tutte le fonti di alimentazione e i collegamenti esterni.

Prima di effettuare il montaggio, è possibile ridurre il peso complessivo del sistema togliendo tutte le apparecchiature sostituibili a caldo. Montare il sistema in modo da garantire una distribuzione uniforme del peso nel rack. Una distribuzione irregolare del peso può essere pericolosa. Avvitare fino in fondo tutti i bulloni durante l'installazione dell'unità in un rack.

<u>Avvertenza</u>: verificare il cavo di alimentazione e la compatibilità con la presa di corrente. Usare i cavi di alimentazione compatibili con il tipo di presa di corrente. Per ulteriori informazioni, visitare il sito Web all'indirizzo seguente: http://kropla.com/ electric2.htm.

<u>Avvertenza</u>: evitare sovraccarichi elettrici, calore diretto, scosse e possibili cause di incendio. Collegare il sistema solo ad una rete elettrica la cui tensione nominale corrisponda al valore indicato nella guida per l'utente. Non collegarlo a fonti di alimentazione con valori di tensione esterne a quanto specificato per il sistema. Per ulteriori informazioni sul corretto collegamento, consultare la guida per l'utente del prodotto.

Avvertenza: evitare le scosse elettriche. Non usare l'apparecchio in ambienti umidi o in presenza di condensa. Per evitare scosse elettriche o possibili cause di incendio, non adoperare il prodotto senza le custodie o i pannelli appositi.

Avvertenza: evitare le scosse elettriche. Prima di intervenire su unità con più fonti di alimentazione, rimuovere tutti i collegamenti all'alimentazione esterna.

<u>Avvertenza</u>: far sostituire i componenti di alimentazione solo da personale tecnico qualificato.

Attenzione: rispettare i requisiti ambientali del sistema. I componenti come le schede di processore, i commutatori Ethernet, ecc., sono progettati per funzionare in presenza di un flusso di aria proveniente dall'esterno, in assenza del quale rischiano di danneggiarsi irrimediabilmente. In genere, il flusso di aria esterno viene generato da appositi ventilatori installati contemporaneamente ai componenti nello chassis compatibile. Non ostacolare mai il flusso di aria convogliato dal ventilatore e dai condotti dell'unità. I pannelli di copertura o le schede per il controllo dell'aria devono essere installati negli alloggiamenti vuoti dello chassis. I requisiti ambientali possono variare a seconda del prodotto. Per ulteriori informazioni sui requisiti del flusso di aria e sugli altri requisiti ambientali, consultare la guida per l'utente del prodotto.

<u>Avvertenza</u>: i dissipatori di calore possono scaldarsi durante il funzionamento normale. Per evitare bruciature o danni, evitare il contatto del dissipatore di calore con gualsiasi altro elemento.

Avvertenza: evitare lesioni, possibili cause di incendio o di esplosione. Non usare il prodotto in un'atmosfera in cui sussiste il rischio di esplosione.

Attenzione: le batterie al litio. La sostituzione o l'uso non corretto della batteria comporta un rischio di esplosione. Non smontare né ricaricare la batteria. Non gettare la batteria nel fuoco. Per la sostituzione, usare il tipo di batteria identico (CR2032) o equivalente consigliato dal costruttore. Le batterie usate devono essere smaltite rispettando le istruzioni del costruttore.

Avvertenza: evitare le lesioni. Questo prodotto può contenere uno o più dispositivi laser accessibili alla vista, a seconda dei moduli installati. I prodotti provvisti di un dispositivo laser devono essere conformi alla norma 60825 della Commissione elettrotecnica internazionale (IEC).

20.4 Instrucciones de Seguridad

Examine las instrucciones sobre condiciones de seguridad que siguen para evitar cualquier tipo de daños personales, así como para evitar perjudicar el producto o productos a los que esté conectado. Para evitar riesgos potenciales, utilice el producto únicamente en la forma especificada.

Lea toda la información relativa a seguridad que se incluye en los manuales de usuario de los distintos componentes y procure familiarizarse con los distintos símbolos de seguridad, advertencias escritas y normas de precaución antes de manipular las distintas piezas o secciones de la unidad. Guarde este documento para consultarlo en el futuro.

AVISO DE SEGURIDAD SOBRE LA ALIMENTACIÓN DE CA O CC El cable de alimentación de CA o CC constituye el dispositivo principal de desconexión de la alimentación de CA o CC, y debe permanecer accesible en todo momento. Los interruptores auxiliares de encendido y apagado de CA o CC y los disyuntores sólo tienen una función de control de la alimentacion (Y NO LA DE DESCONEXIÓN PRINCIPAL).

IMPORTANTE: Consulte las instrucciones de instalación antes de conectar la unidad a la alimentación.

<u>En el caso de sistemas de CA</u>, utilice sólo cables de alimentación con enchufe con toma de tierra, y realice siempre conexiones a una toma con toma de tierra. Cada uno de los cables de alimentación deberá estar conectado a una derivación dedicada.

<u>En el caso de sistemas de CC</u>, la unidad dependerá de la instalación existente en el edificio para la protección frente a cortocircuitos (sobreintensidades). Asegúrese de que todos los conductores que transporten corriente empleen un fusible o disyuntor homologado y certificado con una capacidad que no supere los 72V de CC ni 15A. En el caso de los equipos que vayan a permanecer conectados de manera constante, en la instalación eléctrica del edificio deberá estar incluida una desconexión de fácil acceso. Para conexiones permanentes, emplee cable de cobre del calibre especificado en el manual de usuario del sistema.

El chasis incluye aparte una clavija de conexión a tierra. Realice la conexión a tierra antes de suministrar corriente o realizar cualquier tipo de conexión de periféricos; no desconecte nunca la toma de tierra mientras la corriente esté presente o existan conexiones con periféricos.

Para reducir los riesgos de descargas eléctricas a través de un teléfono o un sistema de Ethernet*, conecte la alimentación principal de la unidad antes de realizar este tipo de conexiones. Desconecte estas conexiones antes de desconectar la alimentación principal de la unidad.

PROCEDIMIENTOS DE SEGURIDAD PARA EL CHASIS DE MONTAJE EN

BASTIDOR: Esta unidad puede estar preparada para su montaje en un bastidor estático. Un montaje de este tipo deberá realizarse en un bastidor que cumpla con los

requisitos de robustez de las normas NEBS GR-63-CORE y NEBS GR 487. Desconecte cualquier tipo de alimentación y conexiones externas antes de instalar la unidad en un bastidor o desmontarla.

Puede desmontar todos los equipos de intercambio en caliente para reducir el peso del sistema antes del montaje en bastidor. Asegúrese de montar el sistema de forma que el peso quede distribuido uniformemente en el bastidor. Una distribución irregular del peso podría generar riesgos. Asegúrese de fijar todos los tornillos de montaje en el bastidor.

Advertencia: Compatibilidad del cable y la toma: Utilice los cables adecuados para la configuración de tomas de corriente con que cuente. Si necesita más información, visite el sitio web siguiente: http://kropla.com/electric2.htm.

Advertencia: Evite sobrecargas eléctricas, calor y riesgos de descarga eléctrica o incendio: Conecte el sistema sólo a un circuito de alimentación que tenga el régimen apropiado, según lo especificado en el manual de usuario del producto. No realice conexiones con terminales cuya capacidad no se ajuste al régimen especificado para ellos. Consulte el manual de usuario del producto para que las conexiones que realice sean las correctas.

Advertencia: Evite descargas eléctricas: No haga funcionar el sistema en condiciones de humedad, mojado o si se produce condensación de la humedad. Para evitar descargas eléctricas o posibles incendios, no permita que el aparato funcione con sus tapas o paneles del chasis desmontados.

Advertencia: Evite descargas eléctricas: En el caso de unidades que cuenten con varias fuentes de alimentación, desconecte las conexiones con alimentación externa antes de proceder a realizar labores de mantenimiento.

Advertencia: La sustitución de fuentes de alimentación sólo debe ser realizada por personal de mantemiento cualificado.

Precaución: Requisitos de entorno para el sistema: Los componentes del tipo de placas de procesador, conmutadores de Ethernet, etc., están concebidos para funcionar en condiciones que permitan el paso de aire. Los componentes pueden averiarse si funcionan sin que circule el aire en su entorno. La circulación del aire suele estar facilitada por los ventiladores incorporados en el armazón cuando los componentes están instalados en armazones compatibles. Nunca interrumpa el paso del aire por los ventiladores or los respiraderos. Los paneles de relleno y las placas para el control de la circulación del aire deben instalarse en ranuras del chasis que no estén destinadas a ningún otro uso. Las características técnicas relativas al entorno pueden variar entre productos. Consulte los manuales de usuario del producto si necesita conocer sus necesidades en términos de circulación de aire u otras características técnicas.

Advertencia: En condiciones de funcionamiento normales, los disipadores de calor pueden recalentarse. Evite que ningún elemento entre en contacto con los disipadores para evitar quemaduras.

Advertencia: Riesgos de daños, incendio o explosión: No permita que el aparato funcione en una atmósfera que presente riesgos de explosión.

<u>Precaución</u>: Las baterías de litio. Si las baterías no se manipulan o cambian correctamente, exite riesgo de explosión. No desmonte ni recargue la batería. Nunca tire las baterías al fuego. Al cambiar la batería, es preciso utilizar el mismo tipo (CR2032) o un tipo equivalente que haya sido recomendado por el fabricante. Las baterías utilizadas deben desecharse según las instrucciones del fabricante.

Advertencia: Daños personales: Este producto puede contener uno o varios dispositivos láser, que estarán a la vista dependiendo de los módulos enchufables que se hayan instalado. Los productos provistos de un dispositivo láser deben ajustarse a la norma 60825 de la International Electrotechnical Commission (IEC).

20.5 Chinese Safety Warning

系统信息

请阅读以下警告信息,以避免人身伤害并防止损坏本产品或与之相连的产品。为避免潜在的危险,请仅按规定 使用产品。

在接近设备中的部件或元件之前,请阅读在组件产品用户手册中载明的所有安全信息并了解与安全标志、书面 警告员注意事项有关的预防措施。请保存本文档以备将来参考。

1和(或)直流电源安全警告。 和(或)直流电源线足设备的主要 和(或)直流电连接装置,任何时候均必须方便取用。辅助 1和(或)直流电开关和(或)断路器开关仅用于控制电源(非主要断电装置)。

重要。在连接到电源前,请先参阅安装说明。

对于宣流电系统,本设备要求建筑物安装短路(过电流)保护装置。请确保在所有载流导线中使用不大于 72/DC、15A,经过认证和鉴定的保 险猛或断路器。对于水久连接设备,应在建筑物布线中安装便于断开的装置。对于水久连线,应使用系统用户手册中指定的标准铜线。

机壳配备了单独的接地接线控,请先接好接地线后再通电或连接其它线路,在通电或接通周边电线时,切勿断开接地线。

为降低电话或 Ethernet* 系统电击的危险,请在连接设备主电源后,再连接其它线路;在从设备上卸下主电源前,请先断开这些线路。

机**架装配式机式的安全性。** 本设备采用固定机架装配。机架装配的设计符合 NEBS GR-63-CORE 和 NEBS GR 487 的机械强度要求。在机架上安装或拆卸设备 前,各必断开所育电源和外部连线。

卸下所有為交後设备可最大限度地减少系统重量。不应装配系统以确保机架袋重均衡,袋重分配不均衡可能导致危险情况发生。当机架上安装机先时,请上紧所 有装配螺栓。

警告: 副結查电影线与电影制度起音兼容。请使用与电源频度配置对应的电源线。有关详绪,请访问下面的网址:http://kropla.com/electric2.htm.

警告:避免电力支续,过热,电击现火灾,仅构系统连接到产品用户手册中褶定的适当额定供电电路,请勿连接到超出接线端规定范围的接线端。有关正确连 接,请参阅产品用户手册。

警告: 避免电击 诸勿在潮湿或冷凝条件下运行、为避免电击或火灾,诸勿在卸下机完或面板的情况下使用本产品。

警告: 避免电击: 对于只有多个电源的设备, 诸在缘修前断开所有外部电源连接,

警告: 更换电源只能由合格的线线人员进行。

注意: 家鄉**知時要求**: 处理器類件板、以太网开关等组件要求在外部空气流通的环境下工作,在投育外部空气流通的情况下操作,可能会损坏组件。当组件安装在被容机箱中时,外部气流通常是电机箱风扇提供的。切勿阻隔气流通过的设备风扇或通风口,在不他用的机箱频槽中,必须安装填充板或空气控制板。环境 规范团特定产品而异。有关气流要求和其它环境规范,请参阅产品用户手册。

警告:没名散热片在正洋运行期间可能发热,为避免燃烧,诸勿让任何物体接触散热片。

警告: 避免人身伤害、火灾或爆炸、切勿在可能引起爆炸的环境中使用本产品。

<u>注意</u>。**但电池不足可则表更换的扁叶。**如果更换或处理不当,可能会引起爆炸。切勿拆掉电池或对电池充电,切勿让电池靠近火额。更换电池时,必须使用制 透着建议的相同类型或同等类型的电池。日电池必须按照制造着的报示加以处理,并将电池退回给英特尔修理。

整告: 避免场份 本产品可能包含一个或多个谦光装置。足否可见取决于所安装的场件模块。装有谦光装置的产品必须遵循国际电工委员会 (IEC) 60825 号规 定。

Appendix A Reference Documents

The following documents should be available when using this specification. Documents that are not available on websites may be obtained from your IBL (Intel Business Link) account, or contact your Intel Field Sales Engineer (FSE) or Field Application Engineer (FAE).

- *Ologic* ISP2312. Intelligent Fibre Channel Processor data Sheet*, 83312-508-00 B, March 19, 2002 (http://www.qlogic.com/products/isp_series/isp2300.asp)
- Standard Microsystems Corporation*, SMSC LPC47B27x Datasheet, Rev. 6/21/99 (http://www.smsc.com/main/catalog/lpc47b27x.html)
- Draft Standard Physical and Environmental Layers for PCI Mezzanine Cards: PMC IEEE* (MMSC) P1386.1/Draft 2.3, October 9, 2000
- Draft Standard for a Common Mezzanine Card Family: CMC. IEEE (MMSC) P1386/ Draft 2.3, October 9, 2000
- AdvancedTCA Specification (http://www.advancedtca.org)

The following Intel Corporation documents may be required for more detailed information:

- Intel NetStructure[®] MPCHC0001 14U Shelf Technical Product Specification (http:// www.intel.com/design/network/products/cbp/atca/MPCHC0001.htm)
- Intel NetStructure[®] MPCMM0001 Chassis Management Module Hardware Technical Product Specification (http://www.intel.com/design/network/products/cbp/atca/ mpcmm0001.htm)
- Intel NetStructure[®] MPCMM0001 Chassis Management Module Software Technical Product Specification (http://www.intel.com/design/network/products/cbp/atca/ mpcmm0001.htm)
- Low Voltage Intel[®] Xeon[™] processor Product Page(http://www.intel.com/products/ server/processors/server/xeon/index.htm?iid=ipp_srvr_proc+xeon512kb&)
- Intel[®] E7501 Chipset Datasheet: Intel E7501 Memory Controller Hub (MCH) (http://www.intel.com/design/chipsets/e7501/)
- Intel[®] 82801CA I/O Controller Hub 3 (ICH3-S) Datasheet (http://www.intel.com/ design/chipsets/datashts/index.htm) plus the Specification Update (http://www.intel.com/design/chipsets/e7500/ specupdt/)
- Intel[®] 82546 Gigabit Ethernet Controllers with Integrated PHY Network Silicon Product Brief (http://www.intel.com/design/network/prodbrf/ 82546EB_prodbrief.htm)
- 82546 Gigabit Ethernet Controllers with Integrated PHY Product Page (http:// www.intel.com/design/network/products/lan/controllers/82546.htm)
- ITP700 Debug Port Design Guide (http://www.intel.com/design/Xeon/guides/)
- Low Voltage Intel[®] Xeon[™] Processor Datasheet (http://www.intel.com/design/ intarch/datashts/273766.htm)

- Intelligent Platform Management Interface v1.5 Specification (http://developer.intel.com/design/servers/ipmi/spec.htm)
- Intelligent Platform Management Interface Implementer's Guide (http://developer.intel.com/design/servers/ipmi/spec.htm)
- Low Pin Count (LPC) Interface Specification (http://developer.intel.com/design/ chipsets/industry/lpc.htm)
- Intel[®] Boot Agent. (http://www.intel.com/support/network/adapter/pro100/ bootagent/manual.htm)
- Intel's AdvancedTCA product line http://developer.intel.com/technology/atca/

Reference Documents—MPCBL0001

Appendix B List of Supported Commands (IPMI v1.5 and PICMG 3.0)

Table 106. IPMI 1.5 Supported Commands (Sheet 1 of 3)

IPM De	vice Global (Commands	
Command	NetFn*	CMD	IPMI 1.5 Spec Func
Get Device ID	Арр	01h	17.1
Cold Reset	Арр	02h	17.2
Get Self Test Results	Арр	04h	17.4
Broadcast "Get Device ID"	Арр	?	17.9
BMC Wat	chdog Timer	Commands	
Command	NetFn*	CMD	IPMI 1.5 Spec Func
Reset Watchdog Timer	Арр	22h	21.5
Set Watchdog Timer	Арр	24h	21.6
Get Watchdog Timer	Арр	25h	21.7
BMC Device	and Messag	ing Commands	s
Command	NetFn*	CMD	IPMI 1.5 Spec Func
Set IPMC Global Enables	Арр	2Eh	18.1
Get IPMC Global Enables	Арр	2Fh	18.2
Clear Message Flags	Арр	30h	18.3
Get Message Flags	Арр	31h	18.4
Get Message Flags	Арр	33h	18.6
Send Message	Арр	34h	18.7
Read Event Message Buffer	Арр	35h	18.8
Master Write-Read	Арр	52h	18.10
Set Channel Access	App 40h 18.20		18.20
Get Channel Access	Арр	41h	18.21
Get Channel Info	Арр	42h	18.22
Chass	is Device Co	mmands	
Command	NetFn*	CMD	IPMI 1.5 Spec Func
Get Chassis Capabilities	Chassis	00h	22.1
Get POH Counter	Chassis	0Fh	22.12
Get Chassis Status	Chassis	01h	22.2
Chassis Control	Chassis	02h	22.3

Table 106. IPMI 1.5 Supported Commands (Sheet 2 of 3)

	Event Comma	ands		
Command	NetFn*	CMD	IPMI 1.5 Spec Func	
Set Event Receiver	S/E	00h	23.1	
Get Event Receiver	S/E	01h	23.2	
Platform Event (Event Message)	S/E	02h	23.3	
PI	EF and Alerting C	ommands		
Command	NetFn*	CMD	IPMI 1.5 Spec Func	
Get PEF Capabilities	S/E	10h	24.1	
Arm PEF Postpone Timer	S/E	11h	24.2	
Set PEF Configuration Parameters	S/E	12h	24.3	
Get PEF Configuration Parameters	S/E	13h	24.4	
Set Last Processed Event ID	S/E	14h	24.5	
Get Last Processed Event ID	S/E	15h	24.6	
Alert Immediate	S/E	16h	24.7	
PET Acknowledge	S/E	17h	24.8	
5	Sensor Device Co	mmands		
Command	NetFn*	CMD	IPMI 1.5 Spec Func	
Get Device SDR Info	S/E	20h	29.2	
Get Device SDR	S/E	21h	29.3	
Reserve Device SDR Repository	S/E	22h	29.4	
Set Sensor Hysteresis	S/E	24h	29.6	
Get Sensor Hysteresis	S/E	25h	29.7	
Set Sensor Threshold	S/E	26h	29.8	
Get Sensor Threshold	S/E	27h	29.9	
Set Sensor Event Enable	S/E	28h	29.10	
Get Sensor Event Enable	S/E	29h	29.11	
Re-arm Sensor Events	S/E	2Ah	29.12	
Get Sensor Event Status	S/E	2Bh	29.13	
Get Sensor Reading	S/E	2Dh	29.14	
	FRU Device Com	mands		
Command	NetFn*	CMD	IPMI 1.5 Spec Func	
Get FRU Inventory Area Info	Storage	10h	28.1	
Read FRU Data	Storage	11h	28.2	
Write FRU Data	Storage	12h	28.3	
	SDR Device Com	nmands	1	
Command	NetFn*	CMD	IPMI 1.5 Spec Func	

Table 106. IPMI 1.5 Supported Commands (Sheet 3 of 3)

Command	NetFn*	CMD	IPMI 1.5 Spec Func		
Get SEL Info	Storage	40h	25.2		
Get SEL Allocation Info	Storage	41h	25.3		
Reserve SEL	Storage	42h	25.4		
Get SEL Entry	Storage	43h	25.5		
Add SEL Entry	Storage	44h	25.6		
Partial Add SEL Entry	Storage	45h	25.7		
Delete SEL Entry	Storage	46h	25.8		
Clear SEL	Storage	47h	25.9		
Get SEL Time	Storage	48h	25.10		
Set SEL Time	Storage	49h	25.11		
<i>Note:</i> *Refer to IPMI 1.5 Specifications for a detailed explanation on NetFn.					

Command	Net Function	Command	Interface
Get PICMG Properties	2Ch	00h	SMS/SMM/IPMB
Get Address Info	2Ch	01h	SMS/SMM/IPMB
FRU Control	2Ch	04h	SMS/SMM/IPMB
Get FRU LED Properties	2Ch	05h	SMS/SMM/IPMB
Get LED Color Properties	2Ch	06h	SMS/SMM/IPMB
Set FRU LED State	2Ch	07h	SMS/SMM/IPMB
Get FRU LED State	2Ch	08h	SMS/SMM/IPMB
Set IPMB State	2Ch	09h	SMS/SMM/IPMB
Set FRU Activation Policy	2Ch	0Ah	IPMB
Get FRU Activation Policy	2Ch	0Bh	SMS/SMM/IPMB
Set FRU Activation	2Ch	0Ch	SMS/SMM/IPMB
Get Device Locator Record ID	2Ch	0Dh	SMS/SMM/IPMB
Set Port State	2Ch	OEh	IPMB
Get Port State	2Ch	0Fh	SMS/SMM/IPMB
Compute Power Properties	2Ch	10h	SMS/SMM/IPMB
Set Power Level	2Ch	11h	IPMB
Get Power Level	2Ch	12h	SMS/SMM/IPMB

Table 107. PICMG 3.0 IPMI Supported Commands

Table 108. IPMI 2.0 Supported Commands

BMC Device and Messaging Commands					
Command	NetFn*	CMD	IPMI2.0 Spec Func		
Get BT Interface Capabilities	Арр	36h	22.9		
Get Channel Authentication Capabilities	Арр	38h	22.13		
Get System GUID	Арр	37h	22.14		
Get Session Challenge	Арр	39h	22.15		
Activate Session	Арр	3Ah	22.17		
Set Session Privilege Level	Арр	3Bh	22.18		
Close Session	Арр	3Ch	22.19		
Get Session Info	Арр	3Dh	22.20		
Get AuthCode	Арр	3Fh	22.21		
Set Channel Access	Арр	40h	22.22		
Get Channel Access	Арр	41h	22.23		
Get Channel Info Command	Арр	42h	22.24		
Set User Access Command	Арр	43h	22.26		
Get User Access Command	Арр	44h	22.27		
Set User Name	Арр	45h	22.28		
Get User Name Command	Арр	46h	22.29		

Table 108. IPMI 2.0 Supported Commands (Continued)

BMC Device and Messaging Commands			
Command	NetFn*	CMD	IPMI2.0 Spec Func
Set User Password Command	Арр	47h	22.30
Activate Payload	Арр	48h	24.1
Deactivate Payload	Арр	49h	24.2
Get Payload Activation Status	Арр	4Ah	24.4
Get Payload Instance Info	Арр	4Bh	24.5
Set User Payload Access	Арр	4Ch	24.6
Get User Payload Access	Арр	4Dh	24.7
Get Channel Payload Support	Арр	4Eh	24.8
Get Channel Payload Version	Арр	4Fh	24.9
Get Channel Cipher Suites	Арр	54h	22.15
Suspend/Resume Payload Encryption	Арр	55h	24.3
Set Channel Security Keys	Арр	56h	22.25
	LAN Device Comma	nd	
Command	NetFn*	CMD	IPMI2.0 Spec Func
Set LAN Configuration Parameters	Transport	01h	23.1
Get LAN Configuration Parameters	Transport	02h	23.2
Suspend BMC ARPs	Transport	03h	23.3
Seri	al/Modem Device Cor	nmands	
Command	NetFn*	CMD	IPMI2.0 Spec Func
Set SOL Configuration Parameters	Transport	21h	26.2
Get SOL Configuration Parameters	Transport	22h	26.3
BMC D	evice and Messaging	Commands	
Command	NetFn*	CMD	IPMI 2.0 Spec Func
Set Power Cycle Interval	Chassis	0Bh	28.9