
PmPPC: PowerPC™-Based PMC Module

User’s Manual
from Emerson Network Power™

Embedded Computing

October 2007

The information in this manual has been checked and is believed to be accurate and reli-
able. HOWEVER, NO RESPONSIBILITY IS ASSUMED BY EMERSON NETWORK POWER,
EMBEDDED COMPUTING FOR ITS USE OR FOR ANY INACCURACIES. Specifications are sub-
ject to change without notice. EMERSON DOES NOT ASSUME ANY LIABILITY ARISING OUT
OF USE OR OTHER APPLICATION OF ANY PRODUCT, CIRCUIT, OR PROGRAM DESCRIBED
HEREIN. This document does not convey any license under Emerson patents or the rights of
others.

Emerson. Consider It Solved is a trademark, and Business-Critical Continuity, Emerson Net-
work Power, and the Emerson Network Power logo are trademarks and service marks of
Emerson Electric Co. © 2007 Emerson Electric Co.

Copyright © 2007 Emerson Electric Co. All rights reserved.

Revision Level: Principal Changes: Date:
0002M634-00 First release March 2000

0002M634-01 Update reset section and monitor August 2000

0002M634-02 Microprocessor to 458MHz, L2Cache to
183MHz, add 256MB SDRAM, ECR00367,
ECR00374, updated board configuration
register and power requirements

April 2001

0002M634-03 Add errata, ECR00573, monitor version 1.8 March 2005

0002M634-04 Artwork stitch August 2005

0002M634-05 New format June 2006

0002M634-06 Emerson update October 2007

Regulatory Agency Warnings & Notices

The Emerson PmPPC meets the requirements set forth by the Federal Communications
Commission (FCC) in Title 47 of the Code of Federal Regulations. The following information
is provided as required by this agency.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two
conditions: (1) This device may not cause harmful interference, and (2) this device must
accept any interference received, including interference that may cause undesired opera-
tion.

FCC RULES AND REGULATIONS — PART 15

This equipment has been tested and found to comply with the limits for a Class B digital
device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reason-
able protection against harmful interference in a residential installation. This equipment
generates, uses and can radiate radio frequency energy and, if not installed and used in
accordance with the instructions, may cause harmful interference to radio communica-
tions. However, there is no guarantee that interference will not occur in a particular installa-
tion. If this equipment does cause harmful interference to radio or television reception,
which can be determined by turning the equipment off and on, the user is encouraged to
try to correct the interference by one or more of the following measures:

• Reorient or relocate the receiving antenna

• Increase the separation between the equipment and receiver

• Connect the equipment into an outlet on a circuit different from that to which the
receiver is connected

• Consult the dealer or an experienced radio/TV technician for help

Caution: Making changes or modifications to the PmPPC hardware without the explicit consent of
Emerson Network Power could invalidate the user’s authority to operate this equipment.

EMC COMPLIANCE

The electromagnetic compatibility (EMC) tests used a PmPPC model that includes a front
panel assembly from Emerson Network Power.

Caution: For applications where the PmPPC is provided without a front panel, or where the front
panel has been removed, your system chassis/enclosure must provide the required
electromagnetic interference (EMI) shielding to maintain EMC compliance.

!

!

0002M634-06 PmPPC User’s Manual i

Regulatory Agency Warnings & Notices (continued)
EC Declaration of Conformity
According to EN 45014:1998

Manufacturer’s Name: Emerson Network Power
Embedded Computing

Manufacturer’s Address: 8310 Excelsior Drive
Madison, Wisconsin 53717

Declares that the following product, in accordance with the requirements of 2004/108/EEC, EMC
Directive and 1999/5/EC, RTTE Directive and their amending directives,

Product: PrPMC Module

Model Name/Number: PmPPC/10000168-xx

has been designed and manufactured to the following specifications:

EN55022:1998 Information Technology Equipment, Radio disturbance characteristics, Limits and
methods of measurement

EN55024:1998 Information Technology Equipment, Immunity characteristics, Limits and methods
of measurement

As manufacturer we hereby declare that the product named above has been designed to comply
with the relevant sections of the above referenced specifications. This product complies with the
essential health and safety requirements of the EMC Directive and RTTE Directive. We have an inter-
nal production control system that ensures compliance between the manufactured products and
the technical documentation.

Issue date: October 29, 2007

Bill Fleury
Compliance Engineer
PmPPC User’s Manual 0002M634-06ii

PmPPC User’s Manualii
(blank page)
0002M634-06

0002M634-06 PmPPC
Section 1
Overview

The PmPPC module is a Processor PCI Mezzanine Card (PrPMC). It is based on an IBM Pow-
erPC™ central processor unit and provides additional processing power for the baseboard,
which must be compatible with the PrPMC architecture. The PmPPC module supports vari-
ous memory configurations, programmable user flash memory, a PCI bridge/controller, an
Ethernet interface, and two serial ports, as well as a year-2000-compatible real-time clock
and EEPROM.

COMPONENTS AND FEATURES

The following is a brief summary of the PmPPC hardware components and features:

CPU: The CPU is an IBM PowerPC microprocessor running internally at up to 458 MHz. The
PPC750 has 32-kilobyte Level 1 data and instruction caches, three instructions per clock
cycle, and a 32/64-bit data bus mode.

L2 Cache: Two Synchronous Random Access Memory (SRAM) devices running at up to 183 MHz pro-
vide a 1-megabyte Level 2 cache. The cache design is two-way, set-associative, with 4096
tags each way. It features a pipeline burst access mode.

SDRAM: The PmPPC may be populated with 32, 64, 128, or 256 megabytes of Error-correcting Code
(ECC) 72-bit wide Synchronous Dynamic Random Access Memory (SDRAM). The IBM
CPC700 memory controller provides DRAM refresh and other control functions.

Boot EPROM/Flash: The PmPPC has a 32-pin Plastic-Leaded Chip Carrier (PLCC) socket on the front of the board
to accommodate an 8-bit, 512-kilobyte EPROM or flash device (factory-installed option). A
jumper selects whether the PmPPC boots the monitor from the socketed memory or from
flash. The IBM CPC700 memory controller provides the ROM access and control functions.

User Flash: The PmPPC allows for up to 128 megabytes of 64-bit user flash. The IBM CPC700 memory
controller supports this memory.

PCI Bridge/Controller: The IBM CPC700 is a versatile, single-chip solution that provides a PowerPC interface, mem-
ory controller, Peripheral Component Interconnect (PCI) interface, interrupt controller,
arbiter, timers, two Universal Asynchronous Receiver/Transmitter (UART) devices, and two
Inter-Integrated Circuit (I2C) ports. The 32-bit PCI interface can operate at 33 or 66 MHz.

Ethernet: The PmPPC utilizes an IEEE 802.3-compliant CS8900A Crystal LAN™ ISA Ethernet Controller
chip from Crystal Semiconductor. This device features an 802.3 Media Access Control
(MAC) engine, integrated buffer memory, serial EEPROM interface, and a complete analog
front end with 10BASE-T. The Ethernet signals are accessible via the front panel RJ45 con-
nector or the PMC connector at P14 (optional).
 User’s Manual 1-1

Overview: Functional Overview
Serial and I2C Ports: The IBM CPC700 provides two, full-duplex, 16550-compatible serial ports with program-
mable baud rates. Both serial ports are accessible at the P2 front panel connector (9-pin,
Nano D) and the P14 PMC connector. In addition to the serial ports, the CPC700 provides
two I2C ports. One of these ports supports a serial EEPROM; the other is accessible to target
applications via PMC connector P14.

PLD: The PmPPC uses a programmable logic device (PLD) to implement various memory-
mapped registers and to control access to the Ethernet chip, the year-2000-compatible
real-time clock, and non-volatile RAM.

RTC: The real-time clock is a Dallas Semiconductor DS17485 chip that also provides four kilo-
bytes of non-volatile RAM. This year-2000-compatible clock also has power control cir-
cuitry. The DS17485 utilizes an external 32.768 KHz crystal and is powered from the +3.3 V
rail during normal operation. A supercap on the PmPPC board provides at least 12 hours of
backup operation.

FUNCTIONAL OVERVIEW

The following block diagram provides a functional overview for the PmPPC:

Figure 1-1: General System Block Diagram

����������	
�
�
�
������������
���������������

��������������
��������

���
���� !"
��#

�����������!�
���$%�&�
� �������

�����'����(�

� �������

&%%�)$$

%&*&

%
&*
&

&
%
%
�)
$$

�
�
+
*�
�
'

��
,

���

���

���

�"�&$)-*
)��
�.
�

*��.�-
	��/
�

���0�
$
����

))����

$
����
�����

�1�!

1*&2

!�3����4��3

%#&'�$5,*�6,+2���5)��$#��',)$

���(7
2
.
�����

8�0��*�
�0��+3�&�

�
		
�

'�
�(
�

,��
�����

&%%�)$$

!�3���3(��
 $
����
))����

�'%
���(
���.
�
���
.(���.�

�
		
�

%&*&

,������ ""
��,����9:

�
;�
��
.�
��)
��

�
.

�

PmPPC User’s Manual 0002M634-061-2

Overview: Physical Memory Map
PHYSICAL MEMORY MAP

Information on particular portions of the memory map can be found in later sections of this
manual, see Table 1-1.

Figure 1-2: General System Block Diagram
���

�������

���������

���������

���������

���������

���������

��	������

�
��
��

��������������	

���������	�����
�
������
����
��� �
!���
������������"����#������$�
�
����
�%&���"
�����
��'�(�"�"�
�)���*�!
�
���
��
�����
���%��
%�����
�������
�
�
���+�
�
����+
�"�%
� '*)

����
,�"

���������

�	-�����
*�.+�%�

�	-�-/0�.+�%�

�	-�	��$�1)���1��
�
�
���������

�	-�-�
�

�+
��%&)
���������

����
,�"
��2������

�	-���%�'�	��$�1)���1��
�
�
��3������

��,�%��	��$�1)���1��
�
�
��4������

-�
�
��'���
�+��
�'�
���������

���������

5��6��'���
78��+�
�0�
9

���������

-5	���43�����
����
�

-5	�
:����
:����

	'�%&�;���!�
��1�
)
-�
�

�+
�	��

�''�

��6���1��
�
�
0�6���1��
�
�

���)�	��

�''�
���1�)
�
�%����
�-�
�
$�%����1�)

��4#�����
��45�����
��4���2��
��4���#��
��3���<��
��3������
��3����3�
��3������
��3������
��3������

���
�������

:��
��'���
7�5���69

����
�	��

�'���1��
�
���2����2
��	�-�
�

�+
�	��

�'���1)

����;�6��
"���,)���1��
�

6��
"�	��$�1�
�
������1��
�
�

����
,�"
��	�/������

���2����#
���2����5
���2�����
�����5���
���������

���
�������

���2����3
����
,�"

.�%&�
�"��'���/�0��7�= �
9
���������

���������

.����
7534��69

�

����
�
�6��

�0�

78��+�
�-�9

4��6��'���
78��+�
�0�
9

����
,�"
78��+�
�-�9
0002M634-06 PmPPC User’s Manual 1-3

Overview: Physical Memory Map
The following table summarizes the physical addresses for the PmPPC and provides a refer-
ence to more detailed information.

Table 1-1: Address Summary

Physical
Address (hex):

Access
Mode: Description: See Page:

FFE0,0000 R 2 MB flash memory (jumper JP1 out);
Boot ROM (jumper JP1 in)

4-2, 4-2

FF80,0000 R-R/W 6 MB flash memory (jumper JP1 out) 4-2

FF65,0000 R-R/W Timers 8-3

FF63,0000 R/W I2C1 8-2

FF62,0000 R/W I2C0 8-2

FF60,0400 R-R/W UART1 7-1

FF60,0300 R-R/W UART0 7-1

FF50,0900 R-R/W Clock and Power Management 8-4

FF50,0880 R-W-R/W Interrupt Controller 8-2

FF50,0850 R-W-R/W PLB registers 8-1

FF50,0810 R-W OPB registers 8-1

FF50,0008 R/W Memory Controller registers 4-1

FF50,0000 R-W-R/W Processor Interface registers 3-3

FF40,0000 R-R/W PCI Local Configuration registers 5-2

FEE0,0000 — reserved –

FED0,0000 R PCI Interrupt Acknowledge 5-1

FEC0,0000 R/W PCI Configuration registers 5-2

FC00,0000 — reserved –

F880,0000 R/W PCI I/O space 5-1

F801,0000 — reserved –

F800,0000 R/W PCI I/O space 5-1

8000,0000 R/W PCI memory space 5-1

7FF8,0000 R Socketed flash/ROM (8-bit) 4-2

7FF5,0000 — reserved –

7FF4,0004 R/W PMC Interrupt Control register 5-5

7FF4,0003 R/W Reset Control register 3-1

7FF4,0002 R/W LEDs 2-5

7FF4,0000 R Board Configuration registers 2-7

7FF0,2000 — reserved –

7FF0,0000 R/W NVRAM, Real-time clock 9-1

7FE0,0000 R-W-R/W Ethernet 6-1

7000,0000 R-R/W User flash memory (up to 128 MB) 4-2

1000,0000 — reserved –

0000,0000 R/W SDRAM (up to 256 MB) 4-4
PmPPC User’s Manual 0002M634-061-4

Overview: Additional Information
ADDITIONAL INFORMATION

This section lists the PmPPC hardware’s regulatory certifications and briefly discusses the
terminology and notation conventions used in this manual. It also lists general technical
references.

Mean time between failures (MTBF) has been calculated at 890,701 hours using the
Bellcore Issue 6 Reliability Method I case 3.

Product Certification
The PmPPC hardware has been tested to comply with various safety, immunity, and emis-
sions requirements as specified by the Federal Communications Commission (FCC), Under-
writers Laboratories (UL), and others. The following table summarizes this compliance:

Table 1-2: Regulatory Agency Compliance

Vibration testing was successfully completed using the MIL-STD 202F, Method 214.

Emerson maintains test reports that provide specific information regarding the methods
and equipment used in compliance testing. Unshielded external I/O cables, loose screws, or
a poorly grounded chassis may adversely affect the PmPPC hardware’s ability to comply
with any of the stated specifications.

The UL web site at ul.com has a list of Emerson’s UL certifications. To find the list, search in
the online certifications directory using Emerson’s UL file number, E190079. There is a list
for products distributed in the United States, as well as a list for products shipped to Can-
ada. To find the PmPPC, search in the list for 10000168-xx, where xx changes with each revi-
sion of the printed circuit board.

Type: Specification:
Safety UL60950-1, CSA C22.2 No. 60950-1-03, 1st Edition – Safety of

Information Technology Equipment, including Electrical Business
Equipment (BI-National)

EMC FCC Part 15, ClassB – Title 47, Code of Federal Regulations, Radio
Frequency Devices

ICES 003 – Radiated and Conducted Emissions, Canada

EN55022 – Information Technology Equipment, Radio Disturbance
Characteristics, Limits and Methods of Measurement

EN55024 – Information Technology Equipment, Immunity
Characteristics, Limits and Methods of Measurement

Telecom CE Mark – Verifies UL 1950 safety, ETSI CTR 12 and CTR 13, CENELEC EN
55022 and EN 50082-1 and ITU-T K.20 and K.21
0002M634-06 PmPPC User’s Manual 1-5

Overview: Additional Information
Terminology and Notation

Active low signals: An active low signal is indicated with an asterisk * after the signal name.

Byte, word: Throughout this manual byte refers to 8 bits, word refers to 16 bits, and long word refers to
32 bits, double long word refers to 64 bits.

PLD: This manual uses the acronym, PLD, as a generic term for programmable logic device (also
known as FPGA, CPLD, EPLD, etc.).

Radix 2 and 16: Hexadecimal numbers end with a subscript 16. Binary numbers are shown with a
subscript 2.

Technical References
Further information on basic operation and programming of the PmPPC components can
be found in the following documents:

Table 1-3: Technical References

Device / Interface: Document: 1
CPU PowerPC™ 750 RISC Microprocessor User’s Manual

(IBM number GK21-0263-00)

IBM PowerPC™ 750GL RISC Microprocessor Datasheet
(Revision Level DD1.x, Version: 1.2, March 13, 2006)

PowerPC™ Microprocessor Family: The Programming Environments
(IBM number G522-0290-00)
http://www.chips.ibm.com

Memory controller /
PCI bridge

Memory Controller and PCI Bridge: CPC700 User’s Manual, Version 1,
Preliminary
(IBM Microelectronics Division, 1999)
http://www.chips.ibm.com

Ethernet CS8900A Crystal LAN™ ISA Ethernet Controller Data Sheet, DS271PP3 (Cirrus
Logic, March 1999)
http://www.crystal.com

Flash 3 Volt Intel®StrataFlash™ Memory Product Preview Datasheet
(Intel, August 1999)

Intel® Embedded Flash™ Memory (J3 v. D) Datasheet
(Intel, September 2005)
http://www.intel.com

Real-time Clock DS17485/DS17487 3 Volt / 5 Volt Real Time Clock Data Sheet
(Dallas Semiconductor, April 1999)
http://www.dalsemi.com

PCI PCI Local Bus Specification
(PCI Special Interest Group, Revision 2.2, 1998)
http://www.pcisig.com
PmPPC User’s Manual 0002M634-061-6

http://www.chips.ibm.com
http://www.crystal.com
http://www.crystal.com
http://www.intel.com
http://www.dalsemi.com
http://www.pcisig.com
http://www.pcisig.com
http://www.chips.ibm.com

Overview: Additional Information
PMC Draft Standard for a Common Mezzanine Card Family: CMC P1386 / Draft
2.4 January 12, 2001
(IEEE: New York, NY)

Draft Standard for Physical and Environmental Layers for PCI Mezzanine
Cards: PMC P1386.1 / Draft 2.4 January 12, 2001
(IEEE: New York, NY)
http://www.ieee.org

PrPMC Processor PMC Standard for Processor PCI Mezzanine Cards: Draft 0.41 /
September 8, 2000
(VITA: Scottsdale, AZ)
http://www.vita.com

1. Frequently, the most current information regarding addenda/errata for specific documents may be
found on the corresponding web site.

Device / Interface: Document: 1 (continued)
0002M634-06 PmPPC User’s Manual 1-7

http://www.ieee.org
http://www.vita.com

Overview: Additional Information
PmPPC User’s Manual 0002M634-061-8

0002M634-06 PmPPC
Section 2
Setup

This chapter describes the physical layout of the boards, the setup process, and how to
check for proper operation once the board has been installed. This chapter also includes
troubleshooting, service, and warranty information.

ELECTROSTATIC DISCHARGE

Before you begin the setup process, remember that electrostatic discharge (ESD) can easily
damage the components on the PmPPC hardware. Electronic devices, especially those with
programmable parts, are susceptible to ESD, which can result in operational failure. Unless
you ground yourself properly, static charges can accumulate in your body and cause ESD
damage when you touch the board.

Caution: Use proper static protection and handle PmPPC boards only when absolutely necessary.
Always wear a wriststrap to ground your body before touching a board. Keep your body
grounded while handling the board. Hold the board by its edges–do not touch any
components or circuits. When the board is not in an enclosure, store it in a static-shielding
bag.

To ground yourself, wear a grounding wriststrap. Simply placing the board on top of a
static-shielding bag does not provide any protection–place it on a grounded dissipative
mat. Do not place the board on metal or other conductive surfaces.

PMPPC CIRCUIT BOARD

The PmPPC circuit board is PrPMC module assembly. It uses a 12-layer printed circuit board
with the following dimensions:

Table 2-1: Circuit Board Dimensions

The following figures show the component maps and jumper locations for the PmPPC cir-
cuit board.

Width: Depth: Height, top side: Height, Bottom side:
2.913 in.
(74 mm)

5.866 in.
(149 mm)

0.323 in. (8.2 mm)

0.524 in. (13.5 mm) I/O area

0.007 in. (1.9 mm)

!

 User’s Manual 2-1

Setup: PmPPC Circuit Board
Figure 2-1: Component Map, Top (Rev. 04)

������������	
��
��������������	�	�
��

��
�

��
�

��
�

��
��

���

��
�

��
�

��
�

��
�

��
�

��
�

���

���

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

���

��
�

��
�

��

��

���

��

��
�

��
�

���

���

���

���

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

���

��
�

��
�

��
�

���

���

��

��
�

��
��

���

�� ��

��
�

��

��
�

���

���������

���

��
����

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�� ��

��

��
�

���

��
�

��
�

���

��
�

���

��
�

��
�

��

��
�

��
��

��
��

��������

��� ����

���

����

���

���

������

����

��� ���

����

���� ����

����

����

���

���

���

��

���

 !��
����

!�"#$%��#&'$#((�$
)�
�
� $*+,�

���

���
�
�	!-�(.�/

��
�

���
���
���
���

��
�

���

��
�

���

0
�

��

��

��

��

���
����.1/�

�2�

���

���
���

���
�(.�/

34��5��6

��

�3

��

#7�$
�����

�
�

��

��
��

��

��

��

���

8

��� ��
�

�� �� ������

��

��

��
�

�

�

��

��

�

�

��

��

�

�

��

��

��

!���#&&�1'#$

��

!���#&&�1'#$

��

!���#&&�1'#$

�
�'/�$&�'
�0��

�
��$*.(

#$'

���
����.1/�

���
�(.�/
34�5��6

���
�(.�/

34��5��6

���
�(.�/

34��5��6

+
��

<
�,	
�#
�!

���
��
��
��
��
�9

=
�(

�
�9

	
�

���
>��
��

��
.9

��
�!

��
�

�.
��
��.
��
��
�

94
�,	
�#
�!

���
��
.�
)�
��

�
��
��

��
.9

��
��

��
�

�.
��
��.
��
��
�

94
PmPPC User’s Manual 0002M634-062-2

Setup: PmPPC Circuit Board
Figure 2-2: Component Map, Bottom (Rev. 04)

��!�

��� ����

��

�?
�

��!!

��!�

��!�

�?�

#�"
$%�&�
%@��<��A

�+��

�+
�� ��
�

��
"!

��
""

��
��

���

��
!�

��
!"

��
�?

��
��

��
�

��
��

��
�!

��
��

��
��

��
��

��
��

��
�"

��
�?

��
�

����
���!

��
�

��
�

��
��

��
��

��
��

��
��

��
�"

��
�

��
�!

#�

��
?

��
�

��
�?

����

��
�

�!
�

��"�

��
"�

#��
�*�

���

� �

#��

��

��
�

��
?

��
�

� �

��� ���

�!

�!
�

�!
�

�!
!

��
"

��
"�

�!� �!� �!�

#�!

#�� #��

#�!
�$�?""&
)��
�.
�

�+���+��

�+�"

�+�!�+��

�+� �+��

�
"

�
�

�?�

�
�

�!
?

����

��
��

��
!

��
�

��
�

��
��

��
��

���?

��
"�

�?�

�?
?

��
?

��
��

��
"

��
��

���"

��
�!

����

��"
��"�

��
�"

��"�
��"?

�!
"

�
�

��

�? ��"� ��"�
�?!

���
��!
�?"

���
���
� ?

�?�
�?�

� �

��
!

��
"

�
�
!

����

��
��

��
��

��"�

'�

'!

'�

���?

����

��
"�

��
"?

��
��

��
�

��
��

���!

���

��
��

���

��""

���?

��
��

��
�?

��
��

���

����

��
�?��

��

������

�?
�

�
�

�?
!

���

�
!

�
�

�?
�

�??

�?

�
�

�?
�

� �

��
"�

�
�

��

��

�����?� "

�?�

��
�

��
"�

��
�!

�
�

�?
�

��
��

����

��
�!

���"

���"

��
��

��
��

����

�

��
"!

����

�� �

��
����

��

��
�

��
�"

�
?

��
��

��"

�?"
�?�

��!

����

��
 �

��
�?

��
��

��
��

��
��

����

����

��
��

��
!

��
�!

��
�

��
!�

��
 "

��
�"

��
�!

��
��

��
�"

��
�

��!"��!� ��!�

����

��
��

��
��

��
!�

��!�

��
!�

��
!?

����

��
��

��
?

�������

�
�����	�	�
��

�	
��
��������

�����������

���

��
���
��!

��
1*&2

��;���.���

��� ��� ���

#�?
$%�&�
%@"<�!A

#��
$%�&�
%@��<��A

#��
$%�&�
%@��<� A

#��
$%�&�
)��@"< A

����� 9
9
9
9
9
9

����9999�99�3
0002M634-06 PmPPC User’s Manual 2-3

Setup: PmPPC Circuit Board
Figure 2-3: Jumper and Fuse Locations, Top

Connectors
The PmPPC circuit board has various connectors (see the figures beginning on page 2-2),
summarized as follows:

P1: This RJ45 connector is the front panel Ethernet port. Refer to Table 6-4 for the pin assign-
ments.

������

�	
��
�

������4�=��	0�>�-?@���<<<��	@�0�0?-�. �

��
	

��	������
����

��
�����
1
/;
���
�>������	��/�#�
�������>��������
1
/;
���.>������	��/��
/��B��.��'���$�(7
�

�	���	�������
�
��..
(���C!3����������
.��.�����
94
PmPPC User’s Manual 0002M634-062-4

Setup: PmPPC Circuit Board
P2: This miniature 9-pin (Nano D) connector is for the front panel serial port. Refer to Table 7-3
for the pin assignments. These signals also are available at the P14 connector.

Caution: It is strongly recommended that a weight bearing attachment point to the serial cable, within three
inches of the PmPPC front panel, be provided by the system. Such a mechanism is needed to provide an
adequate strain relief for the serial I/O cable at the P2 (Nano DB9) connector.

P3: This is an optional 16-pin JTAG/COP header on the back of the board that allows for bound-
ary scan testing of the PowerPC CPU and the PmPPC. See Table 3-5 for pin assignments.
Additional JTAG signals at the P12 connector allow for access to the CPC700 memory con-
troller/PCI bridge.

P11, P12: These are the 64-pin connectors that provide the standard 32-bit PCI interface between the
PmPPC and the PMC host. See Table 5-4 and Table 5-5 for pin assignements.

P14: This 64-pin connector conforms to the PCI specification as user-defined. An optional con-
figuration allows for the Ethernet signals to be available at P14. See Table 5-6 for pin assign-
ments.

LEDs
The PmPPC has seven light-emitting diodes (LEDs) on the back side of the board (see Fig. 2-

4). These include a red CPU halt indicator, two yellow Ethernet monitoring LEDs, and four
software-driven status LEDs accessible via the register at location 7FF4,000216 (bits 0—3).
For the status LEDs: 1=on and 0=off, with one red LED corresponding to the most signifi-
cant bit and three yellow LEDs corresponding to the least significant bits.

!

0002M634-06 PmPPC User’s Manual 2-5

Setup: PmPPC Circuit Board
Figure 2-4: LED Locations, Bottom

��������������
������������

��!���������������
����"�����������

��	���������
�
��#
������������$

����
���%
�&'�(��)*+++!	,

��)������������$
��-�������!��������
��,�������	��������
��(�������+��������

	�5	�# 	��

	�3
	�4
	��

	�2
PmPPC User’s Manual 0002M634-062-6

Setup: PmPPC Circuit Board
Board Configuration Registers
A programmable logic device (PLD) on the PmPPC contains two, byte-wide, read-only
Board Configuration registers starting at location 7FF4,000016. These registers allow the
monitor software to easily determine specific hardware configurations. The BCR0 allows
the monitor software to easily determine specific hardware configurations.

Register 2-1: Board Configuration 0 (BCR0), 0x7ff4,0001

BDEV: Monitor boot device indicato. (Jumper JP1 selects the boot device)
0 ROM
1 Flash

ECC: Error-correcting Code option
0 ECC
1 No ECC option

MEM_SIZE: SDRAM size configuration
00 32 MB
01 64 MB
10 128 MB
11 256 MB

L2_CACHE: L2 cache configuration
00 150 MHz (72-bit)
01 166 MHz (72-bit)
10 200 MHz (72-bit)
11 No cache

BUS_FREQ: Local bus clock configuration
00 1660 MHz
01 83 MHz
10 100 MHz
11 reserved

Register 2-2: Board Configuration 1 (BCR1), 0x7ff4,0000

7 6 5 4 3 2 1 0

BDEV ECC MEM_SIZE L2_CACHE BUS_FREQ

7 6 5 4 3 2 1 0

MON reserved ETH RTC F_SIZE F_WIDTH
0002M634-06 PmPPC User’s Manual 2-7

Setup: PmPPC Setup
MON: Monarch functionality (Read from PCI connector P12, pin 64)
0 Monarch
1 Non-Monarch

ETH: Ethernet interfacen
0 Not present
1 Present

RTC: Real-time Clock device configuration
0 DS17485
1 No RTC

F_SIZE: Flash memory, number of bytes per flash device on the board
00 32 MB
01 16 MB
10 8 MB
11 4 MB

F_WIDTH: Flash memory width
00 64 bits
01 32 bits
10 16 bits
11 No flash

PMPPC SETUP

You need the following items to set up and check the operation of the Emerson PmPPC:

❐ Compatible PrPMC baseboard, such as the BajaPPC

❐ Chassis and power supply

❐ Optional serial cable, Emerson item number C0007658-00

❐ Computer terminal

Save the antistatic bag and box for future shipping or storage.

Caution: Do not install the board in a rack or remove the board from a rack while power is applied, at
risk of damage to the board.

Power Requirements
The Emerson PmPPC circuit board is capable of operating in either a 3.3 V or 5 V PCI signal-
ing environment.

!

PmPPC User’s Manual 0002M634-062-8

Setup: PmPPC Setup
The exact power requirements for the PmPPC circuit board depend upon the specific con-
figuration of the board, including the CPU frequency and amount of memory installed on
the board. Contact Emerson Technical Support at 1-800-327-1251 if you have specific
questions regarding the board’s power requirements.

Table 2-2: Power Requirements

Environmental Considerations
As with any printed circuit board, be sure that air flow to the board is adequate. Chassis
constraints and other factors greatly affect the air flow rate. The environmental require-
ments are as follows:

Table 2-3: Environmental Requirements

Installation
Most PMC-compatible baseboards have two sets of three connectors (J11-J14 and J21-J23),
as defined by the PMC specification. Fig. 2-5 shows the location of these connectors on the
baseboard and the location of the PmPPC module.

Voltage: Range:
Current1
(amps):

1. Measured at monitor prompt.

Current2
(amps):

2. Measured while running on-card memory test.

Watts2: Configuration:
+5 +/-5% 1.46 1.743

3. Actual current draw depends on software application.

8.7 333 MHz, 64 MB, 16FL

+5 +/-5% 1.66 2.073 10.35 458 MHz, 64 MB, 16FL

+5 +/-5% 1.67 2.213 11.05 458 MHz, 128 MB, 16FL

+5 +/-5% 1.67 2.223 11.1 458 MHz, 256 MB, 64FL

Environment: Range: Relative Humidity:
Operating Temperature 0° to +55° Centigrade, ambient

(at board)
Not to exceed 95% (non-
condensing)

Storage Temperature —40° to 705° Centigrade Not to exceed 95%
(non-condensing)

Air Flow 100 linear feet/minute
0002M634-06 PmPPC User’s Manual 2-9

Setup: PmPPC Setup
Figure 2-5: Module Location on Baseboard

Use the following procedure to attach the PmPPC module to your baseboard:

1 Remove the screws from the standoffs on the PMC module.

2 Hold the module at an angle and gently slide the faceplate into the opening on the
baseboard.

3 Align the P11 and P12 connectors and gently press the module into place until firmly
mated.

Caution: To avoid damaging the module and/or baseboard, do not force the module onto the
baseboard.

4 Using four M2.5x6 mm flathead screws (item number 09809043-00), secure the PmPPC
module from the bottom of the baseboard. First, insert and tighten the screws closest to
the P11, P12, and P14 connectors. Next, insert and tighten the screws nearest to the front
panel.

�� ��

���

������

���

������

��.	/
�0���
��
�1�	

!

PmPPC User’s Manual 0002M634-062-10

Setup: Troubleshooting
Figure 2-6: Installing the Module on the Baseboard

TROUBLESHOOTING

In case of difficulty, use this checklist:

❐ Be sure the PmPPC circuit board is seated firmly in the carrier.

❐ Verify the boot jumper setting (see Fig. 2-3)

❐ Be sure the system is not overheating.

❐ Check the cables and connectors to be certain they are secure.

❐ Check your power supply for proper DC voltages. If possible, use an oscilloscope to look
for excessive power supply ripple or noise (over 50 mVpp below 10 MHz).

❐ (Emerson PMC hosts only.) In order for the monitor to map any PCI devices found at
power-up time, the NVRAM field DoModConfig should be set to true. After the power-up
diagnostics have completed, the monitor will display a list of all PMC devices it found.
The list includes the vendor and device IDs and the base addresses of each device found.
0002M634-06 PmPPC User’s Manual 2-11

Setup: Troubleshooting
Technical Support
If you need help resolving a problem with your PmPPC, visit
http://www.emersonembeddedcomputing.com/contact/postsalessupport.html on the
Internet or send e-mail to support@artesyncp.com. If you do not have internet access, call
Emerson for further assistance:

(800) 327-1251 or (608) 826-8006 (US)
44-131-475-7070 (UK)

Have the following information available when contacting support:

• PmPPC serial number and product identification (see Fig. 2-7)

• monitor version (see Fig. 9-1 start-up display)

• baseboard model number and monitor version (if applicable)

• version and part number of the operating system (if applicable). This information is
labeled on the master media supplied by Emerson or another vendor

• whether your board has been customized for options such as a higher processor speed
or additional memory

• license agreements (if applicable)

Figure 2-7: Serial Number and Product ID on Bottom Side

�������

����9999�99�3

�������	
����

���
�����

���� 9
9
9
9
9
9

9
9
9
9
9
9

����

����9999�99�3
PmPPC User’s Manual 0002M634-062-12

http://www.emersonembeddedcomputing.com/contact/postsalessupport.html
http://www.emersonembeddedcomputing.com/contact/postsalessupport.html
http://www.emersonembeddedcomputing.com/contact/postsalessupport.html
mailto:support@artesyncp.com
mailto:support@artesyncp.com

Setup: Troubleshooting
Product Repair
If you plan to return the board to Emerson Network Power for service, visit
http://www.emersonembeddedcomputing.com/contact/productrepair.html on the inter-
net or send e-mail to serviceinfo@artesyncp.com to obtain a Return Merchandise Authori-
zation (RMA) number. We will ask you to list which items you are returning and the board
serial number, plus your purchase order number and billing information if your PmPPC
hardware is out of warranty. Contact our Test and Repair Services Department for any war-
ranty questions. If you return the board, be sure to enclose it in an antistatic bag, such as
the one in which it was originally shipped. Send it prepaid to:

Emerson Network Power, Embedded Computing
Test and Repair Services Department
8310 Excelsior Drive
Madison, WI 53717

RMA #____________

Put the RMA number on the outside of the package so we can handle your problem effi-
ciently. Our service department cannot accept material received without an RMA number.
0002M634-06 PmPPC User’s Manual 2-13

http://www.emersonembeddedcomputing.com/contact/productrepair.html
http://www.emersonembeddedcomputing.com/contact/productrepair.html
http://www.emersonembeddedcomputing.com/contact/productrepair.html
mailto:serviceinfo@artesyncp.com
mailto:serviceinfo@artesyncp.com

Setup: Troubleshooting
PmPPC User’s Manual 0002M634-062-14

0002M634-06 PmPPC
Section 3
CPU

This chapter is an overview of the processor logic on the PmPPC. It includes information on
the CPU, exception handling, and cache memory. The PmPPC utilizes the IBM PPC750 Pow-
erPC microprocessor, running at an internal clock speed of up to 458 MHz.

The following table outlines some of the key features for the PPC750 CPU:

Table 3-1: CPU Features

PROCESSOR RESET

Circuitry on the PmPPC module resets the processor and the board. It activates the
RESET_OUT* signal on pin 60 of the P12 connector if the module voltages fall out of toler-
ance or if the optional on-board reset switch is activated.

In addition, the Reset Control register allows the host to reset the PmPPC processor via the
PCI interface. To reset the CPU, write a series of two 8-bit values to the register located at
7FF4,000316.

Register 3-1: Reset Control

First, enable a reset by writing the hex value AC16 to the Reset Control register. Once it is
enabled, you can reset the CPU by writing the hex value 1D16 to the register. The reset stays
asserted until you write a new value. Since it is a read/write register, you can read the value
in the Reset Control register at any time. After a reset, all the bits in this register are set to
zero.

Category: PPC750 Key Features:
Instruction Set 32-bit

CPU Speed (internal) up to 458 MHz

Data Bus 32/64-bit modes

Address Bus 32-bit

Instructions per Clock 3 (2 + Branch)

Cache(s) 32 K Instruction, 32 K Data

Execution Units 2 Integer, Float, Branch, Load/Store, System

Voltages internal, 2.05 V; input/output, 3.3 V

7 6 5 4 3 2 1 0

RST7 RST6 RST5 RST4 RST3 RST2 RST1 RST0
 User’s Manual 3-1

CPU: Processor Initialization
PROCESSOR INITIALIZATION

Initially, the PmPPC powers up with specific values stored in the CPU registers. The initial
power-up state of the Hardware Implementation Dependent register (HID0) and the
Machine State register (MSR) are given in Table 3-2.

Table 3-2: CPU Internal Register Initialization

Reference the PowerPC™ 750 RISC Microprocessor User’s Manual for detailed register infor-
mation.

INTERRUPT HANDLING

The CPC700 controller handles all PmPPC interrupts other than the PCI interrupts (see “PCI
Interrupts” on page 5-5). It drives the 750_INT* interrupt input on the CPU. The interrupt
handler sends a command for the interrupting device to acknowledge the interrupt and
deassert 750_INT*. (Note that software should clear the CPC700 ERRDET1 register after a
memory select error.) The following table shows the PmPPC interrupt mapping:

Table 3-3: Interrupt Mapping

As a Monarch module (see “Monarch Functionality” on page 5-5), the PmPPC is typically an
interrupt handler, although it could be configured to generate interrupts. As a non-Mon-
arch module, it is typically an interrupt generator. Since the resident monitor software does
not enable PMC interrupts, the application software must perform this task. The software
can read bit 7 of Board Configuration register 1 (see “PCI Interrupts” on page 5-5) at loca-
tion 7FF4,000016 to determine how the module is configured (0 is Monarch, 1 is non-Mon-
arch).

Register: Default After Initialization (hex): Notes:
HID0 8020,802C Hardware Implementation Dependent

register 0

MSR 0000,B032 Machine State register

Interrupt Signal: Source: IRQ Pin on CPC700: CPC700 UIC Bits:
BPMC_INTA* PMC IRQ0 20

BPMC_INTB* PMC IRQ1 21

BPMC_INTC* PMC IRQ2 22

BPMC_INTD* PMC IRQ3 23

ETH_INT (active high) Ethernet IRQ4 24

NV_INT* RTC/NVRAM IRQ5 25

IRQ6*—IRQ11* reserved IRQ6-IRQ11 26-31
PmPPC User’s Manual 0002M634-063-2

CPU: Cache Memory
CACHE MEMORY

The PPC750 processor has separate, on-chip, 32-kilobyte, Level 1, instruction and data
caches with eight-way, set-associative translation lookaside buffers (TLBs). The CPU sup-
ports the modified/exclusive/invalid (MEI) cache coherency protocol. Each cache has 128
entries and supports demand-paged virtual memory address translation and variable-sized
block translation. The PPC750 also employs pseudo-least-recently used (PLRU) replace-
ment algorithms for enhanced performance.

In addition to the on-chip caches, the PPC750 CPU utilizes a 1-megabyte, integrated level-
two (L2) cache provided by two synchronous random access memory (SRAM) chips. For the
PmPPC, the cache integrates data, tag, host interface, and LRU memory with a cache con-
troller. At speeds up to 183 MHz, it performs with zero wait states (3-1-1-1 pipelined burst
mode). The cache design is two-way, set-associative and employs LRU logic.

CPC700 PROCESSOR INTERFACE

The IBM CPC700 memory controller/PCI bridge device interfaces directly with the PPC750
processor bus. Table 3-4 lists the control registers associated with this interface. Refer to the
CPC700 Functional Specification for complete details on the processor interface core regis-
ters.

Table 3-4: Processor Interface Core Registers

CPC700
Hex Offset:

Register

Name:
Access
Mode: Function:

00 PRIFOPT1 R/W Processor Interface Options 1

04 ERRDET1 R/W Error Detection 1

08 ERREN1 R/W Error Detection Enable 1

0C CPUERAD R Processor Error Address

10 CPUERAT R Processor Error Attributes

14 — — reserved

18 PLBMIFOPT R/W Processor-PLB Master Interface Options

20 PLBMTLSA1 R/W Processor-PLB Bank 1 Translation Start Address

24 PLBMTLEA1 R/W Processor-PLB Bank 1 Translation End Address

28 PLBMTLSA2 R/W Processor-PLB Bank 2 Translation Start Address

2C PLBMTLEA2 R/W Processor-PLB Bank 2 Translation End Address

30 PLBMTLSA3 R/W Processor-PLB Bank 3 Translation Start Address

34 PLBMTLEA3 R/W Processor-PLB Bank 3 Translation End Address

38 PLBSNSSA0 R/W No Snoop Starting Address

3C PLBSNSEA0 R/W No Snoop Ending Address

40 BESR R/W PLB Bus Error Syndrome register

44 BESRSET W PLB Bus Error Syndrome register Set (test use only)
0002M634-06 PmPPC User’s Manual 3-3

CPU: JTAG/COP Interface
The Processor Interface Configuration Address and Data registers at FF50,000016 and
FF50,000416 allow access to the CPC700 processor interface registers. To initiate an access,
write the hex offset value for the desired register to address FF50,000016. The data for that
register then may be read from or written to the data register at FF50,000416. Note that all
configuration accesses from the processor must be 4-byte aligned.

JTAG/COP INTERFACE

The JTAG/COP interface provides for boundary-scan testing of the CPU and the PmPPC. This
interface is compliant with the IEEE 1149.1 interface standard. The JTAG interface signals
route to the optional P3 header on the back of the board (see component map in Fig. 2-2).

Table 3-5: JTAG/COP Interface Pin Assignments (P3)

CPU_TDO: Test Data Output signal acts as the output port for scan instructions and data.

CPU_TDI: Test Data Input signal acts at the input port for scan instructions and data.

DBG_TRST*: Test Reset input signal resets the test access port.

CPU_TMS: Test Mode Select input signal is the test access port (TAP) controller mode signal.

CPU_TCK: Test Clock Input scan data is latched at the rising edge of this signal.

DBG_SRESET*: Soft Reset input signal may initiate a warm reset. (This signal is not defined in the IEEE
1149.1 standard.)

48 — — reserved

4C BEAR R/W PLB Bus Master Error Address register

50-54 — — reserved

80 PLBSWRINT R/W Write Interrupt Region Base Address

Pin: Signal: Pin: Signal:
1 CPU_TDO 2 no connect

3 CPU_TDI 4 DBG_TRST*

5 no connect 6 +3.3 V

7 CPU_TCK 8 no connect

9 CPU_TMS 10 no connect

11 DBG_SRESET* 12 ground

13 DBG_HRESET* 14 used as a keying pin

15 CKSTP_OUT* 16 ground

CPC700
Hex Offset:

Register

Name:
Access
Mode: Function: (continued)
PmPPC User’s Manual 0002M634-063-4

CPU: JTAG/COP Interface
DBG_HRESET*: Hard Reset input signal is used at power-up to reset the processor. (This signal is not
defined in the IEEE 1149.1 standard.)

CKSTP_OUT*: Checkstop Output, when asserted, indicates that the CPU has detected a checkstop condi-
tion and has ceased operation. On the PmPPC, this signal connects to the red HALT LED.
0002M634-06 PmPPC User’s Manual 3-5

CPU: JTAG/COP Interface
PmPPC User’s Manual 0002M634-063-6

0002M634-06 PmPPC
Section 4
On-card Memory Configuration

The PmPPC has a 32-pin, plastic-leaded chip carrier (PLCC) socket to support up to 512 kilo-
bytes of flash memory. The PmPPC also provides up to 128 megabytes of 16, 32, or 64-bit
user flash memory. The board supports on-card synchronous SDRAM configurations of up
to 256 megabytes.

CPC700 MEMORY INTERFACE

The IBM CPC700 acts as the memory controller for the PmPPC. Table 4-1 lists the control
registers associated with the memory interface. Chapter 5 describes the PCI bridge. Refer
to the CPC700 Functional Specification for complete details on the memory interface regis-
ters.

Table 4-1: Processor Interface Core Registers

CPC700
Hex Offset:

Register

Name:
Access
Mode: Description:

20 MCOPT1 R/W Memory Controller Options 1

24 MBEN R/W Memory Bank Enable

28 MEMTYPE R/W Installed Memory Type

2C RWD R/W Bank Active Watchdog Timer

30 RTW R/W Refresh Timer register

34 DAM R/W DRAM Addressing Mode

38 MBOSA R/W Memory Bank 0 Starting Address

3C MB1SA R/W Memory Bank 1 Starting Address

40 MB2SA R/W Memory Bank 2 Starting Address

44 MB3SA R/W Memory Bank 3 Starting Address

48 MB4SA R/W Memory Bank 4 Starting Address

58 MB0EA R/W Memory Bank 0 Ending Address

5C MB1EA R/W Memory Bank 1 Ending Address

60 MB2EA R/W Memory Bank 2 Ending Address

64 MB3EA R/W Memory Bank 3 Ending Address

68 MB4EA R/W Memory Bank 4 Ending Address

80 SDTR1 R/W SDRAM Timing register 1

88 RBW R/W ROM Bank Width

90 FWEN R/W Flash Write Enable

94 ECCCF R/W ECC Configuration

98 ECCERR R/W ECC Error

E0 RPB0P R/W ROM / Peripheral Bank 0 Parameters

E4 RPB1P R/W ROM / Peripheral Bank 1 Parameters

E8 RPB2P R/W ROM / Peripheral Bank 2 Parameters

EC RPB3P R/W ROM / Peripheral Bank 3 Parameters
 User’s Manual 4-1

On-card Memory Configuration: Boot Memory Configuration
The Memory Controller Configuration Address and Data registers at FF50,000816 and
FF50,000C16 allow access to the CPC700 memory interface registers. To initiate an access,
write the hex offset value for the desired register to address FF50,000816. The data for that
register then may be read from or written to the data register at FF50,000C16. See Monitor
sections “CPC700 Indirect Reads” on page 9-39 and “CPC700 Indirect Writes” on
page 9-39. Note that all configuration accesses from the processor must be 4-byte aligned.

BOOT MEMORY CONFIGURATION

The PmPPC has a 32-pin PLCC socket on the front of the board for a 512-kilobyte flash
memory chip. When booting from the socketed memory, it occupies the physical address
space beginning at FFE0,000016. Otherwise, it starts at 7FF8,000016. The PLCC sockets only
support 3.3-volt devices.

Caution: When removing socketed PLCC devices, always use an extraction tool designed specifically
for that task. Otherwise, you risk damaging the PLCC device.

A jumper on the PmPPC circuit board configures the memory as shown in Table 4-2. The on-
board monitor is standard in the last two megabytes of user flash memory space.

Table 4-2: Memory Configuration Jumpers

The CPC700 controls the access time for ROM. The default power-up timing allows boards
of any speed to work with ROMs that have access times faster than 150 nanoseconds. We
strongly suggest that you use the default timing because of the inherent risks of optimizing
timing for a specific configuration and because the ROM is cached.

USER FLASH

The PmPPC circuit board accommodates up to four Intel StrataFlash™ devices (16 bits
wide), allowing for as much as 128 megabytes of 64-bit wide user flash at location
7000,000016. Bits 3 and 2 of Board Configuration register 1 (BCR1) at 7FF4,00016 (see
page 2-7) configure the flash device density. Bits 1 and 0 of this same register configure the
data path width. The following table shows various configuration options:

F0 RPB4P R/W ROM / Peripheral Bank 4 Parameters

Jumper: Function: Options:
Default
Configuration:

JP1 Selects monitor boot device JP1 out, user flash
JP1 in, PLCC socket

JP1 out, user flash

CPC700
Hex Offset:

Register

Name:
Access
Mode: Description: (continued)

!

PmPPC User’s Manual 0002M634-064-2

On-card Memory Configuration: User Flash
Table 4-3: Flash Memory Configurations

The flash devices interface to the most significant data bits of the PowerPC data bus. For
example, if the data path is 64 bits wide, the PowerPC data bus is declared as D[0:63],
where D0 is the most significant bit and D63 is the least significant bit. For a 32 bit data
path, the flash devices interface to D[0:31]. For a 16 bit path, the data bus is D[0:15]. (Refer
to Fig. 2-1 for the individual device mappings.)

If booting from user flash, the CPC700 controller initially maps two megabytes of flash
memory (beginning at FFE0,000016) at the top of the address space. Another six mega-
bytes (beginning at FF80,000016) is reserved to yield a combined total of eight megabytes
for contiguous user flash at the top of the address space. Only the top eight megabytes of
the entire soldered flash array (7000,000016 — 77FF,FFFF16) appear at the top of the boot
address space (FF80,000016 — FFFF,FFFF16). When an 8-bit flash device is installed in the
PLCC socket, it always appears at 7FF8,000016 (and is mirrored at FFE0,000016 when the
socket is the boot device).

Since the 64-bit flash memory is soldered, an 8-bit ROM could be used to bootstrap the pro-
cessor and execute a routine that programs the soldered flash from a serial port, Ethernet,
or through the PCI interface.

The PmPPC accommodates several different configurations of user flash as noted in Table 4-

3. With the accommodation of using 16, 32, and 64-bit data widths, it is important to
access the boards’s user flash correctly with the correct data width. For example, to put the
device into read array mode, write:

64-bit write: command = 00ff 00ff 00ff 00ff
(Command sent to all 4 devices)

32-bit write: command = 00ff 00ff
(Command sent to both devices)

16-bit write: command = 00ff
(Command sent to single device)

Device
Density:

Data Path
Width:

Number of
Devices:

Total Memory
(megabytes):

BCR1 Bits
[3:0]:

256 Mbit1

1. Future offers that are not yet available at the writing of this manual

64 bits 4 128 0000

256 Mbit1 32 bits 2 64 0001

256 Mbit1 16 bits 1 32 0010

128 Mbit 64 bits 4 64 0100

128 Mbit 32 bits 2 32 0101

128 Mbit 16 bits 1 16 0110

64 Mbit 16 bits 1 8 1010
0002M634-06 PmPPC User’s Manual 4-3

On-card Memory Configuration: On-Card SDRAM
If you are reading the status register to see if a write command has completed (Ready bit:
bit-7 = 1), then you would read:

64-bit write: command = 0080 0080 0080 0080
(All 4 devices ready)

32-bit write: command = 0080 0080
(Both devices ready)

16-bit write: command = 0080
(Single device ready)

Bits [1:0] of the Board Configuration register 1 at 7FF4,0000 (see page 2-7) provide the
data path width:

Table 4-4: BCR1 Bits [1:0]

ON-CARD SDRAM

The PmPPC supports 32-, 64-, 128-, and 256-megabyte configurations of 72-bit wide syn-
chronous DRAM (SDRAM). The memory chips are 4-, 8-, 16-, or 32 M x 16, 3.3 V, SDRAM
devices organized as one bank of five devices (the fifth part supports the 8-bit ECC option).
On-card SDRAM occupies physical addresses from 0000,000016 to 0FFF,FFFF16. The
SDRAM is controlled by the CPC700 DRAM controller, which may be programmed for most
memory sizes and speeds, various block sizes, and write protection.

In addition to the basic SDRAM control functions the CPC700 chip provides several addi-
tional DRAM-related functions and contains the following performance enhancing fea-
tures:

• Programmable delay insertion for controlling RAS precharge time, RAS low time, CAS
setup before RAS time, CAS precharge time, CAS pulse width, CAS access time, and
address access time.

• Logic needed to control ECC generation, and checking logic with functions to clear ECC
errors.

Bits 5:4 of Board Configuration register 0 (see page 2-7) at 7FF4,000116 store the SDRAM
bank configuration information. A programmable logic device (PLD) maintains these con-
figuration values, which are determined by whether or not specific configuration resistors
are physically installed on the PmPPC circuit board.

Bits [1:0]: Data Path Width:
00 64 bits

01 32 bits

10 16 bits
PmPPC User’s Manual 0002M634-064-4

On-card Memory Configuration: Nonvolatile Memory Map
NONVOLATILE MEMORY MAP

A portion of ROM is reserved by Emerson for data storage. The following memory map con-
vention allows various operating systems to store their boot parameters without affecting
each other.

Table 4-5: Nonvolatile Memory Map

Refer to “NVRAM Commands” on page 9-23 for details on programming the nonvolatile
memory.

Address Range (hex): Description:
400-7FF User nonvolatile data storage

300-3FF Reserved for the operating system

000-2FF Reserved for the PmPPC monitor
0002M634-06 PmPPC User’s Manual 4-5

On-card Memory Configuration: Nonvolatile Memory Map
PmPPC User’s Manual 0002M634-064-6

0002M634-06 PmPPC
Section 5
PMC/PCI Interface

The PmPPC module complies with the PCI Mezzanine Card (PMC) form factor for Peripheral
Component Interconnect (PCI) modules and the proposed specification for Processor PCI
Mezzanine Cards (PrPMC). The IBM CPC700 memory controller/PCI bridge chip implements
the interface.

PCI BRIDGE

The CPC700 supports PCI bus speeds of up to 66 MHz (refer to page 5-6). Additional fea-
tures include:

• compliance with the PCI 2.1 bus interface specification

• 32-bit PCI address/data bus

• optional internal PCI arbiter

• error tracking/status

PCI Interface Registers
Table 5-1 lists the registers associated with the PCI interface. The PmPPC monitor configures
the CPC700 controller so that it provides these 32-bit registers to the PowerPC processor in
the correct byte order (assuming the access width is 32 bits). Refer to the CPC700 Functional
Specification for complete details on the PCI interface registers.

Table 5-1: PCI Interface Register Summary

CPC700
Address (hex):

Register
Name:

Access
Mode: Description:

FF40,0000 PMM0LA R/W PMM 0 Local Address

FF40,0004 PMM0MA R/W PMM 0 Mask/Attribute

FF40,0008 PMM0PCILA R/W PMM 0 PCI Low Address

FF40,000C PMM0PCIHA R/W PMM 0 PCI High Address

FF40,0010 PMM1LA R/W PMM 1 Local Address

FF40,0014 PMM1MA R/W PMM 1 Mask/Attribute

FF40,0018 PMM1PCILA R/W PMM 1 PCI Low Address

FF40,001C PMM1PCIHA R/W PMM 1 PCI High Address

FF40,0020 PMM2LA R/W PMM 2 Local Address

FF40,0024 PMM2MA R/W PMM 2 Mask/Attribute

FF40,0028 PMM2PCILA R/W PMM 2 PCI Low Address

FF40,002C PMM2PCIHA R/W PMM 2 PCI High Address

FF40,0030 PTM1MS R/W PTM 1 Memory Size

FF40,0034 PTM1LA R/W PTM 1 Local Address

FF40,0038 PTM2MS R/W PTM 2 Memory Size
 User’s Manual 5-1

PMC/PCI Interface: PCI Bridge
PCI Configuration Registers
The CPC700 has a number of configuration registers that affect the PCI interface.
Table 5-2 summarizes these registers. Refer to the CPC700 Functional Specification for com-
plete details on the individual PCI configuration registers.

Table 5-2: PCI Interface Register Summary

FF40,003C PTM2LA R/W PTM 2 Local Address

FEC0,0000 PCICFGADR R/W PCI Configuration Address register

FEC0,0004 PCICFGDATA R/W PCI Configuration Data register

CPC700
Address
(hex): Register Name:

Access
Mode: Description:

Hex
Default:

01—00 PCIVENDID R/W Vendor ID 1223

03—02 PCIDEVID R Device ID 000E

05—04 PCICMD R/W Command register 0006

07—06 PCISTATUS R/W Status register 0200

08 PCIREVID R Revision ID 01

09 PCIINTCLS R/W Interface Class 00

0A PCISUBCLS R/W Sub-Class Code 00

0B PCIBASECC R/W Base Class Code 06

0C PCICACHELS R Cache Line Size 00

0D PCILATTIM R/W Latency Timer 07

0E PCIHDTYPE R Header Type 00

0F PCIBIST R Built-In Self Test Control 00

10 PCIBAR0 R BAR 0 not used —

14 PCIPTM1BAR R/W PTM 1 BAR varies

18 PCIPTM2BAR R/W PTM 2 BAR varies

1C—2B reserved — not used or reserved —

2C PCISUBSYSID R/W PCI Subsystem ID 00F9

2E PCISUBSYSVENDID R/W PCI Subsystem Vendor ID 1014

30—3B reserved — reserved —

3C PCIINTLN R/W Interrupt Line 00

3D PCIINTPN R Interrupt Pin 00

3E PCIMINGNT R Minimum Grant 00

3F PCIMAXLTNCY R Maximum Latency 00

40 PCIBUSNUM R Bus Number 00

41 PCISUBBUSNUM R Subordinate Bus Number 00

42 PCIDSCCNT R Disconnect Counter 00

CPC700
Address (hex):

Register
Name:

Access
Mode:

Description:
(continued)
PmPPC User’s Manual 0002M634-065-2

PMC/PCI Interface: PCI Initialization
The PCI Configuration Address and Data registers at FEC0,000016 and FEC0,000416 allow
access to the CPC700 memory interface registers. To initiate an access, write the hex offset
value for the desired register to address FEC0,000016. The data for that register then may
be read from or written to the data register at FEC0,000416. See Monitor Sections “CPC700
Indirect Reads” on page 9-39 and “CPC700 Indirect Writes” on page 9-39. Note that
accesses should be non-line, non-burst PLB transactions of the correct size. Failure to
access all the bytes of a particular register or reading reserved bits will produce unpredict-
able results.

PCI INITIALIZATION

As a PCI bus master, the CPC700 can generate memory, I/O, configuration, interrupt
acknowledge, and special cycles. PCI memory cycles occur when the PCI interface detects a
cycle within a specific address range, as specified via the CPC700 PMM registers (see
Table 5-1). These registers also specify whether the PCI memory cycle is an offset from the
PLB address. The PMM registers must be initialized before attempting to generate PCI
memory cycles.

As a target on the PCI bus, the CPC700 can respond to memory cycles occurring in certain
address ranges, as specified by the BAR1 and BAR2 registers (see Table 5-2). The local CPU
must specify the size of the ranges and the resulting PLB address via the PTM registers,
which must be initialized before the CPC700 can respond as a PCI memory target.

47—44 PCIARBCNTL R/W PCI Arbiter Control 00000000

48 PCIERREN R/W Error Enable 6F

49 PCIERRSTS R/W Error Status 00

4B—4A PCIBRDGOPT1 R/W Bridge Options 1 FF60

4F—4C PCIPLBSES R/W PLB Slave Error Syndrom 00000000

53—50 PCIPLBSEAR0 R PLB Slave Error Address reg. 0 00000000

57—54 PCIPLBSEAR1 R PLB Slave Error Address reg. 1 00000000

58—5F reserved — reserved —

61—60 PCIBRDGOPT2 R/W Bridge Options 2 0111

CPC700
Address
(hex): Register Name:

Access
Mode:

Description:
(continued)

Hex
Default:
0002M634-06 PmPPC User’s Manual 5-3

PMC/PCI Interface: PCI Initialization
Figure 5-1: Example, PCI Address Map

Fig. 5-1 shows a typical PCI address map. In this example, the system memory resides from
0000,000016 to 0FFF,FFFF16 in the CPU/PLB address space. It is accessible in the same
address space as defined by PTM1/BAR1. The CPU/PLB master can access PCI memory
space in two places. 8000,000016 to 87FF,FFFF16 is mapped to the same address on the PCI
bus and is non-prefetchable. 8800,000016 to 8BFF,FFFF16 is translated to address range
9000,000016 to 93FF,FFFF16 of PCI memory space. Table 5-3 lists the register initialization
values for this example. Refer to the CPC700 User’s Manual (Table 1-3) for complete details
regarding PCI initialization.

Table 5-3: PCI Interface Register Summary

CPC700 Address (hex): Register Name: Description: Default (hex):
FF40,0000 PMM0LA PMM 0 Local Address 8000,0000

FF40,0004 PMM0MA PMM 0 Mask/Attribute F800,0001

FF40,0008 PMM0PCILA PMM 0 PCI Low Address 8000,0000

FF40,000C PMM0PCIHA PMM 0 PCI High Address 0000,0000

FF40,0010 PMM1LA PMM 1 Local Address 8800,0000

FF40,0014 PMM1MA PMM 1 Mask/Attribute FC00,0003

FF40,0018 PMM1PCILA PMM 1 PCI Low Address 9000,0000

FF40,001C PMM1PCIHA PMM 1 PCI High Address 0000,0000

�
�

��2��3

���
����

���
��2��3

4&5�

���	

���+

���	#���	

���6�'57&���
�����&�8�'�

��9����6�'57&���
�����&�8�'�

:�++;++++

::++;++++

:+++;++++

	+++;++++

<)++;++++

<+++;++++

::++;++++

:+++;++++

	+++;++++

+ +
PmPPC User’s Manual 0002M634-065-4

PMC/PCI Interface: PCI Interrupts
PCI INTERRUPTS

The PmPPC module can generate and receive interrupts using doorbell-type interrupts on
the INTA*, INTB*, INTC*, and INTD* lines from the P11 connector. A programmable logic
device (PLD) on the PmPPC board provides an 8-bit, read/write register, called the PMC
Interrupt Output register (PIOR), at location 7FF4,000416 for the interrupt lines.

Register 5-1: PMC Interrupt Output (PIOR)

Note: Technically, the PCI specification prohibits using the PMC Interrupt Output register to drive the INTA*—INTD*
lines. However, the PmPPC provides this capability for applications that do not require strict adherence to the
specification.

A host access from the PCI interface to this register allows the target PCI device to acknowl-
edge the interrupt by turning off the INTA* interrupt. The module’s PowerPC processor
also can use this register to determine if a pending interrupt has been serviced. Although
the interrupts are active low, the register values are active high. For example, a value of one
in the INTA field indicates that an interrupt is pending on INTA*. Also, writing a one to this
location asserts the INTA* interrupt.

MONARCH FUNCTIONALITY

The PmPPC can be configured to function as either a Monarch or non-Monarch module, as
described in the VITA 32 PrPMC draft specification. A Monarch is the main PrPMC device on
the local PCI bus. It performs enumeration on that bus after power-up and is often the inter-
rupt handler. A non-Monarch module does not perform enumeration on the local bus after
power-up. Bit 7 of Board Configuration register 1 (see page 2-7) at location 7FF4,000016
indicates how the module is configured (0=Monarch, 1=non-Monarch), as determined by
the signal on pin 64 of connector P12. The software can read the Monarch line status to
configure the board, and the hardware is unaffected.

Note: For a Monarch module, the EREADY signal must be monitored at bit 6 because bit 7 must be off before query-
ing its state (refer to page 5-5).

FF40,0030 PTM1MS PTM 1 Memory Size F000,0001

FF40,0034 PTM1LA PTM 1 Local Address 0000,0000

14 (offset) PCIPTM1BAR PTM 1 BAR 0000,0008

7 6 5 4 3 2 1 0

EREADY M66EN reserved INTD INTC INTB INTA

CPC700 Address (hex): Register Name: Description: Default (hex):
0002M634-06 PmPPC User’s Manual 5-5

PMC/PCI Interface: 66MHz Bus Operation
The PMC Interrupt Output register (see page 5-5) at location 7FF4,000416 has additional
bits to support Monarch functionality. EREADY bits 7 and 6, respectively, drive and monitor
the EREADY line. For a non-Monarch, it is presumed that this signal is initially asserted, then
removed when the bus is ready for enumeration. Once the CPC700 PCI bridge has been ini-
tialized by the on-card software, bit 7 can be driven low to tri-state the EREADY signal, indi-
cating that the PmPPC is ready. When all the other PCI devices have stopped driving this
signal low, the Monarch will enumerate the bus. See the draft PrPMC standard (in Table 1-3)
for carrier board pullup requirements.

66MHZ BUS OPERATION

In order for the PCI bus to operate at 66 MHz, all devices on the bus must be capable of that
speed. When the M66EN signal is high for a particular PCI device, it indicates that the device
can operate at 66 MHz. For 33 MHz modules, M66EN is grounded, so the signal will be high
only when all devices on the PCI bus are capable of operating at 66 MHz. The software can
read bit 5 of the PMC Interrupt Output register at location 7FF4,000416 (see page 5-5) to
determine the bus speed. If bit 5 is high, the bus speed is 66 MHz; if it is low, the bus speed
is 33 MHz. If any PCI device pulls the wire or M66EN signal low, then the bus speed will be 33
MHz for all of the devices. See the draft PrPMC standard (in Table 1-3) for carrier board pul-
lup requirements.

PCI ARBITRATION

In its standard configuration, the PmPPC module is not the system controller. The following
REQ* and GNT* options are available on specific hardware versions. A PmPPC with PLD ver-
sion 03 will reset the registers, whereas PLD version 04 will not.

The PmPPC can drive the REQ* output to request permission from the baseboard arbiter to
become a PCI bus master. The PmPPC also can monitor the GNT* bus grant input, as
described by the PMC standard. The IBM CPC700 has an optional internal arbiter (limited to
a maximum PCI bus speed of 33 MHz) that can handle six PCI request inputs. The REQ0*—
REQ5* and GNT0*—GNT5* signals for this arbiter route to PMC connector P14 for access by
the carrier board. See the draft PrPMC standard (in Table 1-3) for carrier board pullup
requirements.
PmPPC User’s Manual 0002M634-065-6

PMC/PCI Interface: PCI Reset
PCI RESET

Circuitry on the PmPPC resets the entire module if the voltages fall out of tolerance (due to
power-on reset) or if the optional on-board reset switch is activated. The IBM CPC700 con-
trol register settings are initialized immediately following this reset to configure the mod-
ule properly before allowing any external PCI accesses to occur. (The PCI RST* signal does
not affect these CPC700 register settings.)

The PmPPC module activates the RESET_OUT* signal on pin 60 of the P12 connector when
the voltages fall out of tolerance (due to power-on reset) or when the optional on-board
reset switch is activated. Writing to bit 12 of the CPC700 controller’s PCIBRDGOPT2 regis-
ter (see Table 5-2) also activates the RESET_OUT* signal. This is an optional, open-drain sig-
nal (see PrPMC draft standard, Table 1-3) that can be driven by either the processor PMC
module or the carrier board. The carrier may use this signal to generate a PCI RST* signal for
the processor PMC module.

When PCI RST* is asserted or the proper sequence is written to the Reset Control register
by an external host (see “Processor Reset” on page 3-1), the PmPPC module resets all the
on-board components, except the CPC700 bridge/controller (depending on the PLD ver-
sion).

PCI BUS CONTROL SIGNALS

The following signals for the PCI interface are available on connectors P11 or P12. Refer to
the PCI specification for details on using these signals. All signals are bi-directional unless
otherwise stated.

Note: A sustained tri-state line is driven high for one clock cycle before float.

AD00—AD31: ADDRESS and DATA bus (bits 0-31) three-state lines are used for both address and data
handling. A bus transaction consists of an address phase followed by one or more data
phases.

C/BE0*—C/BE3*: BUS COMMAND and BYTE ENABLE three-state lines have different functions depending on
the phase of a transaction. During the address phase of a transaction these lines define the
bus command. During a data phase the lines are used as byte enables.

CLK: CLOCK input signal to PMC modules provides timing for PCI transactions.

DEVSEL*: DEVICE SELECT sustained three-state signal indicates when a device on the bus has been
selected as the target of the current access.

EREADY: READY signal is an input for Monarch modules and an output for non-Monarch modules. It
indicates that all modules are initialized and the PCI bus is ready to be enumerated.
0002M634-06 PmPPC User’s Manual 5-7

PMC/PCI Interface: PCI Bus Control Signals
FRAME*: CYCLE FRAME sustained three-state line is driven by the current master to indicate the
beginning of an access, and continues to be asserted until the transaction reaches its final
data phase.

GNT*: GRANT input signal indicates that access to the bus has been granted to a particular mas-
ter. Each master has its own GNT*.

IDSEL: INITIALIZATION DEVICE SELECT input signal acts as a chip select during configuration read
and write transactions.

INTA*, INTB*, INTC*, INTD*:

PMC INTERRUPTS A, B, C, D bidirectional lines are used by the PMC module to interrupt the
baseboard, or vice versa.

IRDY*: INITIATOR READY sustained three-state signal indicates that the bus master is ready to
complete the data phase of the transaction.

M66EN: ENABLE 66MHZ when grounded, prevents 66 MHz operation of the PCI bus.

MONARCH*: MONARCH when grounded, it indicates that the PrPMC module is a Monarch and must pro-
vide PCI bus enumeration and interrupt handling.

PAR: PARITY is even parity across AD00-AD31 and C/BE0-C/BE3*. Parity generation is required
by all PCI agents. This three-state signal is stable and valid one clock after the address
phase, and one clock after the bus master indicates that it is ready to complete the data
phase (either IRDY* or TRDY* is asserted). Once PAR is asserted, it remains valid until one
clock after the completion of the current data phase.

PERR*: PARITY ERROR sustained three-state line is used to report parity errors during all PCI trans-
actions.

PRESENT*: PRESENT when grounded, indicates to a carrier that a PMC module is installed.

RESET_OUT*: RESET OUTPUT optional signal may be used to support a reset button or other reset source
on the PrPMC module. It is an open drain output from the PrPMC module that becomes an
input to the reset logic on the carrier card. To avoid reset loops, do not use RST* to gener-
ate RESET_OUT*.

Note: PmPPC with PLD version 03 will reset the bridge and drive RESET_OUT, PLD version 04 will not.

REQ64*: This optional output signal is used to tell a 64-bit PCI device whether to use the 64-bit or the
32-bit data width.

REQ*: REQUEST output pin indicates to the arbiter that a particular master wants to use the bus.

RST*: RESET assertion of this input line brings PCI registers, sequencers, and signals to a consis-
tent state. The carrier card generates this system reset signal as an input to all PrPMC mod-
ules.
PmPPC User’s Manual 0002M634-065-8

PMC/PCI Interface: PMC Connector Pinouts
SERR*: SYSTEMS ERROR open-collector output signal is used to report any system error with cata-
strophic results.

STOP*: STOP sustained three-state signal is used by the current target to request that the bus mas-
ter stop the current transaction.

TRDY*: TARGET READY sustained three-state signal indicates the target’s ability to complete the
current data phase of the transaction.

PMC CONNECTOR PINOUTS

P11 and P12 are the 32-bit PCI bus connectors. Each connector has 64 pins (Emerson item
number 01899011-00, Molex P/N 53508-0648; see figure on page 5-12).

Table 5-4: P11 Pin Assignments

Pin: Signal: Pin: Signal:
1 TCK 2 no connect

3 ground 4 INTA*

5 INTB* 6 INTC*

7 PRESENT* 8 +5 V

9 INTD* 10 no connect

11 ground 12 no connect

13 CLK 14 ground

15 ground 16 GNT*

17 REQ* 18 +5 V

19 V(I/O) 20 AD31

21 AD28 22 AD27

23 AD25 24 ground

25 ground 26 C/BE3*

27 AD22 28 AD21

29 AD19 30 +5 V

31 V(I/O) 32 AD17

33 FRAME* 34 ground

35 ground 36 IRDY*

37 DEVSEL* 38 +5 V

39 ground 40 no connect

41 no connect 42 no connect

43 PAR 44 ground

45 V(I/O) 46 AD15

47 AD12 48 AD11

49 AD9 50 +5 V

51 ground 52 C/BE0*
0002M634-06 PmPPC User’s Manual 5-9

PMC/PCI Interface: PMC Connector Pinouts
Table 5-5: P12 Pin Assignments

53 AD6 54 AD5

55 AD4 56 ground

57 V(I/O) 58 AD3

59 AD2 60 AD1

61 AD0 62 +5 V

63 ground 64 REQ64*

Pin: Signal: Pin: Signal:
1 no connect 2 TRST*

3 TMS 4 TDO

5 TDI 6 ground

7 ground 8 no connect

9 no connect 10 no connect

11 PUP (pull up) 12 no connect

13 RST* 14 PDN (pull down)

15 no connect 16 PDN (pull down)

17 PME* 18 ground

19 AD30 20 AD29

21 ground 22 AD26

23 AD24 24 no connect

25 IDSEL 26 AD23

27 no connect 28 AD20

29 AD18 30 ground

31 AD18 32 C/BE2*

33 ground 34 no connect

35 TRDY* 36 no connect

37 ground 38 STOP*

39 PERR* 40 ground

41 no connect 42 SERR*

43 C/BE1* 44 ground

45 M66EN 46 AD13

47 AD12 48 AD10

49 AD8 50 no connect

51 AD7 52 no connect

53 no connect 54 no connect

55 no connect 56 ground

57 no connect 58 EREADY

59 ground 60 RESETOUT*

Pin: Signal: Pin: Signal:
PmPPC User’s Manual 0002M634-065-10

PMC/PCI Interface: PMC Connector Pinouts
P14 routes the serial port and I2C signals to the backplane. It is a 64-pin connector (see fig-
ure on page 5-12). Optional, factory-installed jumpers allow for Motorola compatibility by
connecting the additional signals shown in the shaded table cells below.

Table 5-6: P14 Pin Assignments

61 no connect 62 no connect

63 ground 64 MONARCH*

Pin: Signal1: Pin: Signal:
1 I2C1 SDA 2 I2C1 SCL

3 Console TxData 4 Console RxData

5 Download TxData 6 Download RxData

7 no connect 8 ground

9 ground 10 no connect

11 no connect 12 no connect

13 TD_P (Ethernet) 14 TD_N (Ethernet)

15 RD_P (Ethernet) 16 RD_N (Ethernet)

17 no connect 18 no connect

19 no connect 20 no connect

21 no connect 22 no connect

23 no connect 24 ground

25 ground 26 no connect

27 no connect 28 no connect

29 no connect 30 no connect

31 no connect 32 no connect

33 no connect 34 no connect

35 no connect 36 no connect

37 no connect 38 no connect

39 +5V (with fuse) 40 no connect

41 ground 42 no connect

43 PMC REQ0* 44 PMC GNT0*

45 PMC REQ1* 46 PMC GNT1*

47 PMC REQ2* 48 PMC GNT2*

49 PMC REQ3* 50 PMC GNT3*

51 PMC REQ4* 52 PMC GNT4*

53 PMC REQ5* 54 PMC GNT5*

55 no connect 56 ground

57 ground 58 no connect

59 no connect 60 no connect

61 no connect 62 no connect

Pin: Signal: Pin: Signal:
0002M634-06 PmPPC User’s Manual 5-11

PMC/PCI Interface: PMC Connector Pinouts
Refer to the component map in Fig. 2-1 for the location and orientation of the PMC connec-
tors on the PmPPC circuit board.

Figure 5-2: PMC Connector

63 no connect 64 no connect

1. Shaded signal cells are “no connect” for the standard
(default) pin out.

Pin: Signal1: Pin: Signal:

�

�

��

��
PmPPC User’s Manual 0002M634-065-12

0002M634-06 PmPPC
Section 6
Ethernet

The PmPPC provides a local area network (LAN) interface using the CS8900A Crystal LAN™
ISA Ethernet Controller chip from Crystal Semiconductor. The CS8900A is a single-chip
solution that includes a full-duplex, 10BASE-T port with analog filters. Some additional fea-
tures include:

• IEEE 802.3 compliant

• On-chip RAM buffers

• Programmable transmit and receive features

• Serial EEPROM support

• LED drivers for link status and LAN activity

CS8900A CONFIGURATION

The CS8900A Ethernet controller has various configuration and status registers, as summa-
rized in Table 6-1. The CS8900A is optimized to operate in either memory mode or I/O mode
and does not use direct memory access. In memory mode, it allows internal memory to be
mapped anywhere within the CPC700 controller’s memory space. In I/O mode, it supports
indirect accesses through 16 locations.

The CS8900A automatically reloads its configuration from a direct connection to a 3-wire,
serial EEPROM located on the PmPPC circuit board. The EEPROM stores information such as
the MAC address and sets the CS8900A to operate in memory mode. During configuration
the software may select one of four active-high interrupt pins to be active on the CS8900A.
The Ethernet controller’s INTRQ0 line is configured as an interrupt output because it drives
the active-high ETH_INT line on the CPC700 (see Table 3-2 for interrupt assignments).

For complete details on specific registers and configuration values, consult the CS8900A
data sheet (see reference in Table 1-3).

Table 6-1: Ethernet Controller Memory Map

64-bit Offset
(hex):

CS8900A
Offset (hex):

Access
Mode: Description:

Defalt Reset
(hex):

7FE0,4000 000 R Product identification code 0E63,0007

7FE0,4010 004 — reserved —

7FE0,4080 020 R/W I/O base address 300

7FE0,4088 022 R/W Interrupt number xxx4

7FE0,4090 024 R/W DMA channel number xxx3

7FE0,4098 026 R DMA start of frame 0000

7FE0,40A0 028 R DMA frame count (12 bits) x000

7FE0,40A8 02A R RxDMA byte count 0000
 User’s Manual 6-1

Ethernet: CS8900A Configuration
Note: Since the CPC700 controller always tries to read a 64-bit quantity, the CS8900A is mapped as a 64-bit device
to eliminate inadvertent clearing of adjacent registers by the CPC700. The internal (PacketPage) offsets listed
in the CS8900A data sheet must be adjusted for 64-bit alignment.

In I/O mode, the CS8900A provides indirect access to the I/O ports. (See the CS8900A data
sheet for details on using and configuring this mode.) The control register at offset 2016
determines the base address (default=30016). When accessing a PacketPage register in I/O
mode, the I/O space offsets need to be shifted left by two bits, then logically OR’d with the
CS8900A base address. For example, the normal I/O base address is 7FE0,000016 + 30016.
This becomes 7FE0,000016 + C0016, or 7FE0,0C0016. To access the PacketPage Pointer
using this example, the address would be 7FE0,0C0016 + 2816, or 7FE0,0C2816. The follow-
ing table describes I/O memory locations for this mode:

7FE0,40B0 02C R/W Memory base address register (low word) xxx0,0000

7FE0,40B8 02E R/W Memory base address register (high word) xxx0,0000

7FE0,40C0 030 R/W Boot PROM base address xxx0,0000

7FE0,40D0 034 R/W Boot PROM address mask xxx0,0000

7FE0,40E0 038 — reserved —

7FE0,4100 040 R/W EEPROM command xxxx

7FE0,4108 042 R/W EEPROM data xxxx

7FE0,4110 044 — reserved —

7FE0,4140 050 R Received frame byte counter xxxx

7FE0,4148 052 — reserved —

7FE0,4400 100 R/W Configuration & control registers (2 bytes each) from ROM

7FE0,4480 120 R Status & event registers (2 bytes each) undefined

7FE0,4500 140 — reserved —

7FE0,4510 144 W TxCMD (transmit command) undefined

7FE0,4518 146 W TxLength (transmit length) undefined

7FE0,4520 148 — reserved —

7FE0,4540 150 R/W Logical address filter (hash table) 0

7FE0,4560 158 R/W Individual address from ROM

7FE0,4578 15E — reserved —

7FE0,5000 400 R RxStatus (receive status) undefined

7FE0,5008 402 R RxLength (receive length) undefined

7FE0,5010 404 R Receive frame location undefined

7FE0,6800 A00 W Transmit frame location undefined

64-bit Offset
(hex):

CS8900A
Offset (hex):

Access
Mode: Description: (continued)

Defalt Reset
(hex):
PmPPC User’s Manual 0002M634-066-2

Ethernet: Ethernet Address
Table 6-2: Ethernet I/O Locations (I/O mode)

In memory mode, the CS8900A supports Standard or Ready Bus cycles without introducing
additional wait states. For this mode, the offsets in memory space also need to be shifted
left by two bits. Additionally, you must enable and program the memory space before
using it. CS8900A memory space should start at 7FE0,400016 in the CPC700 address map.
For the address decode to work properly, program the value 0008,100016 into the Memory
Base Address register in PacketPage space. This can be accomplished by using I/O accesses
to PacketPage offsets 2C16 (least significant word) and 2E16 (most significant word). Once
this register is programmed and the MemoryE bit is set (BusCTL register, PacketPage offset
11616), memory mode will be enabled. The following table summarizes the memory mode
I/O locations for the PmPPC:

Table 6-3: Ethernet I/O Locations (memory mode)

For both I/O and memory modes, you should read from and write to the following location
in the 64-bit word: xxxx,xxxx,DDDD,xxxx where D=good data and x=unused data.

ETHERNET ADDRESS

The Ethernet address for your board is a unique identifier on a network and must not be
altered. The address consists of 48 bits divided into two equal parts. The upper 24 bits
define a unique identifier that has been assigned to Emerson Network Power, Embedded
Computing by IEEE. The lower 24 bits are defined by Emerson for identification of each of
our products.

64-bit Offset
(hex):

Access
Mode: Description:

0000 R/W Receive/Transmit Data (Port 0)

0010 R/W Receive/Transmit Data (Port 1)

0010 W TxCMD (Transmit Command)

0018 W TxLength (Transmit Length)

0040 R Interrupt Status Queue

0028 R/W PacketPage Pointer

0030 R/W PacketPage Data (Port 0)

0038 R/W PacketPage Data (Port 1)

64-bit Offset
(hex):

Access
Mode: Name: Description:

1000 R RxStatus Receive Status

0008 R RxLength Receive Length

1010 R RxFrame Receive Frame

2800 W TxFrame Transmit Frame
0002M634-06 PmPPC User’s Manual 6-3

Ethernet: Ethernet Port
The Ethernet address for the PmPPC is a binary number referenced as 12 hexadecimal digits
separated into pairs, with each pair representing eight bits. The address assigned to the
PmPPC has the following form:

00 80 F9 52 yy zz

00 80 F9 is Emerson’s identifier. 52 is the identifier for the PmPPC product group. The last
two pairs of hex numbers correspond to the following formula: n — 1000, where n is the
unique serial number assigned to each board. For example, if the serial number of a PmPPC
is 2867, the calculated value is 1867 (74B16). Therefore, the board’s Ethernet address is
00:80:F9:52:07:4B. The complete Ethernet address is stored at byte offset 2016 in the serial
ROM attached to the CS8900A.

ETHERNET PORT

The Crystal Semiconductor CS8900A supports 10 Mb/s communications for the Ethernet
port, which is available at the P1 RJ45 connector on the front panel. An optional configura-
tion provides Ethernet signals on pins 13—16 of the PMC connector at P14 (see Table 5-6).
The P1 pin assignments are given in the following table:

Table 6-4: Ethernet Pin Assignments, P1

Pin: Signal1:

1. The reserved pins are terminated as differential pairs and tied to
chassis ground via a resistor and capacitor (see schematics for
details).

Pin: Signal:
1 Tx+ 2 Tx-

3 Rx+ 4 reserved (RX_CT)

5 reserved (RX_CT) 6 Rx-

7 reserved (TX_CT) 8 reserved (TX_CT)

9 no connect 10 no connect

11 chassis ground 12 chassis ground
PmPPC User’s Manual 0002M634-066-4

0002M634-06 PmPPC
Section 7
Serial Input/Output

The PmPPC has two 16550-compatible serial ports internal to the IBM CPC700 Memory
Controller and PCI Bridge. These ports consist of serial data in and serial data out lines,
translated to EIA-232 levels by a Maxim transceiver. The serial ports are accessible via the
front panel 9-pin connector or the P14 PMC connector. However, you should not use both
connectors simultaneously for serial port signals. If the EIA-232 serial cable is removed or
the UART transmitters are inactive for more than 30 seconds, an automatic low-power
shutdown occurs in the transceiver. It wakes up again upon sensing a valid transition on the
input.

UART CONTROL

Table 7-1 summarizes the registers associated with the serial ports. Refer to the CPC700
Functional Specification for complete details on the UART configuration registers.

Table 7-1: UART Configuration Registers

CPC700
Address (hex): Name:

Access
Mode: Description:

FF60,0300 UART0RBR R UART 0 Receiver Buffer register, DLAB=0

UART0THR W UART 0 Transmitter Holding register, DLAB=0

UART0DLL R/W UART 0 Divisor Latch (LSB), DLAB=1

FF60,0401 UART1IER R/W UART 0 Interrupt Enable register, DLAB=0

UART1DLM R/W UART 0 Divisor Latch (MSB), DLAB=1

FF60,0402 UART1IIR R UART 0 Interrupt Identification register

UART1FCR W UART 0 FIFO Control register

FF60,0403 UART1LCR R/W UART 0 Line Control register

FF60,0404 UART1MCR R/W UART 0 Modem Control register

FF60,0405 UART1LSR R/W UART 0 Line Status register

FF60,0406 UART1MSSR R/W UART 0 Modem Status register

FF60,0407 UART1SCR R/W UART 0 Scratch register

FF60,0400 UART1RBR R UART 1 Receiver Buffer register, DLAB=0

UART1THR W UART 1 Transmitter Holding register, DLAB=0

UART1DLL R/W UART 1 Divisor Latch (LSB), DLAB=1

FF60,0401 UART1IER R/W UART 1 Interrupt Enable register, DLAB=0

UART1DLM R/W UART 1 Divisor Latch (MSB), DLAB=1

FF60,0402 UART1IIR R UART 1 Interrupt Identification register

UART1FCR W UART 1 FIFO Control register

FF60,0403 UART1LCR R/W UART 1 Line Control register

FF60,0404 UART1MCR R/W UART 1 Modem Control register

FF60,0405 UART1LSR R/W UART 1 Line Status register

FF60,0406 UART1MSSR R/W UART 1 Modem Status register
 User’s Manual 7-1

Serial Input/Output: Serial Port Registers
SERIAL PORT REGISTERS

This section describes configuration bits for the PmPPC serial port control registers. See
Table 7-1 for the appropriate hex addresses associated with each register. Note that both
UARTs have the same registers, except the locations are different. Complete details are
available in the CPC700 Functional Specification.

Interrupt Enable Register
The Interrupt Enable register (IER) enables specific interrupt sources for the serial ports. It is
possible to disable all of the CPC700 serial port interrupts using this register.

Register 7-1: CPC700 Serial Port Interrupt Enable (IER)

ELSI: Enable receiver Line Status Interrupt for error sources Overrun, parity, Framing, and Break
0 Disable
1 Enable

ETBEI: Enable Transmitter holding register Empty Interrupt
0 Disable
1 Enable

ERBFI: Enable Received data available interrupt
0 Disable
1 Enable

Interrupt Identification Register
The Interrupt Identification register (IIR) is a read-only register that allows the host CPU to
determine the priority and source of an interrupt on a serial port.

Register 7-2: CPC700 Serial Port Interrupt Identification (IIR)

FF60,0407 UART1SCR R/W UART 1 Scratch register

0 1 2 3 4 5 6 7

reserved ELSI ETBEI ERBFI

0 1 2 3 4 5 6 7

FIFO_EN reserved INT_ID PEND

CPC700
Address (hex): Name:

Access
Mode: Description: (continued)
PmPPC User’s Manual 0002M634-067-2

Serial Input/Output: Serial Port Registers
FIFO_EN[0:1]: Bits are set when FIFO control register bit [0] is equal to 1. Bits 2 and 3 are always zero in
non-FIFO mode.

INT_ID[4:6]: Interrupt priority Identification. Bit 4 is always zero in non-FIFO mode.
011 Receiver line status (highest priority)
010 Received data ready
110 Character time-out indication
001 Transmitter holding register empty (lowest priority)
000 Reserved

PEND: Interrupt priority Identification. Bit 4 is always zero in non-FIFO mode.
0 Pending
1 None pending

Line Control Register
The Line Control register (LCR) controls the format of the serial line.

Register 7-3: CPC700 Serial Port LIne Control (LCR)

DLAB: Divisor Latch Access Bit
0 Allow access to RBR, THR, and IER
1 Allow access to baud rate generator divisor latch

BREAK: Set Break control bit
0 Break is disabled
1 Force TXD to spacing or logic “0” until reset

STICK: Sticky parity bit
0 Sticky parity is disabled
1 With PEN enabled, parity bit is transmitted and detected by receiver in opposite state

from EPS bit

EPS: Even Parity Select—with PEN enabled
0 Odd parity
1 Even parity

PEN: Parity Enable
0 Disable
1 Enable

0 1 2 3 4 5 6 7

DLAB BREAK STICK EPS PEN STB WLS
0002M634-06 PmPPC User’s Manual 7-3

Serial Input/Output: Serial Port Registers
STB: Stop Bits
0 1 stop bit
1 1.5 stop bits for 5-bit words or 2 stop bits for 6- ,7- , and 8-bit words

WLS: Word length select bits
00 5 bits
01 6 bits
10 7 bits
11 8 bit

Line Status Register
The Line Status register (LSR) tracks the status of the serial line.

Register 7-4: CPC700 Serial Port LIne Status (LSR)

FIFO_ER: FIFO Error is always zero, except when in FIFO mode
0 Default
1 FIFO error (only when in FIFO mode)

TEMT: Transmitter Empty
0 THR or TSR contains a data character
1 THR and TSR are empty

THRE: Transmitter Holding Register Empty
0 Serial port not ready
1 Serial port ready for transmissionEPS

BI: Break Interrupt is reset when the CPU reads the LSRd
0 Reset to 0 when CPU reads LSR
1 Received data was held at logic “0” for longer than a full word transmission time

FE: Framing Error is reset when read
0 Reset to 0 when CPU reads LSR
1 Framing error detected (no stop bit)

PE: Parity Error is reset when read.
0 Reset to 0 when CPU reads LSR
1 Parity error detected

0 1 2 3 4 5 6 7

FIFO_ER TEMT THRE BI FE PE OE DR
PmPPC User’s Manual 0002M634-067-4

Serial Input/Output: Serial Port Registers
OE: Overrun Error
0 Reset to 0 when CPU reads LSR
1 Data in RBR was not read before being overwritten

DR: Data Ready
0 All data has been read in RBR or FIFO
1 An incoming character has been received and transferred into the RBR or FIFO

FIFO Control Register
The FIFO Control register (FCR) is a write-only register with the same address as the IIR. It is
used in FIFO control operations.

Register 7-5: CPC700 FIFO Control (FCR)

RCVR_TRIG: Receiver FIFO level Trigger level
00 1 byte
01 4 bytes
10 8 bytes
11 14 bytes

DMA: DMA mode select
0 If FIFOs are enabled, select DMA mode 0 for RXRDY and TXRDY outputs (single

transfer DMA)
1 If FIFOs are enabled, select DMA mode 1 for RXRDY and TXRDY outputs (multiple

transfer DMA)

XMIT: Transmitter FIFO reset
0 The 1 written to this position is self-clearing
1 Clear all bytes in transmitter FIFO and reset its counter logic to zero

RCVR_F: Receiver FIFO reset
0 The 1 written to this position is self-clearing
1 Clear all bytes in receiver FIFO and reset its counter logic to zero

FIFO: FIFO enable
0 Reset FIFOs
1 Receiver and transmitter FIFOs enabled

0 1 2 3 4 5 6 7

RCVR_TRIG reserved DMA XMIT RCVR_F FIFO
0002M634-06 PmPPC User’s Manual 7-5

Serial Input/Output: Programmable Baud Rate
PROGRAMMABLE BAUD RATE

The CPC700 has a programmable baud rate generator that is configured by the divisor latch
registers. The baud rate generator can divide the clock input by a number from 1 to 65535,
which is stored as a 16-bit binary value in the divisor latch registers. The resulting clock out-
put frequency is 16 times the baud rate. The divisor may be calculated as follows:

decimal divisor value = (OPB clock ÷ 4) ÷ (16 × baud rate)

For example, if the processor bus speed is 83.33 MHz, then the CPC700 on-chip peripheral
bus (OPB) clock is 41.66 MHz. For a baud rate of 9600 bits/second, you would calculate the
divisor as follows:

(41,666,666 ÷ 4) ÷ (16 × 9600) = 68 (rounded) = 4416

The table below lists divisor latch values for some of the more common baud rates when
the processor bus is running at 83 MHz.

Note: Rounding errors can preclude the use of some baud rates at certain clock frequencies.

Table 7-2: UART Divisor Values (83 MHz processor bus)

Note: The EIA-232C specification defines a maximum rate of 20,000 bits per second over a typical 50-foot cable
(2,500 picofarads maximum load capacitance). Higher baud rates are possible, but depend specifically upon
the application, cable length, and overall signal quality.

CONNECTORS AND CABLING

The IBM CPC700 provides two standard EIA-232 serial I/O ports. Both ports are available at
the PmPPC front panel P2 connector and at the PMC P14 connector. Table 7-3 below shows
the pinouts for the front panel connector and optional Y-cable assembly (item number
C0007568-00). See Table 5-6 for the P14 connector pinouts

Note: Do not use P2 and P14 simultaneously for the serial port signals.

Bit Rate
(bits/second):

Divisor Latch
(MSB) Hex Value:

Divisor Latch
(LSB) Hex Value:

1200 02 1F

2400 01 0F

4800 00 88

9600 00 44

19200 00 22

28800 00 17

38400 00 11

57600 00 0B
PmPPC User’s Manual 0002M634-067-6

Serial Input/Output: Connectors and Cabling
Table 7-3: Front Panel Serial POrt Pin Assignements

Figure 7-1: Front Panel Serial Port Connector, P2 (nano D)

Figure 7-2: Serial Port Cable Connector, A & B (DB9)

Caution: It is strongly recommended that the system provide a weight bearing attachment point to
the serial cable within three inches of the PmPPC front panel. Such a mechanism is needed
to provide an adequate strain relief for the serial I/O cable at the nano DB9 connector.

Figure 7-3: Y-Cable Assembly for Serial Port (C0007568-00)

P2 Pin (Nano D): Y-Cable Pin (DB9): Signal Names:
1 A1 chassis ground (connected to bezel)

2 A3 serial IN1 (console)

3 A5 signal ground

4 A2 serial OUT1 (console)

5 — no connect

6 B3 serial IN2 (download)

7 B5 signal ground

8 B2 serial OUT2 (download)

9 B1 chassis ground (connected to bezel)

��

��

��

��

!

��+�&

��+��
0002M634-06 PmPPC User’s Manual 7-7

Serial Input/Output: Connectors and Cabling
PmPPC User’s Manual 0002M634-067-8

0002M634-06 PmPPC
Section 8
Other CPC 700 Functions

The IBM CPC700 memory controller/bridge chip provides various interfaces for the Emer-
son PmPPC. These include a processor interface (Chapter 3), memory interface (Chapter 4),
PCI interface (Chapter 5), and serial I/O interface (Chapter 7). In addition, the CPC700 sup-
ports a processor local bus (PLB), an on-chip peripheral bus (OPB), a universal interrupt con-
troller, inter-integrated circuit (I2C) ports, and general purpose timers. This chapter
summarizes these additional functions and their corresponding registers. Refer to the
CPC700 Functional Specification for complete details.

BUS SUPPORT

The CPC700 can arbitrate up to four bus masters on the PowerPC processor local bus (PLB).
The following registers configure the PLB:

Table 8-1: PLB Macro Registers

The CPC700 on-chip peripheral bus (OPB) bridge allows a PLB bus master to control the
OPB, which operates at half the clock speed of the PLB. The following registers support the
PLB bridge:

Table 8-2: OPB Macro Registers

UNIVERSAL INTERRUPT CONTROLLER

The CPC700 has a programmable, universal interrupt controller (UIC) that can handle 29
interrupt sources, including external, timer, UART, I2C, PCI, and ECC interrupts. The follow-
ing registers configure the UIC:

Table 8-3: UIC Configuration Registers

CPC 700
Address (hex): Name:

Access
Mode: Description:

FF50,0850 PESRRD R PLB Error Status (read/clear)

FF50,0854 PESRWR W PLB Error Status (set)

FF50,085C PACR R/W PLB Arbiter Control

CPC 700
Address (hex): Name:

Access
Mode: Description:

FF50,0810 GESRRD R OPB Bridge Error Status (read/clear)

FF50,0814 GESRWR W OPB Bridge Error Status (set)

FF50,0818 GEAR R OPB Bridge Error Address

CPC 700
Address (hex): Name:

Access
Mode: Description:

FF50,0880 UICSR R/C UIC Status (read/clear)
 User’s Manual 8-1

Other CPC 700 Functions: IIC Ports
IIC PORTS

The CPC700 has two inter-integrated circuit (IIC or I2C) ports. For the PmPPC, port 0 (IIC0)
supports an on-board serial EEPROM, while port 1 (IIC1) is accessible to target applications
via PMC connector P14. The following table summarizes the I2C configuration registers:

Table 8-4: IIC Configuration Registers

FF50,0884 UICSRS R/S UIC Status (set)

FF50,0888 UICER R/W UIC Enable

FF50,088C UICCR R/W UIC Critical

FF50,0890 UICPR R/W UIC Polarity

FF50,0894 UICTR R/W UIC Trigger

FF50,0898 UICMSR R UIC Masked Status

FF50,089C UICVR R UIC Vector

FF50,08A0 UICVCR W UIC Vector Configuration

CPC 700
Address (hex): Name:

Access
Mode: Description:

FF62,0000 UICSR R/C UIC Status (read/clear)

FF62,0001 UICSRS R/S UIC Status (set)

FF62,0002 UICER R/W UIC Enable

FF62,0003 UICCR R/W UIC Critical

FF62,0004 UICPR R/W UIC Polarity

FF62,0005 UICTR R/W UIC Trigger

FF62,0006 IIC0MDBUF R/W IIC0 Master Data Buffer

FF62,0007 — — reserved

FF62,0008 IIC0SDBUF R/W IIC0 Slave Data Buffer

FF62,0009 — — reserved

FF62,000A IIC0LMADR R/W IIC0 Low Master Address

FF62,000B IIC0HMADR R/W IIC0 High Master Address

FF62,000C IIC0CNTL R/W IIC0 Control

FF62,000D IIC0MDCNTL R/W IIC0 Mode Control

FF62,000E IIC0STS R/W IIC0 Status

FF62,000F IIC0EXTSTS R/W IIC0 Extended Status

FF62,0010 IIC0LSADR R/W IIC0 Low Slave Address

FF63,0000 IIC0HSADR R/W IIC0 High Slave Address

FF63,0001 IIC0CLKDIV R/W IIC0 Clock Divide

FF63,0002 IIC0INTRMSK R/W IIC0 Interrupt Mask

FF63,0003 IIC0XFRCNT R/W IIC0 Transfer Count

CPC 700
Address (hex): Name:

Access
Mode: Description: (continued)
PmPPC User’s Manual 0002M634-068-2

Other CPC 700 Functions: General Purpose Timers
GENERAL PURPOSE TIMERS

The CPC700 has a 32-bit time-base counter, as well as five capture timers and five compare
timers. Memory-mapped registers provide direct control of the general purpose timer
functions.

Table 8-5: Gemeral Purpose Timer Registers

FF63,0004 IIC0XTCNTLSS R/W IIC0 Extended Control & Slave Status

FF63,0005 IIC0DIRECTCNTL R/W IIC0 Direct Control

FF63,0006 IIC1MDBUF R/W IIC1 Master Data Buffer

FF63,0007 — — reserved

FF63,0008 IIC1SDBUF R/W IIC1 Slave Data Buffer

FF63,0009 — — reserved

FF63,000A IIC1LMADR R/W IIC1 Low Master Address

FF63,000B IIC1HMADR R/W IIC1 High Master Address

FF63,000C IIC1CNTL R/W IIC1 Control

FF63,000D IIC1MDCNTL R/W IIC1 Mode Control

FF63,000E IIC1STS R/W IIC1 Status

FF63,000F IIC1EXTSTS R/W IIC1 Extended Status

FF63,0010 IIC1LSADR R/W IIC1 Low Slave Address

CPC 700
Address (hex): Name:

Access
Mode: Description:

FF65,0000 GPTTBC R/W GPT Time Base Counter

FF65,0004 GPTCE R/W Capture Timers Enable

FF65,0008 GPTEC R/W Capture Events Edge Detection Control

FF65,000C GPTSC R/W Capture Events Synchronization Control

FF65,0010-0014 — — reserved

FF65,0018 GPTIE R/W Timers Interrupt Enable

FF65,001C GPTIS R/W Timers Interrupt Status

FF65,0020 GPTIS R Timers Interrupt Status (clear upon read)

FF65,0024 GPTIM R/W Timers Interrupt Mask

FF65,0028-003C — — reserved

FF65,0040 GPTCAPT0 R Capture Timer 0

FF65,0044 GPTCAPT1 R Capture Timer 1

FF65,0048 GPTCAPT2 R Capture Timer 2

FF65,004C GPTCAPT3 R Capture Timer 3

FF65,0050 GPTCAPT4 R Capture Timer 4

FF65,0054-007C — — reserved

CPC 700
Address (hex): Name:

Access
Mode: Description: (continued)
0002M634-06 PmPPC User’s Manual 8-3

Other CPC 700 Functions: Miscellaneous Control
MISCELLANEOUS CONTROL

The following registers setup clocking, power management, and reset control (CPR) for the
CPC700.

Table 8-6: Gemeral Purpose Timer Registers

FF65,0080 GPTCOMP0 R/W Compare Timer 0

FF65,0084 GPTCOMP1 R/W Compare Timer 1

FF65,0088 GPTCOMP2 R/W Compare Timer 2

FF65,008C GPTCOMP3 R/W Compare Timer 3

FF65,0090 GPTCOMP4 R/W Compare Timer 4

FF65,0094-00BC — — reserved

FF65,00C0 GPTMASK0 R/W TBC Mask (Compare Timer 0)

FF65,00C4 GPTMASK1 R/W TBC Mask (Compare Timer 1)

FF65,00C8 GPTMASK2 R/W TBC Mask (Compare Timer 2)

FF65,00CC GPTMASK3 R/W TBC Mask (Compare Timer 3)

FF65,00D0 GPTMASK4 R/W TBC Mask (Compare Timer 4)

FF65,00D4-FC — — reserved

CPC 700
Address (hex): Name:

Access
Mode: Description:

FF50,0900 CPRPMCTRL R/W Peripheral Power Management Control

FF50,0904 CPRRESET R/W Peripheral Reset Control

FF50,0908 CPRCAPTEVNT R/W GPT Capture Event Generation

FF50,090C CPRPLLACCESS R/W PLL Configuration Access
(unlocks CPRPLLTUNE)

FF50,0910 CPRPLLTUNE R/W PLL Configuration (resets system upon write)

FF50,0914 CPRSTRAPREAD R Strapping Pin Status Read

CPC 700
Address (hex): Name:

Access
Mode: Description: (continued)
PmPPC User’s Manual 0002M634-068-4

0002M634-06 PmPPC
Section 9
Monitor

The PmPPC monitor consists of about 150 C language functions. The monitor commands
are a subset of these functions that provide easy-to-use tools for configuring the PmPPC at
power-up or reset, as well as for communications, downloads, and other common tasks.
This chapter describes the monitor’s features, basic operation, and configuration
sequences. This chapter also serves as a reference for the monitor commands and func-
tions.

MONITOR FEATURES

The PmPPC monitor has a command-line editor and can recall previous command lines.
This section describes these features, as well as the start-up display.

Start-Up Display
At power-up or after a reset, the monitor runs diagnostics and reports the results in the
start-up display. A failed memory test could indicate a hardware malfunction that should be
reported to our Test and Repair Services department, visit http://www.emersonembed-
dedcomputing.com/contact/productrepair.html on the internet or send email to service-
info@artesyn.com.

At power-up and reset, the monitor configures the board according to the contents of non-
volatile configuration memory. If the configuration indicates that an autoboot device has
been selected, the monitor attempts to load an operating system or application program
from the specified device. You can prevent the board from booting the operating system or
application if any of the power-up tests fail by setting the NVRAM configuration field Halt-
OnFailure (see Table 9-3 and “NVRAM Commands” on page 9-23).
 User’s Manual 9-1

http://www.emersonembeddedcomputing.com/contact/productrepair.html
http://www.emersonembeddedcomputing.com/contact/productrepair.html
http://www.emersonembeddedcomputing.com/contact/productrepair.html
mailto:serviceinfo@artesyn.com
mailto:serviceinfo@artesyn.com

Monitor: Monitor Features
Figure 9-1: Monitor Startup Display

History
The monitor maintains a history of up to 50 command lines for reuse. Press the <ESC> key
from the command line to access the history.

k or -: Move backward in the command history to access a previous command.

j or -: Move forward in the command history to access a subsequent command.

Command-Line Editor
The command-line editor uses typical UNIX® vi editing commands.

help editor: To access an on-line description of the editor, type help editor or h editor.

<ESC>: To exit Entry mode and start the editor, press <ESC>. You can use most common vi com-
mands, such as x, i, a, A, $, w, cw, dw, r, and e.

<cr>: To exit the editor and execute the current command, press Enter or Return.

: To discard an entire line and create a new command line, press at any time.

a or A: Append text on the command line.

i or I: Insert text on the command line.

x or X: Delete a single character.

r: Replace a single character.

��������	�
���
�����
���
������������
�����
��������
����������������������� ���!"#$�%
�&�'��(�)�*����� � +
���'������,�	��
������
������������������!))�$
�&�'��(����
��
� �+ ������������������!))�$
�!�������"������(�,�
�
��	�"�
����
������!))�$
�&���
���'�'��(���
�
��	���
�
��
��������!))�$
�&���
���'�'��(����
���������������������!))�$
�#������	�"))���
��������	���
��������
����-
����
�#����	����	�
�����
���������
���
����&&.���
�#����	����	�
���
/�������
�'��	���
��������	�
���
/���������
��������	�
�����
����������
�0��
����*��	�'�'��(��##�����������������!))�$

���1���.-�23,!&����
���������������������!))�$
�&�#45 �
/�#��������
��������������������!))�$
�)���������
������
����������������������!))�$
�)���������
�/����
����������������������!))�$
�#)�� !�$�
�����
�����������������������!))�$

#�-(��	�
�!�
��(����������	�����/ �
#���
��6�&���7�
���� �68968��/ +

��&:��#�;�&<�$���	�&���
��
��!�
��(����������	���
���������������������������������������3������
���
��
���
��
���
��
���
��

�&:��#=3������>
PmPPC User’s Manual 0002M634-069-2

Monitor: Monitor Features
w: Move the cursor to the next word.

c: Change—use additional commands with c to change words or groups of words, as shown
below.

cw or CW: Change a word after the cursor (capital W ignores punctuation).

ce or CE: Change text to the end of a word (capital E ignores punctuation).

cb or CB: Change the word before the cursor (capital B ignores punctuation).

c: Change text from the cursor to the end of the line.

d: Delete—use additional commands with d to delete words or groups of words, as shown
below.

dw or DW: Delete a word after the cursor (capital W ignores punctuation).

de or DE: Delete to the end of a word (capital E ignores punctuation).

db or DB: Delete the word before the cursor (capital B ignores punctuation).

d$: Delete text from the cursor to the end of the line.

PowerPC Debugger
The PowerPC debugger allows the operator to probe memory-mapped devices. It features
simple commands that execute without requiring a stack or memory. The debugger starts
automatically if the internal diagnostics discover an error. Also, the operator may force the
debugger to start by pressing the ‘d’ key before resetting the board. The debugger may be
called from the monitor command line by using the Debugger command (although the q
command is not functional in this case).

The following commands are available in the debugger:

? Display a list of available commands.

r [b l] address: Read a byte [b] or 32-bit long word [l] from an address.

w [b l] address data: Write a byte [b] or 32-bit long word [l] to an address.

d address : Display a 256-byte block of data beginning at address. After this command, additional
blocks may be displayed by pressing return.

f data address size: Fill a block of size bytes with the byte data starting at address.

t start end: Perform a memory test from the start address to the end address. This is a rotating bit test
on the block of memory. It writes 0x00000001 to the first 32-bit data value, 0x00000002 to
the second, 0x00000004 to the third, and so on, until all addresses are written. It then
reads the block of memory to verify that the data was written correctly. Next, it writes a sec-
ond pattern starting with data values 0x00000002, 0x00000004, etc. and verifies the data
0002M634-06 PmPPC User’s Manual 9-3

Monitor: Basic Operation
in the same way. In all, the test writes 32 patterns to the block of memory. If errors are
detected, only the first 18 are displayed. The pattern test repeats with a rotating zero this
time, rather than a one. And finally, the test writes a unique address value to every 32-bit
long word to check for address mirrors.

i [0 1]: Enable [1] or disable [0] the L1 instruction cache.

m : Attempt to initialize the stack and monitor data, and start the monitor without executing
the powerup/reset diagnostics.

BASIC OPERATION

The PmPPC monitor performs various configuration tasks upon power-up or reset. This sec-
tion describes the monitor operation as it relates to these specific tasks and the memory
initialization. The flowcharts beginning with Fig. 9-2 illustrate the power-up/reset sequence
(italic text in flowcharts indicate an NVRAM field).

Power-Up/Reset Sequence
At power-up or board reset, the monitor performs hardware initialization, diagnostic rou-
tines, autoboot procedures, free memory initialization, and if necessary, it invokes the
command-line editor.

If an unexpected interrupt occurs before the console port is available, the red LED flashes
twice, followed by a static “binary” display of the exception number on all four LEDs (where
the red LED represents the most-significant bit of the nibble). For example, if a DSI excep-
tion occurs (exception 3), the red LED would flash twice, followed by a static display of a
binary 0011 (top two LEDs off, bottom two LEDs on). The flash/display sequence repeats
indefinitely.

Power-up/reset sequence:

1 Initialize CPC700 Bank 2 parameters and turn off the four LEDs.

2 Read Board Configuration register 1 to determine if the monitor is booting from socketed
or soldered flash, and then initialize Bank 0 accordingly.

3 Write 001 to the yellow LEDs. Test the decrementer. If it is not functioning, the red LED
flashes three times while 001 remains displayed on the yellow LEDs. The power-up
sequence will continue after this error, although the monitor may not function properly.

4 Write 010 to the yellow LEDs. Perform an 8-bit register test on the UART 0 Scratchpad
register. If this test fails, the red LED flashes three times while 010 remains displayed on the
yellow LEDs. The power-up sequence will continue after this error, but the console port may
be unavailable.
PmPPC User’s Manual 0002M634-069-4

Monitor: Basic Operation
5 Write 011 to the yellow LEDs. Initialize the console port to the 9600 baud (default), 8 data
bits, 2 stop bits, and no parity. Print “Initializing…”.

6 Write 100 to the yellow LEDs. Perform a 32-bit register test on some internal CPC700
registers. If this test fails, the red LED flashes three times while 100 remains displayed on
the yellow LEDs. After the flashing sequence, display a message to the console port,
indicating the nature of the failure. (Note: the console port may not be accessible,
depending on the specific error.)

7 Write 101 to the yellow LEDs. Initialize the CPC700 Bank 4 parameters to permit access to
the SDRAM. This includes enabling read-modify-write mode, if ECC RAM is present on the
board (although ECC correction is not enabled until later).

8 Check the console port for a key press. If a “d” key is pressed, start the debugger. If an “s”
key is pressed, skip the diagnostics, nvopen, and configboard, and use the default NVRAM
fields. If no key is pressed, or if any other key is pressed, then read NVRAM fields to
determine if diagnostics should be executed and if ECC should be enabled.

9 Turn off the LED display and print the monitor version number.

10 Enable the L1 instruction cache.

11 If skipping the diagnostics and ECC is either not present or not enabled, go to step 19. If
skipping the diagnostics but ECC is enabled, go to step 18. Otherwise, continue on to
diagnostics.

12 Print a test number in hexadecimal. Print the memory size (read from Board Configuration
register 0).

13 Check timebase timer function. The counter/timer test flag (Table 9-1) reports failures. If an
error occurs, start the debugger.

14 Write and read locations 0004,000016 and 0004,000416 with the data pattern
0505,0A0A16 and its complement. The DRAM data test flag (Table 9-1) reports failures. If a
failure occurs, the monitor displays the failed address, followed by the incorrect and
expected data, and then starts the debugger.

15 Perform a rotating bit test on all address boundaries with ECC still disabled. Then, initialize
these address boundaries by writing each long word with its own address. The DRAM data
test flag (Table 9-1) reports failures. If a failure occurs, the monitor displays the failed
address, followed by the incorrect and expected data, and then starts the debugger.

16 If ECC RAM is installed and ECC is requested (by the NVRAM field), test the ability to detect
ECC errors. With ECC enabled, write a value to address 0004,000116. Then with ECC turned
off, modify the data, leaving the ECC code unchanged. Re-enable ECC and read the value. If
there is no ECC error, start the debugger.
0002M634-06 PmPPC User’s Manual 9-5

Monitor: Basic Operation
17 Perform a rotating bit test on the first 4000016 of memory required by the monitor. If a data
error occurs, start the debugger. If an ECC error occurs, the test displays the error and
continues the test with ECC disabled.

If ECC RAM is installed and ECC is requested, enable ECC checking. Then, initialize the lower
4000016 of memory by writing each long word with its own address. Verify the data writ-
ten. The DRAM data test flag (Table 9-1) reports failures. If a data error occurs, the monitor
displays the failed address, followed by the incorrect and expected data, and then starts the
debugger. If an ECC error occurs, the test displays the error and continues the test with ECC
disabled.

Note: Even when diagnostics are disabled, this test is performed if ECC is enabled in the NVRAM fields. To avoid
erasing memory after a reset, disable both the diagnostics and ECC in the NVRAM fields.

18 Initialize at system level to set up for running compiled C code. Enable machine checks in
the CPC700 and initialize BSS. Relocate the dynamic data section from ROM to its linked
address space starting at 0000,200016. Initialize the stack pointer to 0001,FFF816.

19 If an “s” key was not pressed on the serial port, load NVRAM data into memory and
configure board according to the NVRAM fields. If NVRAM is invalid or the monitor
detected a pressed key, load the default fields (see Table 9-3) into memory. In either case,
the actual NVRAM contents are not changed and may be edited with nvdisplay, followed by
nvupdate.

Finally, configure the serial port with the fields that were loaded into memory.

20 Initialize the RAM-based interrupt vector table. Change the interrupt prefix to point to the
RAM-based interrupt table at 0000,000016. Initialize the CPC700 error registers, interrupt
handler table, and timebase register.

Store the results of the diagnostics at an offset of 7816 in NVRAM. To read the PASS/FAIL
flags, do four byte reads from the NVRAM at 7816, 7916, 7A16, and 7B16. The byte at 7816
should contain the magic number A516 indicating that the device is functional and that
PASS/FAIL reporting is supported. The values for the long word when a failure occurs are
listed in Table 9-1.

Table 9-1: Power-up Diagnostic PASS/FAIL Flags

Device: Read on Failure (hex): Monitor Test Command:
Serial Ports A5000001 serialtest

Real Time Clock A5000004 —

Cache A5000010 cachetest

NVRAM A5000020 nvramtest

Ethernet Port A5000080 ethertest

DRAM ECC A5000200 —

DRAM Data A5000400 —
PmPPC User’s Manual 0002M634-069-6

Monitor: Basic Operation
21 Initialize the free memory pool.

22 Execute the configboard function if the “s” key was not pressed as follows: First, configure
the serial ports according to the NVRAM fields. Next, configure and enable the MMUs and
set up the L1/L2 caches, as determined by NVRAM. Then, if diagnostics are enabled in
NVRAM or if the board contains ECC RAM (and ECC is enabled in NVRAM), perform an
address mirror test on system memory above address 4000016. Next, set up and enable the
thermal protect interrupt. Finally, if DoPCIConfig is set in NVRAM and the board is
operating in Monarch mode, map the base addresses of PCI devices.

23 Initialize the CPC700 Bank 1 parameters to allow access to the entire StrataFlash in one
contiguous block, beginning at address 7000,000016. (If booting from StrataFlash, the last
eight megabytes of it also are visible at address FF80,000016.)

24 Initialize the CPC700 Bank 3 parameters to allow access to the Ethernet controller.

25 If the ResetDiags flag is set in NVRAM, execute and display the results of the following reset
diagnostics on the console: NVRAM, cache, serial ports, and Ethernet controller. The
NVRAM flag (Table 9-1) also reports any failures.

26 Branch execution to StartMonitor, which checks the boot device.

27 If a boot device (BootDev) is specified, begin the countdown to autoboot. After the
countdown, boot from the selected device. If boot device is “none”, or the user interrupts
the countdown by pressing “H”, or any diagnostic tests fail and the HaltOnFailure NVRAM
boot field is set, skip the autoboot and start the line editor.
0002M634-06 PmPPC User’s Manual 9-7

Monitor: Basic Operation
Figure 9-2: Monitor Startup Flowchart (1 of 4)

��
��0$$�����

A�*��
���B

C�C

����
���*�0
��
�A�*

�
��
�@�D
�D�<� %"�$

�
��
�����.�(�

���
�����6���
��1��
�

E
�
�����
��

�D2����

�

�
B

>��

���+'�*��

�

.�
��

�
��'�1

����

C"C

�

�
B>�����+'�*��

�

.�
��

�
��'�1

-��
��'�(��	�	���
6��&�5

���"�6��
"
	��$�1���1��
�

�

�
B

���+'�*��

�
�������

>��

��� '��-��

�%
���
	�%��

��

��

�

�
B ���+'�*��

�
�������

�

�
B ���+'�*��

�
�������

>��

��

>��

��

.&�+����1���
�%�

�		
-��
�''�"B

>��

�		���� '�"B

>��

.�
��		��'�1

��������	�

0$$
0�

.
�

����'���
�� �11�

.�
�������1���'�1

��

��

.�
��'�1
.&�+	��$�16��
"

����""
����6���"�
*����

-��
��'�(��	�	���
6��&��

E
�
������
�
>�''�!�����)))

��%
����
�
����

E
�
������
�
>�''�!�����)))
:��������

E
�
������
�
>�''�!�����)))
-��
)�:���

E
�
������
�
>�''�!�����)))
���
�	�	���
��1��
�
�

E
�
������
�
>�''�!�����)))
-��
)�	�	���

6��&�2�7.����9

��
��0$$��''�����

E
�
������
�
>�''�!�����

��
��0$$��''�����

��� '��-��

�%
���
	�%��

��
PmPPC User’s Manual 0002M634-069-8

Monitor: Basic Operation
Figure 9-3: Monitor Startup Flowchart (2 of 4)

-��
��'�(����
�
.�%
���

��
�
��D2����
��
�
��1�6�
����

����
�
�����
*
��

�
����

�

�
B �

�

�*+�B

��
�

�		

���+'�*��

�

.�
��

�
��'�1

���� '���		
�

�
���+�

��1	��
��������

�

�
B
�

�

�*+�B ��
�

�		

���+'�*��

�

.�
��

�
��'�1

���� '���		
�

�
���+�

��1	��
��������

-��
��'�(��.
�%&

.
�

�	�	�"�

?���
�
���		
�

�
����

�

�
B >�� ���+'�*��

�

��

>��

��

>��

��

��� '��-��

�%
���
	�%��

�""
����6���"�
*
���

�

�
B >�� ���+'�*��

�

.�
��

�
��'�1

��

>��

.&�+����1���
�%�

�		��'�1
.�
B

�		��'�1
.�
B

��

��

>��

��
�
����'���
�� �11�

�D�
����'���
�� �11�

�
���E
�
�����
��
��D2����

���,���		
���� '�"
0002M634-06 PmPPC User’s Manual 9-9

Monitor: Basic Operation
Figure 9-4: Monitor Startup Flowchart (3 of 4)

.
�

�	�	�"�

	�+*���%
�
��� '�

����!�����
*

-��
��'�(����%�'
	�	�����	-
��1��
�
�

.&�+��,0+���
���1���
�%�����"
������"�
��$
	��$�16��
"

���"������
$��'"����
�
����
*

������ �F�0�B

��� '��
����5
%�%��

���,���5�	�%��
���� '�"

���������

.
�

�	�����"
�"�
�

��

>��

>��

���� '��-��

�%
���
	�%��

��

���,��-��

�%
���
	�%������ '�"

	��$�1.�
��,�

-�
.&�+	��$�16��
"

.�
B

-�������
,�'�"B

:���"�$��'
������
$��'"�

>��

��

��

>��

	��$�1�
��	����'�

��������$��'"�

-�
.&�+	��$�16��
"

.�
B
>��

	��$�1	�%���

��

	��$�16��
"

�5�-��
�''�"B 	��$�1�
���5
	�%��������1>��

��

	��$�1�
����: %��$�1G���

�		
��� '�"B

���� '���		
�

�
���+�

��1

�		
-��
�''�"B

������1�
�'�1�.�
B

��

>��

>��
-��
��'�(������
*
E�
����%���""
���

��"���
�$*

	��
����
	��$�16��
"

���������� >�� ��� '����
�
	�%��

���,����
��	�%��
���� '�"

��

����

>��
PmPPC User’s Manual 0002M634-069-10

Monitor: Basic Operation
Figure 9-5: Monitor Startup Flowchart 4 of 4)

������1�
�'�1�.�
B

��������5
	�%����:����
;�	.�<���

���
�

	��%&� ��

"�,�%�

	'��
�����
*
� �,�����6���

A�*��
����"B

.
�

�	���
"�!�

	�+*����.�(�
 *
���$
��
������� �
�

����������

�D�%�
���

����������

���"�'��1=!�
"
,�'����
 �������

-��'��1�!�
"��

��%�����

�%
���B

���	�"����
���0�

.
�

�%�����"
�"�
�

�D�%�
���

�������

"��� '�G"%�%�� "��� '�G"%�%��

>��

��

C�C����
���*
0
��
�A�*

�0�

>��

��

������������� ��'��
�
��

�'���

������
�������
��

�D�%�
���

�������

"��� '�G"%�%��

��'��

���0�

%��$�1G+%�

	��$�1�
�����
��'
����1����
�:��

����� ������
��� '�"B >��

��

	��$�1�
���	-
6�����""
�����

��� '���D
�
��'
-�
�

�+
�

����
%��;
�� �
���!�	B

��

>��

	��$�16��
" 7%��
����"9
0002M634-06 PmPPC User’s Manual 9-11

Monitor: Monitor Command Reference
Initializing Memory
The monitor uses the area between 0000,000016 and 0003,000016 for stack and uninitial-
ized-data space.

Caution: Any writes to that area can cause unpredictable operation of the monitor.

The monitor initializes the on-board memory by writing each long word with its own
address to prevent subsequent ECC errors. If the NVRAM field ClrMemOnReset is set, the
monitor will then clear the memory pool. It is left up to the programmer to initialize any
other accessible memory areas, such as off-card or module memory.

MONITOR COMMAND REFERENCE

This section describes the syntax and typographic conventions for the PmPPC monitor
commands. Subsequent sections in this chapter describe the individual commands, which
fall into the following categories: boot, memory, flash, NVRAM, test, remote host, arith-
metic, and other commands.

Note: The PmPPC monitor performs argument checking for commands, but not for functions. (See page 9-38 for
function reference.)

Command Syntax
Each command may be typed with the shortest number of characters that uniquely identify
the command. For example, you can type nvd instead of nvdisplay. (There is no distinction
between uppercase and lowercase.) Note, however, that abbreviated command names
cannot be used with on-line help; you must type help and the full command name. Press
Enter or Return (carriage return <cr>) to execute a command.

• The command line accepts three argument formats: string, numeric, and symbolic.
Arguments to commands must be separated by spaces.

• Monitor commands that expect numeric arguments assume a default base for each
argument. However, the base can be altered or specified by entering a colon (:) followed
by the base. Several examples are provided below.

hexadecimal: 1234ABCD:16

decimal: 123456789:10

octal: 1234567:8

binary: 101010:2

• The default numeric base for functions is hexadecimal. Some commands use a different
default base.

!

PmPPC User’s Manual 0002M634-069-12

Monitor: Boot Commands
• String arguments must start and end with double quotation marks (“). For example,
typing the argument “Foo” would result in a string argument with the value Foo, which
is passed to the command.

• A character argument is a single character that begins and ends with a single quotation
mark (‘). The argument ‘A’ would result in the character A being passed to the
command.

• A flag argument is a single character that begins with a hyphen (-). For example, the flag
arguments -b, -w, or -l could be used for a byte, word, or long flag.

There is a symbol entry for every function and command defined in the monitor. Each com-
mand must begin with a symbol. Commands are type-checked and argument-validated,
but functions are not checked in any way.

Commands that are not symbolic are assumed to be numeric, and the hexadecimal, deci-
mal, octal, and binary value of the number is printed.

Typographic Conventions
Text formatted in Courier indicates a command example or a direct value that you
enter. Square brackets [] enclose optional arguments, and angled brackets < > enclose
required arguments. Italic type indicates an environment variable or a field that requires
input.

BOOT COMMANDS

The boot commands provide facilities for booting application programs from various
devices. They disable the data cache before calling the application.

bootbus
The bootbus is an autoboot device that allows you to boot an application program over a
bus interface. This command is used for fast downloads to reduce development time.

Definition: void BootBus (void)

bootbus the LoadAddress field from the nonvolatile memory definitions group ‘Boot-
Params’ (see Table 9-3) as the base address of a shared memory communications structure,
described below:

struct BusComStruct
{

unsigned long MagicLoc;
unsigned long CallAddress;

};
0002M634-06 PmPPC User’s Manual 9-13

Monitor: Boot Commands
The structure consists of two unsigned long locations. The first is used for synchronization,
and the second is the entry address of the application.

The sequence of events used for loading an application is described in the following steps:

1 The host board waits for the target (this board) to write the value 0x496d4f6b (character
string “ImOk”) to “MagicLoc” to show that the target is initialized and waiting for a
download.

2 The host board downloads the application to the target board, writes the start address to
“CallAddress,” and then writes 0x596f4f6b (character string “YoOk”) to “MagicLoc” to
show that the application is ready for the target.

3 Target writes value 0x42796521 (character string “Bye!”) to “MagicLoc” to show that the
application was found. The target then calls the application at “CallAddress.”

4 When the application is called, four fields are passed to the application from the nonvolatile
memory boot configuration section. The fields are seen by the application as shown below:

Application(unsigned char Device,

 unsigned char Number,

 unsigned long RomSize,

 unsigned long RomBase)

These fields allow multiple boards using the same facility to receive configuration informa-
tion from the monitor.

Also refer to the function BootUp in the “Booting”, Section .

booteprom
booteprom is an autoboot device that allows you to boot an application program from
EPROM. It starts execution of the application at RomBase, read from the non-volatile mem-
ory group ‘BootParams.’

Definition: void BootEPROM(void)

In order for the monitor to jump to the start of the program, the first long word of the
EPROM image must contain a branch link (bl) instruction of the form
0100,10xx,xxxx,xxxx,xxxx,xxxx,xxxx,xx012.

You can avoid jumping to an EPROM, even if a valid one is present, by changing the nonvol-
atile configuration field BootDev to something other than EPROM.

Also refer to the function BootUp in the “Booting”, Section .
PmPPC User’s Manual 0002M634-069-14

Monitor: Boot Commands
bootrom
bootrom is an autoboot device that allows you to boot an application program from ROM.
It copies code from ROM into RAM and then jumps to the RAM address. The ROM source
address RomBase, the RAM destination address LoadAddress, and the number of bytes to
copy RomSize are read from the nonvolatile memory group ‘BootParams.’

Definition: void BootROM(void)

When the application is called, two fields are passed to the application from the nonvolatile
memory group ‘BootParams.’ The fields are seen by the application as shown below:

Application(unsigned char Device,
 unsigned char Number)

There are no arguments for this command. The nonvolatile configuration is modified with
the NVRAM commands nvdisplay and nvupdate.

Also refer to the function BootUp in the “Booting”, Section .

bootflash
bootflash is an autoboot device that allows you to boot an application program from the
on-board flash.

If the CopyToLoadAdr field is true, the RomSize (number of bytes to copy) of the application
code is copied from the RomBase (flash source address) to the LoadAddress (RAM destina-
tion address). The application is called at LoadAddress.

If the CopyToLoadAdr field is false, then the application code is called at RomBase.

Definition: void BootFlash(void)

When the application is called, two fields are passed to the application from the nonvolatile
memory group ‘BootParams.’ The fields are seen by the application as shown below:

Application(unsigned char Device,
 unsigned char Number)

There are no arguments for this command. The nonvolatile configuration is modified with
the NVRAM commands nvdisplay and nvupdate.

Also refer to the function BootUp in the “Booting”, Section .

bootserial
bootserial is an autoboot device that allows you to boot an application program from a
serial port.

Definition: void BootSerial(void)
0002M634-06 PmPPC User’s Manual 9-15

Monitor: Boot Commands
It determines the format of the download and the entry execution address of the down-
loaded application from the LoadAddress and DevType fields in the nonvolatile memory
group ‘BootParams.’ The DevType field selects one of the download formats specified in
Table 9-2:

Table 9-2: Device Download Formats

The nonvolatile configuration is modified with the NVRAM commands nvdisplay and nvup-
date.

When the application is called, three fields are passed to the application from the nonvola-
tile memory boot configuration section. The fields are seen by the application as shown
below:

Application(unsigned char Number,
 unsigned long RomSize,
 unsigned lone RomBase)

These fields allow multiple boards using the same facility to receive different configuration
information from the monitor.

Also refer to the function BootUp in the “Booting”, Section .

boottftp
boottftp is an autoboot device that allows you to transfer an application to RAM using the
TFTP functions, then boot the application.

Definition: void BootTFTP(void)

boottftp uses the fields BoardIPAddr, HostIPAddr, GatewayIPAddr, and GatewayMask, as
defined in the nonvolatile memory group ‘Network,’ to set up a connection with the appli-
cation’s host. (The application should be in appropriate binary format.) Also, boottftp uses
FileName and LoadAddress in the memory group ‘BootParams’ to determine which applica-
tion to retrieve, as well as where to load it.

After the successful TFTP transfer to memory, the application is called and receives three
prameters from the nonvolatile memory group ‘BootParams’ as follows:

Application(unsigned char Number,

 unsigned long RomSize,

 unsigned long RomBase)

Device Type: Download Format:
MOT_EXORMAT 1 Motorola Exormax Format (S0-S3,S7-S9 Records)

HK_BINARY 2 Emerson Binary Format
PmPPC User’s Manual 0002M634-069-16

Monitor: Memory Commands
These fields allow multiple boards using the same facility to receive different configuration
information from the monitor.

Also refer to the function BootUp in the “Booting”, Section .

bootverify
bootverify is an autoboot device that allows you to validate a boot image and boot from a
backup image, if necessary.

Definition: void BootVerify(void)

This command is set using the BootDev field from the ‘BootParams’ group in the nonvolatile
memory. If performs the following sequence to boot code:

1 Compute the checksum for the image found in flash at the address pointed to by
PRIMARY_ADDRESS_OFFSET (0x400 in NVRAM) and compare the result to the checksum at
PRIMARY_CHKSUM_OFFSET (0x40C in NVRAM).

2 If the checksum comparison shows that the image is good, branch directly to the address at
PRIMARY_ADDRESS_OFFSET. However, if the CopyToLoadAddr field in the nonvolatile
memory group ‘BootParams’ is TRUE, copy the image to the address pointed to by the
LoadAddress field, and then branch to that address.

3 If the checksum comparison fails, compute a checksum for the image found in flash at the
address pointed to by SECONDARY_ADDRESS_OFFSET and compare the result to the
checksum at SECONDARY_CHKSUM_OFFSET.

4 If the secondary checksum passes, branch directly to the address at
SECONDARY_ADDRESS_OFFSET. However, if the CopyToLoadAddr field in the nonvolatile
memory group ‘BootParams’ is TRUE, copy the image to the address pointed to by the
LoadAddress field, and then branch to that address.

5 If the secondary checksum does not pass, display an error message on the screen and drop
control to the Monitor prompt.

MEMORY COMMANDS

The memory commands provide facilities for manipulating specific regions of the memory.
For some memory commands, the data size is determined by the following flags:

-b: The flag .b is for data in 8-bit bytes.

-w: The flag .w is for data in 16-bit words.

-l: The flag .l is for data in 32-bit long words.
0002M634-06 PmPPC User’s Manual 9-17

Monitor: Memory Commands
These flags are optional arguments and describe the objects on which the command oper-
ates. If you do not specify a flag, memory commands default to 32-bit long words. Numeric
arguments are in hexadecimal.

checksummem
checksummem source bytecount reads bytecount bytes starting at address source and com-
putes the checksum for that region of memory. The checksum is the 16-bit sum of the
bytes in the memory block.

Definition: int CheckSumMem(unsigned char *Addr,
 unsigned long ByteCount)

clearmem
clearmem destination bytecount clears bytecount bytes starting at address destination.

Definition: int ClearMem(unsigned char *Dest,
 unsigned long ByteCount)

cmpmem
cmpmem source destination bytecount compares bytecount bytes at the source address with
those at the destination address. Any differences are displayed.

Definition: int CmpMem(char *Src,
 char *Dest,
 int ByteCount)

copymem
copymem source destination bytecount copies bytecount bytes from the source address to
the destination address.

Definition: int CopyMem(unsigned char *Src,
 unsigned char *Dest,
 unsigned long ByteCount)

displaymem
displaymem startaddr lines displays memory in 16-byte lines starting at address startaddr.
The number of lines displayed is determined by lines. If the lines argument is not specified,
sixteen lines of memory are shown. The data is displayed as hex character values on the left
and printable ASCII equivalents on the right. Unprintable ASCII characters appear as a dot.

Press any key to interrupt the display. If the previous command was displaymem, pressing
<cr> displays the next block of memory.
PmPPC User’s Manual 0002M634-069-18

Monitor: Memory Commands
Definition: int DisplayMem(unsigned long Address,
 unsigned long Lines)

fillmem
fillmem -[b,w,l] value startaddr endaddr fills memory with value starting at address star-
taddr to address endaddr.

For example, to fill the second megabyte of memory with the data 0x12345678 type:

fill -l 12345678 100000 200000

Definition: int FillMem(char Flag, unsigned long Value,
 unsigned long StartAddr,
 unsigned long EndAddr)

findmem
findmem -[b,w,l] searchval startaddr endaddr searches memory for a value from address
startaddr to address endaddr for memory locations specified by the data searchval. When
enabled with a ‘1’, the optional invflag parameter causes the command to return locations
that do not match searchval, providing the same functionality as findnotmem (described
below).

Definition: int FindMem(char Flag,
 unsigned long SearchVal,
 unsigned long StartAddr,
 unsigned long EndAddr,
 unsigned long InvFlag)

findnotmem
findnotmem -[b,w,l] searchval startaddr endaddr searches from address startaddr to
address endaddr for memory locations that are different from the data specified by search-
val.

Definition: int FindNotMem(char Flag,
 unsigned long SearchVal,
 unsigned long StartAddr,
 unsigned long EndAddr)

findstr
findstr searchstr startaddr endaddr searches from address startaddr to address endaddr for a
string matching the data string searchstr.

Definition: int FindStr(char *SearchStr,
 unsigned long StartAddr,
0002M634-06 PmPPC User’s Manual 9-19

Monitor: Memory Commands
 unsigned long EndAddr)

readmem
readmem -[b,w,l] address reads a memory location specified by address. This command
displays the data in hexadecimal, decimal, octal, and binary format.

Definition: int ReadMem(char Flag,
 unsigned long Address)

setmem
setmem -[b,w,l] address allows memory locations to be modified starting at address. set-
mem first displays the value that was read. Then you can type new data for the value or
leave the data unchanged by entering an empty line. If you press <cr> after the data, the
address counts up. If you press <ESC> after the data, the address counts down. To quit this
command type any illegal hex character.

Definition: int SetMem(int Flag,
 unsigned long Address)

swapmem
swapmem source destination bytecount swaps bytecount bytes at the source address with
those at the destination address.

Definition: int SwapMem(char *Src,
 char *Dest,
 int ByteCount)

testmem
testmem startaddr endaddr performs a nondestructive memory test from startaddr to
endaddr. If endaddr is zero, the address range is obtained from the functions MemBase and
MemTop. The memory test can be interrupted by pressing any character.

This command can be used to verify memory (DRAM). It prints the progress of the test and
summarizes the number of passes and failures.

Also refer to the functions MemBase and MemTop on page 9-48.

Definition: int TestMem(unsigned long Base,
 unsigned long Top)
PmPPC User’s Manual 0002M634-069-20

Monitor: Flash Commands
um
um -[b,w,l] base_addr top_addr performs a destructive memory test from base_addr to
top_addr. This is done by first clearing all memory in the range specified, doing a rotating
bit test at each location, and finally filling each data location with its own address. If
top_addr is zero, the address range is obtained from the functions MemBase and MemTop.

This command prints the progress of the test and summarizes the number of passes and
failures. The memory test can be interrupted at the start of the next pass by pressing any
character.

Also refer to the functions MemBase and MemTop on page 9-48.

Definition: int UM(char flag,
 unsigned long l_limit,
 unsigned long u_limit)

writemem
writemem -[b,w,l] address value writes value to a memory location specified by address.

Definition: int WriteMem(char Flag,
 unsigned long Address,
 unsigned long Value)

writestr
writestr “string” address writes the ASCII string specified by string to a memory location
specified by address. The string must be enclosed in double quotes (“ “).

Definition: int WriteStr(char *Str,
 unsigned long Address)

FLASH COMMANDS

The flash commands affect the StrataFlash™ devices on the PmPPC circuit board. They
return zero upon successful completion of the operation, or non-zero upon failure.

The flash commands protect the monitor code after it is copied into the flash memory. If
jumper JP1 is not installed, attempts to write above FFF0,000016 return an error. (The mon-
itor resides in this area.) If jumper JP1 is installed, the monitor code still can be installed in
flash and addressed at one megabyte below the top of flash (base address 7000,000016).

Note: The location for the top of flash memory will vary according to the flash device size and configuration.
0002M634-06 PmPPC User’s Manual 9-21

Monitor: Flash Commands
flashblkwr
flashblkwr source destination bytecount writes bytecount from the source address to the des-
tination address (flash memory). flashblkwr calls flasheraseblk to erase the block(s) it will
write to. In the event of a write or erase error, the flash is returned to read array mode.

Definition: int FlashBlkWr(unsigned char *Src,
 unsigned char *Dest,
 int ByteCnt)

flashclrstat
flashclrstat destination resets the status register of the flash memory that contains the desti-
nation address.

Definition: void FlashClrStat(unsigned char *FlashAddr)

flasheraseblk
flasheraseblk destination erases a block of flash memory that contains the destination
address. The block size varies, depending upon its location within the flash.

Definition: int FlashEraseBlk(unsigned char *FlashAddr)

flashsocketerase
flashsocketerase erases the memory on the socketed flash device. It is not necessary to
pass an address to this command.

Definition: int FlashSocketErase(void)

flashsocketblkwr
flashsocketblkwr source destination bytecount writes bytecount from the source address to
the destination address (socketed flash memory). flashsocketblkwr calls flashsocketerase to
erase the socketed memory before writing. Any data already in the device will be lost.

Definition: int FlashSocketBlkWr(unsigned char *Src,

unsigned char *Dest,

int ByteCnt)

rewritemonitor
rewritemonitor overwrites the monitor software in the on-board soldered flash device with
a new monitor image. It asks you for a source address and the size of the new monitor
image. Once invoked, the function gives you two opportunities to exit without modifying
the on-board flash.
PmPPC User’s Manual 0002M634-069-22

Monitor: NVRAM Commands
Caution: This function cannot recover from a failed write to the flash device. If a failure does occur, it
cannot print an error and the monitor may no longer be able to boot the board. To recover,
you would have to rewrite the monitor from a socketed flash device using the flashblkwr
function.

Definition: int ReWriteMonitor(void)

NVRAM COMMANDS

The monitor uses on-board NVRAM for nonvolatile memory. A memory map is given in the
“Physical Memory Map”, Section , earlier in this manual. Portions of this nonvolatile mem-
ory are reserved for factory configuration/identification information and for the monitor.

The nonvolatile memory support commands deal only with the monitor- and Emerson-
defined sections of the nonvolatile memory. The monitor-defined sections are readable
and writable and can be modified by the monitor.

Caution: When clearing NVRAM, interrupt may be held for 2 μS.

nvdisplay
nvdisplay is used to display the Emerson-defined and monitor-defined nonvolatile sec-
tions. The nonvolatile memory configuration information is used to completely configure
the PmPPC at reset. The utility command configboard can also be used to reconfigure the
board after modifications to the nonvolatile memory.

Definition: void NVDisplay(void)

The configuration values are displayed in groups. Each group has a number of fields. Each
field is displayed as a hexadecimal or decimal number, or as a list of legal values.

To display the next group, press <space> or <cr>.

To edit fields within the displayed group, press E.

To quit the display, press <ESC> or Q.

To save the changes, type the command nvupdate.

To quit without saving the changes, type the command nvopen.

Table 9-3 shows all the groups and fields you can edit with the nvdisplay command.

Table 9-3: NVRAM Configuration Groups

Group: Field: Purpose:
Emerson
Default: Optional Values:

Console

Port Select communications port A (Console) (A, B)

!

!

0002M634-06 PmPPC User’s Manual 9-23

Monitor: NVRAM Commands
Baud Select baud rate 9600 (1200, 2400, 4800, 9600,
19200, 38400, 56000,
128000 bps)

Parity Select parity type None (Even, Odd, None, Force)

Data Select the number of data bits for
transfer

8-Bits (5-Bits, 6-Bits, 7-Bits,
8-Bits)

StopBits Select the number of stop bits for
transfer

1-Bit (1-Bit, 2-Bits)

Download

Port Select communications port B
(Download)

(A, B)

Baud Select baud rate 9600 (1200, 2400, 4800, 9600,
19200, 38400, 56000,
128000 bps)

Parity Select parity type None (Even, Odd, None, Force)

Data Select the number of data bits for
transfer

8-Bits (5-Bits, 6-Bits, 7-Bits,
8-Bits)

StopBits Select the number of stop bits for
transfer

1-Bit (1-Bit, 2-Bits)

Cache

InstrCache Turn instruction cache on or off On (On, Off)

DataCache Turn data cache on or off On (On, Off)

CacheMode Select the cache mode Copyback (Writethru, Copyback)

L2State Enable or disable L2 Cache On (On, Off)

Misc

ClrMemOnReset Clear memory on reset False (True, False)

ResetDiags Run diagnostics on reset Off (On, Off)

ECCCorrection Request memory ECC
(no effect if ECC is not installed)

On (On, Off)

ThermProtect Put CPU in sleep mode when its
temperature exceeds 100° C

Off (On, Off)

CountValue Choose shortest (0) to longest (7)
duration for autoboot countdown

1 (0, 1, 2, 3, 4, 5, 6, 7)

DoPCIConfig Configure module
(Monarch boards only)

True (True, False)

Network

BoardIPAddr IP address of board 0.0.0.0 x.x.x.x; where 0 ≤ x ≤ 255

HostIPAddr IP address of host 0.0.0.0 x.x.x.x; where 0 ≤ x ≤ 255

GatewayIPAddr IP address of gateway 0.0.0.0 x.x.x.x; where 0 ≤ x ≤ 255

GatewayMask Gateway mask 0.0.0.0 x.x.x.x; where 0 ≤ x ≤ 255

Group: Field: Purpose:
Emerson
Default: Optional Values:
PmPPC User’s Manual 0002M634-069-24

Monitor: NVRAM Commands
Example:

1 At the monitor prompt, type:

PmPPC{Ver 1.0] => nvdisplay

2 Press <cr> until the group you want to modify is displayed. An example for the group
“Console” is shown below.

Group ‘Console’

PortA(A, B)

Baud9600

ParityNone(Even, Odd, None, Force)

Data8-bits(5-Bits, 6-Bits, 7-Bits, 8-Bits)

StopBits2-bits(1-Bit, 2-Bits)

[SP, CR to continue] or [E, e to Edit]

3 Press E to edit the group.

4 Press <cr> until the field you want to change is displayed.

5 Type a new value. For most fields, legal options are displayed in parentheses.

6 Press <ESC> or Q to quit the display.

DoEtherInit Initialize network interface upon
boot

False (True, False)

BootParams

BootDev Select boot device EPROM (None, Serial, ROM, Bus,
Stos, EPROM)

LoadAddress Define load address 0x40000 See User Manual

RomBase Define ROM base 0x7ff80000 Used only when BootDev is
defined as ROM or EPROM

RomSize Define ROM size 0x80000 Used only when BootDev is
defined as ROM

DevType Define device type 0 Depends on the application

DevNumber Define device number 0 Depends on the application

FileName Define file name and path null See boottftp function

ClrMemOnBoot Clear memory on boot False (True, False)

HaltOnFailure Halt if a failure occurs True (True, False)

CopyToLoadAd
dr

Copies from RomBase to LoadAddr
(Boot flash only)

False (True, False)

HardwareConfig, Manufacturing, Service

Reserved for use by Emerson Network Power, Embedded Computing manufacturing.

Group: Field: Purpose:
Emerson
Default: Optional Values:
0002M634-06 PmPPC User’s Manual 9-25

Monitor: NVRAM Commands
7 Type nvupdate to save the new value or nvopen to cancel the change by reading the old
value.

nvinit
nvinit sernum “revlev” ecolev writes is used to initialize the nonvolatile memory to the
default state defined by the monitor. First nvinit clears the memory and then writes the
Emerson and monitor data back to memory. It also saves the changes in NVRAM.

Caution: nvinit clears any values you have changed from the default. Use nvinit only if the
nonvolatile configuration data structures might be in an unknown state and you must
return them to a known state.

sernum serial number

revlev revision level

ecolev standard ECO level

writes the number of writes to nonvolatile memory

Definition: void NVInit(int SerNum,
 char *RevLev,
 int ECOLev,
 int Writes)

nvopen
nvopen reads and checks the monitor and Emerson-defined sections. If the nonvolatile
sections are not valid, an error message is displayed.

Definition: int NVOpen(void)

nvset
nvset group field value is used to modify the Emerson-defined and monitor-defined nonvol-
atile sections. To modify the list with the nvset command, you must specify the group and
field to be modified and the new value. The group, field, and value can be abbreviated, as in
the following examples:

nvset console port A

nvset con dat 6

!

PmPPC User’s Manual 0002M634-069-26

Monitor: NVRAM Commands
The nonvolatile memory support commands provide the interface to the nonvolatile mem-
ory. The nonvolatile commands deal only with the monitor- and Emerson-defined sections
of the nonvolatile memory. The monitor-defined sections of nonvolatile memory are read-
able and writable and can be modified by the monitor. The Emerson-defined section of
nonvolatile memory is also readable and writable, but should not be modified.

Definition: void NVSet(char *GroupName,
 char *FieldName,
 char *Value)

nvupdate
nvupdate attempts to write the Emerson- and monitor-defined nonvolatile sections back
to the NVRAM device. First the data is verified, and then it is written to the device. The write
is verified and all errors are reported.

Definition: void NVUpdate(void)

Default Boot Device Configuration Example
The default boot device is defined in the nonvolatile memory group ‘BootParams,’ in the
field BootDev. When the PmPPC is reset or powered up, the monitor checks this field and
attempts to boot from the specified device.

Currently, the monitor supports Serial, ROM, Bus, EPROM, flash, Stos, and TFTP as standard.
If you edit the BootDev field and define a device that is unsupported on your board, the
monitor will display the message:

Unknown boot device

Defining BootDev as: “Serial” calls bootserial, “ROM” calls bootrom, “Bus” calls bootbus,
“EPROM” calls booteprom, “flash” calls bootflash, “Stos” calls stos_boot, and “TFTP” calls
boottftp. See the “Boot Commands”, Section for details on these commands.

Example: In this example, nvdisplay and nvupdate are used to change the default boot device from
the bus to the ROM. The changes are made to the ‘BootParams’ group.

Note: The fields in the ‘BootParams’ group have different meanings for each device. For example, “DevType” values
are not used for Bus devices, but are used by Serial devices to select the format for downloading.

1 At the monitor prompt, type:

PmPPC{Ver 1.0] => nvdisplay

2 Press <cr> until the ‘BootParams’ group is displayed.

Group ‘BootParams’

BootDevBus(None,Serial,ROM,Bus,EPROM,Flash,Stos,TFTP)

LoadAddress0x40000
0002M634-06 PmPPC User’s Manual 9-27

Monitor: NVRAM Commands
ROMBase0x7ff80000

ROMSize0x80000

DevType1

DevNumber0

ClrMemOnBootFalse(False, True)

[SP, CR to continue] or [E, e to Edit]

3 Press E to edit the group.

4 Press <cr> until the BootDev field is displayed.

5 Type the new value “ROM.”

6 Press <cr> to display the LoadAddress field.

7 Type the address where execution begins.

8 Press <cr> to display the ROMBase field.

9 Type the ROM base address.

10 Press <cr> to display the ROMSize field.

11 Type the ROM size.

12 Press <ESC> or Q to quit the display.

13 Type nvupdate to save the new values.

Example: In this example, nvdisplay and nvupdate are used to change the default boot device from
the bus to the serial port. The changes are made to the ‘BootParams’ group.

1 At the monitor prompt, type:

PmPPC{Ver 1.0] => nvdisplay

2 Press <cr> until the ‘BootParams’ group is displayed.

3 Press E to edit the group.

4 Press <cr> until the DevType field is displayed.

5 Type the new value “Serial.”

6 Press <cr> until the DevType field is displayed.

7 Type the new value for DevType; for example, 2 selects downloads in Emerson binary
format.

8 Edit any other fields you want to modify. Whether you use the DevType and DevNumber
fields depends on the application.

9 Press <ESC> or Q to quit the display.
PmPPC User’s Manual 0002M634-069-28

Monitor: Test Commands
10 Type nvupdate to save the new values.

Download Port Configuration Example
In this example, the NVRAM command nvdisplay changes fields in the ‘Download’ group,
which contains fields for port selection, baud rate, parity, number of data bits, and number
of stop bits:

1 At the monitor prompt, type:

PmPPC{Ver 1.0] => nvdisplay

2 Press <cr> until the ‘Download’ group is displayed.

3 Press E to edit the group.

4 Press <cr> until the Baud field is displayed.

5 Type a new value.

6 Change other fields in the same way.

7 <cr> over all fields whether you edit them or not, until the monitor prompt reappears.

8 Type nvupdate to save the new value.

Note: A cable reverser might be necessary for the connection.

TEST COMMANDS

The following on-card functional tests are available to be run any time you desire. The non-
volatile configuration memory can be used to enable or disable the execution of these tests
on power-up and reset (see the nvdisplay monitor command’s Misc group in Table 9-3).

The results of the tests are stored at an offset of 0x78 in NVRAM. To read the PASS/FAIL
flags, do four byte reads from the ROM at 0x78, 0x79, 0x7A, and 0x7B. The byte at 0x78
should contain the magic number 0xA5 indicating that the device is functional and that
PASS/FAIL reporting is supported. The values for the long word when a failure occurs are
listed in Table 9-4.

Table 9-4: Test Command PASS/FAIL Flags

Test: Value Red on Failure (hex): Monitor Command:
Console Serial Port A5000001 serialtest

Cache A5000010 cachetest

NVRAM A5000020 nvramtest

Ethernet Port A5000080 ethertest
0002M634-06 PmPPC User’s Manual 9-29

Monitor: Remote Host Commands
ethertest
ethertest checks all the logic necessary to interface the Ethernet controller as follows:

• Performs a data line test to ensure that all data line connectivity is intact.

• Verifies that data can be transferred successfully with the CS8900A in loopback mode.

Definition: void ethertest(void)

serialtest
serialtest verifies that data can be transmitted and received by the console and download
ports. This test operates in internal loopback mode and simultaneously tests serial inter-
rupts.

Definition: void serialtest(void)

nvramtest
nvramtest performs a non-destructive write test at offset 7FF16 in NVRAM. The NVRAM test
command pass/fail flag (Table 9-4) reports any errors.

Definition: void nvramtest(void)

cachetest
cachetest verifies the connectivity of address and data lines to the CPU’s backside L2 cache.
During the test, modified blocks are not cast out to system memory and instructions are
not cached.

The test fills the L2 cache with a one-megabyte block of addresses, then performs a rotat-
ing bit and address mirror test on all addresses in the test block. After invalidating the con-
tents of the cache, it tests the L2 address tags stored on the PPC750 processor. For unique
tag entries, it writes and verifies a series of rotating-one addresses, rotating-zero addresses,
and alternating one and zero addresses. The L2 synchronous RAM parity is disabled during
the test, and the test restores the L2 cache to the original state when it is finished.

Definition: int cachetest(void)

REMOTE HOST COMMANDS

The monitor commands download and call are used for downloading applications and data
in S-record or binary format and then running the application.

S-record is a common format for representing binary object code as ASCII for reliable and
manageable file downloads. It sends data in blocks called records, which are ASCII strings.
Records may be separated by any ASCII characters except for the start-of-record “S” charac-
PmPPC User’s Manual 0002M634-069-30

Monitor: Remote Host Commands
ters. In practice, records are usually separated by a convenient number of carriage returns,
linefeeds, or nulls to separate the records in a file and make them easily distinguishable by
humans.

All records contain fields for the length of the record, the data in the record, and some kind
of checksum. Some records also contain an address field. Most software requires the hexa-
decimal characters that make up a record to be in uppercase only.

download
download -[b,m] address provides a serial download from a host computer to the board.
download uses binary or Motorola S-record format, as specified by the following flags:

-b: binary (address not used)

-m: Motorola S-record (load address in memory = address + record address)

If no flag is specified, the default format is binary

Refer to “Download Port Configuration Example”, Section for an example of how to config-
ure the download port using NVRAM commands. The “Binary Download Format”, Section
and “Motorola S-Record Download Format”, Section describe the download formats in
detail.

Definition: int DownLoad(char Flag,
 unsigned long Address)

call
call address arg0 arg1 arg2 arg3 arg4 arg5 arg6 arg7 allows execution of a program after a
download from one of the board’s interfaces. This command allows up to eight arguments
to be passed to the called address from the command line. Arguments can be symbolic,
numeric, characters, flags, or strings. The default numeric base is hexadecimal. The func-
tion disables and flushes the data cache before branching to the application.

If the application wants to return to the monitor, it should save and restore the processor
registers. Also, it is important that special-purpose registers remain unchanged.

Note: The code at vector table locations 30016, 110016, and 120016 must remain intact, unless you wish to disable
or reconfigure the data MMU for other user-defined purposes.

Definition: int Call(int (*Funct) (),
 unsigned long Arg0,
 unsigned long Arg1...)

Binary Download Format
The binary download format consists of two parts:
0002M634-06 PmPPC User’s Manual 9-31

Monitor: Remote Host Commands
• Magic number (which is 0x12345670) + number of sections

• Information for each section including: the load address (unsigned long), the section
size (unsigned long), a checksum (unsigned long) that is the long-word sum of the
memory bytes of the data section.

If you download from a UNIX host in binary format, be sure to disable the host from map-
ping carriage return <cr> to carriage return line feed <cr-lf>. The download port is specified
in the nonvolatile memory configuration.

Motorola S-Record Download Format
S-records are named for the ASCII character “S,” which is used for the first character in each
record. After the “S” character is another character that indicates the record type. Valid
types are 0, 1, 2, 3, 5, 7, 8, and 9. After the type character is a sequence of characters that
represent the length of the record, and possibly the address. The rest of the record is filled
out with data and a checksum.

The checksum is the one’s complement of the 8-bit sum of the binary representation of all
elements of the record except the S and the record type character. In other words, if you
sum all the bytes of a record except for the S and the character immediately following it
with the checksum itself, you should get FF16 for a proper record.

User-Defined (S0)

S0nnd1d2d3...dncs

S0indicates the record type.

nnis the count of data and checksum bytes.

d1...dnare the data bytes.

csis the checksum.

S0 records are optional, and can contain any user-defined data.

Example: S008763330627567736D

In this example, the length of the field is 8, and the data characters are the ASCII represen-
tation of “v30bugs.” The checksum is 6D16.

Data Records (S1, S2, S3)

S1nnaaaad1d2d3...dncs

S2nnaaaaaad1d2d3...dncs

S3nnaaaaaaaad1d2d3...dncs

S1 indicates the record type.
PmPPC User’s Manual 0002M634-069-32

Monitor: Remote Host Commands
nn is the count of address, data, and checksum bytes.

a...a is a 4-, 6-, or 8-digit address field.

d1...dn are the data bytes.

cs is the checksum.

These are data records. They differ only in that S1-records have 16-bit addresses, S2-
records have 24-bit addresses, and S3-records have 32-bit addresses.

Examples: S10801A00030FFDC95B6

In this example, the bytes 0016, 3016, FF16, DC16, and 9516 are loaded into memory starting
at address 01A016.

S30B30000000FFFF5555AAAAD3

In this example, the bytes FF16, FF16, 5516, 5516, AA16, and AA16 are loaded into memory
starting at address 3000,000016. Note that this address requires an S3-record because the
address is too big to fit into the address range of an S1-record or S2-record.

Data Count Records (S5)

S5nnd1d2d3...dncs

S5 indicates the record type.

nn is the count of data and checksum bytes.

d1...dn are the data bytes.

cs is the checksum.

S5-records are optional. When they are used, there can be only one per file. If an S5-record
is included, it is a count of the S1-, S2-, and S3-records in the file. Other types of records are
not counted in the S5-record.

Example: S5030343B6

In this example, the number of bytes is 3, the checksum is B616, and the count of the S1-
records, S2-records, and S3-records in the file is 34316.

Termination and Start Address Records (S7, S8, S9)

S705aaaaaaaacs

S804aaaaaacs

S903aaaacs

S7, S8, or S9 indicates the record type.
0002M634-06 PmPPC User’s Manual 9-33

Monitor: Remote Host Commands
05, 04, 03 is the count of address digits and cs field.

a...a is a 4-, 6-, or 8-digit address field.

cs is the checksum.

These are trailing records. There can be only one trailing record per file, and it must be the
last record in the output file. Included in the data for this record is the initial start address
for the downloaded code.

Examples: S903003CC0

In this example, the start address is 3C16.

S8048000007B

In this example, the start address is 80000016.

Example: Complete S-record File

S0097A65726F6A756D707A

S10F000000001000000000084EFAFFFE93

S5030001FB

S9030008F4

Here is a line-by-line explanation of the example file:

S0097A65726F6A756D707A contains the ASCII representation of the string “zerojump.”

S10F000000001000000000084EFAFFFE93 loads the following data to the following addresses:

byte 0016 to address 0016

byte 0016 to address 0116

byte 1016 to address 0216

byte 0016 to address 0316

byte 0016 to address 0416

byte 0016 to address 0516

byte 0016 to address 0616

byte 0816 to address 0716

byte 4E16 to address 0816

byte FA16 to address 0916

byte FF16 to address 0A16

byte FE16 to address 0B16

S5030001FB indicates that only one S1-record, S2-record, or S3-record was sent.

S9030008F4 indicates that the start address is 0000000816.
PmPPC User’s Manual 0002M634-069-34

Monitor: Arithmetic Commands
ARITHMETIC COMMANDS

The commands in this group allow for basic arithmetic functions to be performed at the
command line.

add
add number1 number2 adds two integers in hexadecimal, binary, octal, or decimal (default).

The default numeric base is decimal. Specify hexadecimal by typing “:16” at the end of the
value, octal by typing “:8” or binary by typing “:2.” The result of the operation is displayed
in hex, decimal, octal, and binary.

Definition: int Add(unsigned long Arg1,
 unsigned long Arg2)

div
div number1 number2 divides two integers in hexadecimal, binary, octal, or decimal
(default). number1 is divided by number2. The command also checks the operation to avoid
dividing by zero.

The default numeric base is decimal. Specify hex by typing “:16” at the end of the value,
octal by typing “:8” or binary by typing “:2.” The result of the operation is displayed in hex,
decimal, octal, and binary.

Definition: int Div(unsigned long Arg1,
 unsigned long Arg2)

mul
mul number1 number2 multiplies two integers in hexadecimal, binary, octal, or decimal
(default) from the monitor.

The default numeric base is decimal. Specify hex by typing “:16” at the end of the value,
octal by typing “:8” or binary by typing “:2.” The result of the operation is displayed in hex,
decimal, octal, and binary.

Definition: int Mul(unsigned long Arg1,
 unsigned long Arg2)

rand
rand is a linear congruent random number generator that uses a function Seed and a field
Value. The random number returned is an unsigned long.

Definition: unsigned long Rand(void)
0002M634-06 PmPPC User’s Manual 9-35

Monitor: Other Commands
sub
sub number1 number2 subtracts two integers in hexadecimal, binary, octal, or decimal
(default). number2 is subtracted from number1.

The default numeric base is decimal. Specify hexadecimal by typing “:16” at the end of the
value, octal by typing “:8” or binary by typing “:2.” The result of the operation is displayed
in hex, decimal, octal, and binary.

Definition: int Sub(unsigned long Arg1,
 unsigned long Arg2)

OTHER COMMANDS

These commands provide basic configuration and help facilities.

configboard
configboard configures the board to the state specified by the nonvolatile memory config-
uration. This includes the serial port, processor caches, and PCI (Monarch boards only).

configboard can be used to reconfigure the board’s various interfaces after modification of
the nonvolatile memory configuration (using nvdisplay or nvset). This command accepts
no parameters.

Definition: void ConfigBoard(void)

enumerate_pci (Monarch only)
enumerate_pci determines if any PMC modules or PCI devices are present and, if so, uses
software polling to determine their type. The memory and I/O spaces of any installed mod-
ules are mapped to default locations–only the base addresses of the PCI devices are initial-
ized. Subsequently, you can use the pci_show command to display the PCI devices and
their base addresses on the screen.

Definition: void enumerate_pci(void)

pci_show
After the PCI bus has been enumerated, pci_show displays the PCI devices and their base
addresses on the screen.

The following is an example of the output:

VEND DEV REV LOCALE INUM BASE0 BASE1 BASE2 BASE3 BASE4 BASE5

---- ---- --- ------- ---- -------- -------- -------- -------- -------- -------

1223 000e 01 00,00,0 00 80000000 84000000

Definition: void pci_show(void)
PmPPC User’s Manual 0002M634-069-36

Monitor: Command Errors and Screen Messages
ethernetaddr
ethernetaddr returns the Ethernet address of the board in hexadecimal. For a description of
the Ethernet address, refer to the “Ethernet Address”, Section .

Definition: void EthernetAddr(void)

getboardconfig
getboardconfig displays the contents of the board configuration register that specifies the
memory, L2 cache, and other configuration information. The following is an example of the
output:

Board Configuration Register = 0x6891

--

Boot DeviceSoldered (Wide) Flash

SDRAM size64 MB

ECC MemoryInstalled

Local Bus Speed83 MHz

L2 CacheInstalled (w/ Parity)

Module ModeNon-monarch

EthernetInstalled

Real-time ClockDS17485 (4K NVRAM)

Soldered (Wide) Flash64 MB (64 bits wide)

Definition: void GetBoardConfig(void)

help
help name allows you to view the description of the monitor command specified by name.
The full name of the command must be given.

For instructions on editing command lines, type help editor.

For a list of command-line functions, type help functions.

For a detailed memory map, type help memmap.

Definition: int Help(char *Name)

COMMAND ERRORS AND SCREEN MESSAGES

Most commands return an explanatory message for misspelled or mistyped commands,
missing arguments, or invalid values. Table 9-5 lists errors that can be attributed to other
causes, especially errors that indicate a problem in the nonvolatile memory configuration.
0002M634-06 PmPPC User’s Manual 9-37

Monitor: Monitor Function Reference
Table 9-5: Error and Screen Messages

MONITOR FUNCTION REFERENCE

The PmPPC monitor functions fall into two groups: PmPPC-specific and standard Emerson
monitor functions. For convenience, related functions are combined in groups under a sin-
gle name. If you cannot find a particular function, refer to the index for the appropriate
page number.

Note: Unlike the monitor commands, no argument checking takes place for functions that are called directly from
the command line.

The functions require spaces between the function name and its arguments. No parenthe-
ses or other punctuation is necessary.

Examples: PmPPC{Ver 1.0] => getMSR

PmPPC{Ver 1.0] => ConnectHandler f8 1000

PMPPC-SPECIFIC FUNCTIONS

This section describes functions which are specific to the PmPPC monitor implementation.

Message: Source and Suggested Solution:
Error while clearing NV memory

Error while reading NV memory

Error while storing NV memory

NV memory has become corrupted. Use the nvinit command
to restore defaults. If the problem persists, contact Technical
Support1.

1. Visit http://www.emersonembeddedcomputing.com/contact/customersupport.html

Hit ‘H’ to skip auto-boot... Consult the introduction to this chapter for information about
power-up conditions.

Power-up Test FAILED A failed test could mean a hardware malfunction. Report the
error to Test and Repair Services1.

Unknown boot device. The boot device is invalid. Use nvdisplay to check and edit the
‘BootParams’ group, BootDev field. Save a new value with
nvupd

Unexpected _____ Exception at

There are many possible sources for this error.

If the error is displayed during boot, it could mean that
autoboot is enabled and invalid fields are being used.

If the error is displayed at reset or power-up and autoboot is
not enabled, report the error to Technical Support1.

If the error is displayed after a command has been executed,
an attempt to perform an operation that causes an exception
has probably been made.

Warning NV memory is invalid -
using defaults

Consult the introduction to this chapter for information about
reset conditions.
PmPPC User’s Manual 0002M634-069-38

Monitor: PmPPC-Specific Functions
CPC700 Indirect Reads

Synopsis: unsigned long read_pif_cpc700(unsigned long offset);

unsigned long read_memctrl_cpc700(unsigned long offset);

Description: These read functions permit access to the indirect register sets of the CPC700 Processor
Interface and Memory Controller sections. offset is simply the numeric value indicated in
the CPC700 User's Manual (see Table 1-1). For example:

read_memctrl_cpc700 20

reads the contents of the MCOPT1 register in the CPC700 memory controller and prints the
value in hexadecimal, decimal, octal, and binary.

CPC700 Indirect Writes

Synopsis: void write_pif_cpc700(unsigned long offset,

 unsigned long data,

 unsigned long rsvmask);

void write_memctrl_cpc700(unsigned long offset);

 unsigned long data,

 unsigned long rsvmask);

Description: These write functions permit access to the indirect register sets of the CPC700 Processor
Interface and Memory Controller sections. offset is the numeric value indicated in the
CPC700 User's Manual (see Table 1-1). data is the data to be written to the target register. rsv-
mask contains ones in the positions of the reserved bits of the target register (preserves the
values of these bits). For example:

write_pif_cpc700 4 40000000 01FFFFFF

writes a one to the MEM_SEL_ER bit of the ERRDET2 register in the CPC700 processor inter-
face. This clears the error from the register.

Note: Be careful when writing to any of the processor interface or memory controller registers, as most of them
control fundamental system operations. Changing these values may result in undefined behavior or system
reset.

Hardware Implementation Dependent Register

Synopsis: unsigned long getHID0(void)

void setHID0(unsigned long 32-bit)

void clrHID0(unsigned long 32-bit)

Description: GetHID0 returns the value of the CPU’s Hardware Implementation Dependent register
(HID0). Functions SetHID0 and ClrHID0 set and clear the bits in HID0. HID0 is described in
the PowerPC™ 750 RISC Microprocessor User’s Manual.
0002M634-06 PmPPC User’s Manual 9-39

Monitor: Standard Emerson Functions
Miscellaneous

Synopsis: unsigned long getMSR(void)

void setMSR(unsigned long 32-bit)

void clrMSR(unsigned long 32-bit)

unsigned long getTBU(void)

unsigned long getTBL(void)

unsigned long getDEC(void)

void setDEC(unsigned long 32-bit)

unsigned long getSRR0(void)

unsigned long getPVR(void)

unsigned long get_dbatu_entry(int batnum)

unsigned long get_dbatl_entry(int batnum)

Description: The functions getMSR, setMSR, and clrMSR return the value of the Machine State register
(MSR). setMSR and clrMSR either set or clear the bits in the MSR. getTBU and getTBL return
the upper and lower 32-bit Time Base register values, respectively. Functions getDEC and
getSRR0 return the value for the appropriate register. setDEC writes a value to the decre-
menter. getPVR gets the processor version number. get_dbatu_entry and get_dbatl_entry
return the upper and lower MMU data block address translation register values, as indexed
by 0, 1, 2, and 3.

Display Processor Temperature

Synopsis: void DisplayTemp(void)

Description: DisplayTemp successively approximates the processor junction temperature from the
Thermal Management Unit. It displays in real time the temperature in degrees Celsius. The
resolution of the thermal sensor is 4° C. If the ThermProtect NVRAM field is enabled and
MSR[EE] is not disabled, the monitor puts the processor into permanent sleep mode when
the junction temperature exceeds 100° C. The application can change this behavior at
100° C by connecting a new interrupt handler to vector 170016. ThermProtect is disabled by
default.

STANDARD EMERSON FUNCTIONS

This section describes functions which are part of the standard Emerson monitor imple-
mentation.

Conversions

Synopsis: unsigned long atoh(char *p)
PmPPC User’s Manual 0002M634-069-40

Monitor: Standard Emerson Functions
unsigned long atod(char *p)

unsigned long atoo(char *p)

unsigned long atob(char *p)

unsigned long atoX(char *p, int Base)

void BinToHex(unsigned long Val)

void HexToBin(unsigned long Val)

void FindBitSet(unsigned long Number)

Description: These functions are a collection of numeric conversion programs used to convert character
strings to numeric values, convert hexadecimal to BCD, BCD to hexadecimal, and to search
for bit values.

The atoh function converts an ASCII string to a hex number. The atod function converts an
ASCII string to a decimal number. The atoo function converts an ASCII string to an octal
number. The atob function converts an ASCII string to a binary number.

The function atoX accepts both the character string p and the numeric base Base to be used
in converting the string. This can be used for numeric bases other than the standard bases
16, 10, 8, and 2.

The BinToHex function converts a binary value to packed nibbles (BCD). The HexToBin
function converts packed nibbles (BCD) to binary. This function accepts the parameter Val,
which is assumed to contain a single hex number of value 0-99.

The FindBitSet function searches the Number for the first non-zero bit. The bit position of
the least significant non-zero bit is returned.

Booting

Synopsis: BootUp(void)

Description: The BootUp function is called after the nonvolatile memory device has been opened and
the board has been configured according to the nonvolatile configuration. This function
also determines if memory is to be cleared according to the nonvolatile configuration.

The monitor provides an autoboot feature that allows an application to be loaded from a
variety of devices and executed. This function uses the nonvolatile configuration to deter-
mine which device to boot from and calls the appropriate bootstrap program. The monitor
supports the ROM, BUS, and SERIAL autoboot devices, which are not hardware-specific. The
remainder of the devices may or may not be supported by board-specific functions
described elsewhere. Currently, the board-specific devices support Ethernet, Stos, and
flash.

See Also: StartMon.c, NvMonDefs.h, NVTable.c, “Boot Commands”, Section .
0002M634-06 PmPPC User’s Manual 9-41

Monitor: Standard Emerson Functions
Cache Control

Synopsis: void enable_icache(void)

void disable_icache(void)

void invalidate_icache(void)

void enable_dcache(void)

void disable_dcache(void)

void flush_dcache(void)

void invalidate_dcache(void)

void flush_L2(void)

void L2_on(void)

void L2_off(void)

Description: As the names indicate, these functions enable, disable, invalidate, and flush the instruction
and data caches. The disable_dcache function calls flush_dcache before disabling the data
cache. L2_off should not be called until disable_dcache and flush_L2 have been executed.

MMU Control

Synopsis: void mmu_inst_enable(void)

void mmu_inst_disable(void)

void mmu_data_enable(void)

void mmu_data_disable(void)

Description: The MMU functions enable or disable instruction and data address translation in the MSR
register.

Baud Rate

Synopsis: void baud_c(unsigned long baud)

void baud_d(unsigned long baud)

void ConfigSerDevs(void)

Description: The baud_c and baud_d functions set the baud rates for the console and download ports,
respectively. The valid baud rate values are 1200, 2400, 4800, 9600, 19200, 38400, 56000,
and 128000 bps.

The ConfigSerDevs function uses the current definitions in the nonvolatile memory config-
uration to configure the serial ports. It is important that the configuration be valid when
this function is called, or unpredictable behavior may result.

Both serial ports can be configured to use 5 to 8 data bits, 1 or 2 stop bits, and odd, even, or
no parity.
PmPPC User’s Manual 0002M634-069-42

Monitor: Standard Emerson Functions
Exceptions

Synopsis: vectinit(HANDLER default_handler

 HANDLERPARAM default_param,

 unsigned long vectmask)

void connecthandler(unsigned long Vector, HANDLER handler)

void disconnecthandler(unsigned long Vector)

void Probe(char DirFlag,

 char SizeFlag,

 unsigned long Address,

 unsigned long DataPtr)

Description: These processor-specific functions provide interrupt and exception handling support.

The lower 200016 bytes of memory contain routines that the processor executes upon
receiving an interrupt. These routines comprise the low memory interrupt table. For exam-
ple, upon receiving a vector 20016 interrupt, the processor branches to address 20016 in
memory and executes the corresponding interrupt routine.

The function vectinit initializes these routines in the interrupt table so that they reference
an unexpected-interrupt handler. vectinit expects a pointer to the default unexpected-
interrupt handler and an optional fixed parameter for the handler. This ensures that the
board will not hang upon receiving unexpected interrupts. The unexpected-interrupt han-
dler saves the state of the processor at the point of detection and then calls IntrErr, which
displays the error and restarts the monitor.

For those applications requiring an interrupt vector to perform only a simple task, vectinit
has a third parameter. This parameter, vectmask, specifies which vectors to initialize and
which vectors to leave unmodified in low memory. The parameter is a 32-bit value, where
each set bit indicates that the corresponding routine should be replaced. For example, if
vectmask contains FFFF,FFFE16, all 32 vector routines will be overwritten except the routine
at address 016. If vectmask contains FFFF,FFF316, all the routines will be overwritten except
those at addresses 20016 and 30016.

The function connecthandler initializes the entry in the vector table to point to the Handler
address. The argument Vector indicates the vector number to be connected and the argu-
ment Handler is the address of the function that will handle the interrupts. With this struc-
ture, assembly language programming for interrupts is avoided.

The function disconnecthandler modifies the interrupt table entry associated with Vector to
use the unexpected interrupt handler.
0002M634-06 PmPPC User’s Manual 9-43

Monitor: Standard Emerson Functions
The function Probe accesses memory locations that may or may not result in a watchdog
time-out or bus error. This function returns TRUE (non-zero) if the location was accessed
and FALSE (zero) if the access resulted in a bus error. The argument DirFlag indicates
whether a read (0) or a write (1) should be attempted. The argument SizeFlag selects either
a byte access (1), a word access (2), or a long access (4). The argument Address indicates
the address to be accessed, and the argument Data is a pointer to the read or write data.

Serial I/O

Synopsis: unsigned char get_c (void)

unsigned char get_d (void)

void put_c (unsigned char c)

void put_d (unsigned char c)

int key_c (void)

int key_d (void)

int tx_empty (void)

int tx_empty_d (void)

Description: These functions provide low-level input/output support to read, write, and configure the
CPC700 UARTs. These functions interface with both the console and download devices.

The get_c and get_d functions read a character from the console or download port,
respectively.

The put_c and put_d functions write the character c to the console or download port,
respectively. If the character was sent, they return TRUE (non-zero). If the function times
out, they return FALSE (zero).

The key_c and key_d functions check for a character on the console or download port,
respectively. If a character is available, they return TRUE (non-zero). If no character is avail-
able, they return FALSE (zero).

The tx_empty and tx_empty_d functions determine whether the transmitter is available
for sending a character on the console or download port, respectively. If the transmitter is
available, they return TRUE (non-zero); otherwise, they return FALSE (zero).

Initialize Board

Synopsis: void config_MMU(void)

void configSerDevs(void)

void ConfigCaches(void)
PmPPC User’s Manual 0002M634-069-44

Monitor: Standard Emerson Functions
Description: These functions provide initialization of the board’s interfaces at various points in the mon-
itor. They use the nonvolatile memory configuration to determine how to configure an
interface, so the data structures must contain valid data before the functions are called.
The ConfigBoard command executes all of these functions.

The config_MMU function sets the block address translation registers of the processor.
ConfigSerDevs sets the console and download serial ports as specified by the NVRAM fields.
ConfigCaches initializes the processor caches to be On or Off as defined by the NVRAM
fields.

Initialize FIFO

Synopsis: void InitFifo(struct Fifo *FPtr,

 unsigned char *StartAddr,

 int Length)

void ToFifo(struct Fifo *FPtr,

 unsigned char c)

void FromFifo(struct Fifo *FPtr,

 unsigned char *Ptr)

Description: These functions provide the necessary interface to initialize, read, and write a software
FIFO. The FIFO can be used for a variety of applications. All three functions accept a pointer
FPtr as the first argument to a FIFO management structure. This FIFO structure is described
briefly below:

struct Fifo {

unsigned char *Top;

unsigned char *Bottom;

int Length;

unsigned char *Front;

unsigned char *Rear;

int Count;

} Fifo;

The function InitFifo initializes the FIFO control structure specified by FPtr to use the
unsigned character buffer starting at StartAddr that is of size Length.

The function ToFifo writes the byte c to the specified FIFO. This function returns TRUE if
there is room in the FIFO (before adding c to the FIFO), or FALSE if the FIFO is full.

The function FromFifo reads a byte from the specified FIFO. If a character is available, it is
written to the address specified by the pointer Ptr and the function returns TRUE. If no char-
acter is available, the function returns FALSE.
0002M634-06 PmPPC User’s Manual 9-45

Monitor: Standard Emerson Functions
Initialize Ethernet Address

Synopsis: void ConfigEthernet(int serialnum)

Description: The function ConfigEthernet sets the Ethernet address of the board. It combines the deci-
mal serial number with the company code and product ID to form the 6-byte address. The
EthernetAddr command displays the current address.

Interrupts

Synopsis: void maskints(void)

void unmaskints(void)

Description: The functions unmaskints and maskints are used to enable and disable external interrupts
at the processor.

Interrupt Error

Synopsis: void IntrErr(unsigned char Vector)

Description: When an unexpected interrupt is received, it is necessary to remove the error condition
before returning to the monitor. This function is called from the low-level interrupt service
routine, which parses the interrupt record for the address and the vector associated with
the interrupt. The device is dealt with accordingly, and the monitor is resumed.

Because the interrupt condition might be a program that continually generates exceptions,
it is necessary to abort the program and return directly to the monitor level. This is done by
calling the function RestartMon, which causes the processor to return to the line editor.

Legal Value Check

Synopsis: void IsLegal(unsigned char Type, char *Str)

Description: This function is used to determine if the specified character string Str contains legal values
to allow the string to be parsed as decimal, hex, uppercase, or lowercase. The function
IsLegal traverses the character string until a NULL is reached. Each character is verified
according to the Type argument.

The effects of specifying each type are described in the following table:

Table 9-6: IsLegal Function Types

Type: Value: Legal Characters:
DECIMAL 0x8 0 - 9

HEX 0x4 0 - 9, A - F, a - f

UPPER 0x2 A - Z

LOWER 0x1 a - z
PmPPC User’s Manual 0002M634-069-46

Monitor: Standard Emerson Functions
If the character string contains legal characters, this function returns TRUE; otherwise, it
returns FALSE. The string equivalent of the character functions isalpha(), isupper(),
islower(), and isdigit() can be constructed from this function, which deals with the entire
string instead of a single character.

Memory Management

Description: The memory management functions allocate and free memory from a memory pool. The
monitor initializes the memory pool to use all on-card memory after the monitor’s bss sec-
tion. If any of the autoboot features are used, the memory pool is not initialized and the
application program is required to set up the memory pool for these functions.

The functions Malloc, Calloc and ReAlloc allocate memory from the memory pool. Each of
these functions returns a pointer to the memory requested if the request can be satisfied
and NULL if there is not enough memory to satisfy the request. The function Malloc accepts
one argument NumBytes indicating the number of bytes requested. The function Calloc
accepts two arguments NumElements and Size indicating a request for a specified number
of elements of the specified size. The function ReAlloc reallocates a memory block by either
returning the block specified by Block to the free pool and allocating a new block of size
NumBytes, or by determining that the memory block specified by Block is big enough and
returning the same block to be reused.

The functions Free and CFree return blocks of memory that were requested by Malloc, Cal-
loc, or ReAlloc to the free memory pool. The address of the block to be returned is specified
by the argument MemLoc, which must be the same value returned by one of the allocation
functions. An attempt to return memory that was not acquired by the allocation functions
is a fairly reliable way of blowing up a program and should be avoided.

The function MemReset sets the free memory pool to the empty state. This function must
be called once for every reset operation and before the memory management facilities can
be used. It is also necessary to call this function before every call to MemAdd.

The function MemAdd initializes the free memory pool to use the memory starting at
MemAddr of size specified by MemSize. This function currently allows for only one contigu-
ous memory pool and must be preceded by a function call to MemReset.

The function MemStats monitors memory usage. This function outputs a table showing
how much memory is available and how much is used and lost as a result of overhead.

See Also: MemTop, MemBase in the next section.

ALPHA 0x3 A - Z, a - z

Type: Value: Legal Characters: (continued)
0002M634-06 PmPPC User’s Manual 9-47

Monitor: Standard Emerson Functions
Miscellaneous

Synopsis: unsigned char *MemTop(void)

unsigned char *MemBase(void)

Description: The functions MemTop and MemBase are used to determine the addresses of the last and
first long words in free memory. The size of DRAM is determined by bits 5:4 of Board Con-
figuration register 0 at 7FF4,000116 (see page 2-7). The base of free memory varies,
depending on the monitor version. Generally, it begins beyond the end of the monitor’s
data sections.

Emerson Monitor

Synopsis: int NvHkOffset(void)

int NvMonOffset(void)

int NvMonSize(void)

int NvMonAddr(void)

Description: These functions allow the nonvolatile library functions to operate on the nonvolatile mem-
ory sections without actually compiling the board configuration files into the library.

The NvHkOffset and NvMonOffset functions describe where in the nonvolatile memory
device the Emerson- and monitor-defined data sections begin. In general, the Emerson-
defined data section and the monitor data section reside in the user-writable section of the
nonvolatile memory device. The returned value is the offset in bytes from the beginning of
the device in which the section is loaded.

The functions NvMonSize and NvMonAddr return the size and location of the nonvolatile
monitor configuration data structure. This again allows other monitor facilities and applica-
tion programs to get at the monitor configuration structure without having to know too
much about the monitor.

Support Functions

Synopsis: void SetNvDefaults(NVGroupPtr Groups, int NumGroups)

void DispGroup(NVGroupPtr Group, unsigned long EditFlag)

int NVOp(unsigned long NVOpCmd,

 unsigned char *Base,

 unsigned long Size,

 unsigned long Offset)

Description: The support functions used for displaying, initializing, and modifying the nonvolatile mem-
ory data structures can also be used to manage other data structures that may or may not
be stored in nonvolatile memory.
PmPPC User’s Manual 0002M634-069-48

Monitor: Standard Emerson Functions
The method used to create a display of a data structure is to create a second structure that
contains a description of every field of the first structure. This description is done using the
NVGroup structure. Each entry in the NVGroup structure describes a field name, pointer to
the field, size of the field, indication of how the field is to be displayed, and the initial value
of the field.

An example data structure is shown below, as well as the NVGroup data structure necessary
to describe the data structure. This example might describe the coordinates and depth of a
window structure.

struct NVExample {

NV_Internal Internal;

unsigned long XPos, YPos;

unsigned short Mag;

} NVEx;

NVField ExFields[] = {

{ “XPos”, (char *) &NVEx.XPos, sizeof(NVEx.XPos),

NV_TYPE_DECIMAL, 0, 100, NULL},

{ “YPos”, (char *) &NVEx.YPos, sizeof(NVEx.YPos),

NV_TYPE_DECIMAL, 0, 200, NULL},

{ “Depth” (char *) &NVEx.Mag, sizeof(NVEx.Mag),

NV_TYPE_DECIMAL, 0, 4, NULL}

}

NVGroup ExGroups[] = {

{ “Window”, sizeof(ExFields)/sizeof(NVField), ExFields }

};

If passed a pointer to the ExGroups structure, the function DispGroup generates the dis-
play shown below. The second parameter EditFlag indicates whether to allow changes to
the data structure after it is displayed (same as in the nvdisplay command).

Window Display Configuration

XPos 100

YPos 200

Magnitude 4

The SetNvDefaults function, when called with a pointer to the ExGroup structure, initializes
the data structure to those values specified in the NVGroup structure. The second parame-
ter NumGroups indicates the number of groups to be initialized.
0002M634-06 PmPPC User’s Manual 9-49

Monitor: Standard Emerson Functions
The NVOp function stores and recovers data structures from nonvolatile memory. The only
requirement of the data structure to be stored in nonvolatile memory is that the first field
of the structure be NVInternal, which is where all the bookkeeping for the nonvolatile
memory section is done. The first parameter NVOpCmd indicates the command to be per-
formed. A summary of the commands is shown in the following table:

Table 9-7: NVOP Commands

The second parameter, Base, indicates the base address of the data structure to be oper-
ated on, and the Size parameter indicates the size of the data structure to be operated on.
The Offset parameter specifies the byte offset in the nonvolatile memory device where the
data structure is to be stored. An example of how to initialize, store, and recall the example
data structure is shown below.

NVOp(NV_OP_CLEAR, &NVEx, sizeof(NVEx), 0);

NVOp(NV_OP_SAVE , &NVEx, sizeof(NVEx), 0);

NVOp(NV_OP_OPEN , &NvEx, sizeof(NVEx), 0);

NVOp(NV_OP_FIX, &NVEx, sizeof(NVEx), 0);

NVOp(NV_OP_SAVE , &NVEx, sizeof(NVEx), 0);

The clear, save, and open operations cause the nonvolatile device to be cleared and filled
with the NVEx data structure; then the data structure is filled from nonvolatile memory.
The fix and save operations are used to modify the nonvolatile device, which updates the
internal data structures and then writes them back to the nonvolatile memory device.

If errors are encountered during the check, save, or compare operations, an error message
is returned from the function NVOp. The error codes are listed below:

Table 9-8: NVOP Error Codes

Command: Value: Description:
NV_OP_FIX 0 Fix nonvolatile section checksum

NV_OP_CLEAR 1 Clear nonvolatile section

NV_OP_CK 2 Check if nonvolatile section is valid

NV_OP_OPEN 3 Open nonvolatile section

NV_OP_SAVE 4 Save nonvolatile section

NV_OP_CMP 5 Compare nonvolatile section data

Command: Value: Description:
NVE_NONE 0 No errors

NVE_OVERFLOW 1 Nonvolatile device write count exceeded

NVE_MAGIC 2 Bad magic number read from nonvolatile device

NVE_CKSUM 3 Bad checksum read from nonvolatile device

NVE_STORE 4 Write to nonvolatile device failed

NVE_CMD 5 Unknown operation requested
PmPPC User’s Manual 0002M634-069-50

Monitor: Standard Emerson Functions
See Also: NVFields.h

Seed

Synopsis: void Seed(unsigned long Value)

Description: The Seed function sets the initial value for the random number generator command rand.

Serial Support

Synopsis: unsigned char getchar (void)

void putchar(char c)

int KBHit(void)

int TxMT(void)

void ChBaud(int Baud)

Description: The serial support functions defined here provide the ability to read, write, and poll the
monitor’s console device, which provides the user interface. The serial port is configured at
reset according to the nonvolatile memory configuration.

The function getchar reads characters from the console device. When called, this function
does not return until a character has been received from the serial port. The character read
is returned to the caller.

The function putchar writes the character c to the console device. If the serial port does not
accept the character, the function eventually times out.

The function KBHit polls the console device for available characters. If the receiver indicates
a character is available, this function returns TRUE; otherwise, it returns FALSE.

The function TxMT polls the console device to determine if the transmitter can accept more
characters. If the transmitter indicates a character can be sent, this function returns TRUE;
otherwise, it returns FALSE.

The function ChBaud modifies the console’s baud rate. The argument Baud specifies the
new baud rate to use for the port. This function accepts the same baud rates as the baud_c
function (see Section).

See Also: get_c, put_c, key_c, tx_empty, baud_c on page 9-44.

Unexpected Interrupt Handler

Synopsis: SetUnExpIntFunct(unsigned long Funct)

NVE_CMP 6 Data does not compare to nonvolatile device

Command: Value: Description: (continued)
0002M634-06 PmPPC User’s Manual 9-51

Monitor: Standard Emerson Functions
Description: If desired, a program can call the SetUnExpIntFunct function to attach its own interrupt
handler to all unexpected interrupts. This function attaches the handler specified by Funct.
The new interrupt handler must determine the source of the unexpected interrupt and
remove it.

Strings

Synopsis: int CmpStr(char *Str1, char *Str2)

int StrCmp(char *Str1, char *Str2)

void StrCpy(char *Dest, char *Source)

int StrLen(char *Str)

void StrCat(char *DestStr, char *SrcStr)

Description: These functions provide the basic string manipulation functions necessary to compare,
copy, concatenate, and determine the length of strings.

The function CmpStr compares the two null terminated strings pointed to by Str1 and Str2.
If they are equal, it returns TRUE; otherwise, it returns FALSE. Note that this version does
not act the same as the UNIX® strcmp function. CmpStr is not case-sensitive and only
matches characters up to the length of Str1. This is useful for pattern matching and other
functions.

The function StrCmp compares the two null terminated strings pointed to by Str1 and Str2.
If they are equal, it returns zero; otherwise, it returns the difference between the first two
characters in the strings that fail to match (not case-sensitive). Note that this function is not
the same as the UNIX strcmp function, which is case-sensitive.

The function StrCpy copies the null terminated string Source into the string specified by
Dest. There are no checks to verify that the string is large enough or is null terminated. The
only limit is the monitor-defined constant MAXLN (80), which is the largest allowed string
length the monitor supports. The length of the string is returned to the calling function.

The function StrLen determines the length of the null terminated string Str and returns the
length. If the length exceeds the monitor defined limit MAXLN, the function returns
MAXLN.

The function StrCat concatenates the string SrcStr onto the end of the string DestStr.

Test Suite

Synopsis: void TestSuite(unsigned long BaseAddr,

 unsigned long TopAddr,

 int TSPass)

void ByteAddrTest(unsigned char *BaseAddr,
PmPPC User’s Manual 0002M634-069-52

Monitor: Standard Emerson Functions
 unsigned char *TopAddr)

void WordAddrTest(unsigned short *BaseAddr,

 unsigned short *TopAddr)

void LongAddrTest(unsigned long *BaseAddr,

 unsigned long *TopAddr)

void RotTest(unsigned long *BaseAddr,

 unsigned long *TopAddr)

void PingPongAddrTest(unsigned long BaseAddr,

 unsigned long TopAddr)

void Interact(int Mod,

 unsigned char *StartAddr,

 unsigned char *EndAddr)

Description: The function TestSuite and the memory tests which make up this function verify a memory
interface. Each of these functions accepts two arguments, BaseAddr and TopAddr, which
describe the memory region to be tested. The argument TSPass defines the number of
passes to perform. Each test and the intended goals of the test are described briefly below.

The function ByteAddrTest performs a byte-oriented test of the specified memory region.
Each location is tested by writing the lowest byte of the location address through the entire
memory region and verifying each location.

The function WordAddrTest performs a word-oriented test of the specified memory region.
Each location is tested by writing the lowest word of the location address through the
entire memory region and verifying each location.

The function LongAddrTest performs a long-oriented test of the specified memory region.
Each location is tested by writing the location address through the entire memory region
and verifying each location.

The function RotTest performs a long word-oriented test of the specified memory region.
Each memory location is tested by rotating a single bit through the long-word location.

The function PingPongAddrTest is used to test the reliability of memory accesses in an envi-
ronment where the data addresses are varying widely. The intention is to cause the address
buffers and multiplexors to change dramatically.

The function Interact is used to test byte interaction in the memory region specified by
StartAddr and EndAddr. The main goal of this test is to check for mirrors in memory. This is
accomplished by testing the interaction between bytes at different points in memory.

Timer

Synopsis: void time_delay(unsigned long duration)
0002M634-06 PmPPC User’s Manual 9-53

Monitor: Standard Emerson Functions
Description: The time_delay function causes a delay of duration microseconds. This function makes use
of the time base counter on the CPU to generate the delay.

Printing

Description: This function serves as a System V UNIX®-compatible printf() without floating point. It
implements all features of %d, %o, %u, %x, %X, %c, and %s. An additional control statement
has been added to allow printing of binary values (%b).

The xprintf and xsprintf functions format an argument list according to a control string Ctrl-
Str. The function xprintf prints the parsed control string to the console, while the function
xsprintf writes the characters to the Buffer. The control string format is a string that con-
tains plain characters to be processed as is, and special characters that are used to indicate
the format of the next argument in the argument list. There must be at least as many argu-
ments as special characters, or the function may be unreliable.

Special character sequences are started with the character %. The characters after the % can
provide information about left or right adjustment, blank and zero padding, argument con-
version type, precision, and more things too numerous to list.

If detailed information on the argument formats and argument modifiers is required, see
your local C programmer’s manual for details. Not all of the argument formats are sup-
ported. The supported formats are %d, %o, %u, %x, %X, %c, and %s.
PmPPC User’s Manual 0002M634-069-54

0002M634-06 PmPPC
Section 10
Acronyms

ASCII American Standard Code for Information Interchange

CPU Central Processing Unit

CSA Canadian Standards Association

EC European Community

ECC Error-correcting Code

EIA Electronic Industries Alliance

EMC Electromagnetic Compatibility

ESD Electrostatic Discharge

ETSI European Telecommunications Standards Institute

FCC Federal Communications Commission

GPL General Public License

I2C Inter-integrated Circuit

JTAG Joint Test Action Group

LED Light-emitting Diode

MAC Medium/media Access Control/controller

PCI Peripheral Component Interconnect

PLCC Plastic-Leaded Chip Carrier

PLD Programmable Logic Device

RMA Return Merchandise Authorization

RTC Real-time Clock

SDRAM Synchronous Dynamic Random Access Memory

TBD To Be Determined

UART Universal Asynchronous Receiver/transmitter

UL Underwriters Laboratories
 User’s Manual 10-1

Acronyms: (continued)
PmPPC User’s Manual 0002M634-0610-2

Index

A bootverify. 9-17 overview. 2-4
abbreviations for monitor
commands 9-12
air flow rate 2-9
arbiter . 5-6
autoboot cancellation.9-38

B
baud rate. 7-6
binary format records,
downloading.9-31
block diagram, general system. . . . 1-2
board

configuration, monitor9-36
product ID.2-12
serial number2-12

boot
booting up 9-41
commands9-13
device configuration.9-27
jumper . 4-2

booting applications
from EPROM 9-14, 9-15
from flash9-15
from FTP9-16
from ROM9-15
from serial port9-15

bridge, PCI 5-1
bus speed, PCI. 5-6

C
cache, CPU memory 3-3
caution statements

install/remove the board 2-8
serial cable strain relief 2-5

character arguments for monitor
commands 9-13
checksum, S-records.9-32
circuit board dimensions 2-1
command reference9-12
command-line editor 9-2
commands, monitor

add .9-35
bootbus 9-13
booteprom 9-14, 9-15
bootflash 9-15
bootrom9-15
bootserial9-15
boottftp 9-16

cachetest 9-30
call . 9-31
checksummem. 9-18
clearmem 9-18
cmpmem 9-18
configboard 9-23, 9-36
copymem 9-18
displaymem 9-18
div. 9-35
download 9-31
enumerate_pci. 9-36
ethernetaddr 9-37
ethertest. 9-30
fillmem 9-19
findmem. 9-19
findnotmem 9-19
findstr . 9-19
flashblkwr 9-22
flashclrstat 9-22
flasheraseblk 9-22
flashsocketblkwr 9-22
flashsocketerase. 9-22
getboardconfig 9-37
help . 9-37
mul . 9-35
nvdisplay 9-15, 9-23, 9-29
nvinit . 9-26
nvopen 9-26
nvramtest. 9-30
nvset. 9-26
nvupdate 9-15, 9-27
pci_show 9-36
rand . 9-35
readmem 9-20
rewritemonitor. 9-22
serialtest. 9-30
setmem 9-20
sub . 9-36
swapmem. 9-20
testmem. 9-20
um . 9-21
writemem. 9-21
writestr 9-21

compliance 1-5
component map

bottom . 2-3
top . 2-2

connectors
Ethernet 6-4

PMC . 5-9
serial. 7-6

contents, table of ii-iii
CPC700

bus support 8-1
IIC ports 8-2
interrupt controller 8-1
memory interface 4-1
PCI bridge. 5-1
processor interface 3-3
timers. 8-3

CPU
cache memory 3-3
CPC700 interface 3-3
initialization 3-2
interrupts 3-2
reset . 3-1

customer support. See technical
support.

D
data width in user flash 4-3
defaults, monitor 9-48
diagnostics, power-up 9-1
download

configuring the serial port 9-29
from monitor 9-30

DRAM . 4-4

E
editor commands, monitor 9-2
Emerson identifier, Ethernet 6-4
EPROM, booting from 9-14, 9-15
equipment for setup 2-8
error messages. 9-38
ESC key . 9-2
ESD prevention. 2-1
Ethernet

address. 6-4, 9-37
connector. 6-4
controller configuration. 6-1
interface. 6-1

examples
default boot device 9-27
nvdisplay monitor command. . 9-25
S-record file 9-34
0002M634-06 PmPPC User’s Manual i-1

F
features

components 1-1
general . 1-1
PCI. 5-1

figures, list of iii-vii
flags

for memory monitor
commands9-17
for monitor commands 9-13

flash . 4-2
memory commands9-21

free memory9-47
functions, monitor

atob .9-41
atod .9-41
atoh .9-40
atoo .9-41
atoX .9-41
baud_c 9-42
baud_d9-42
BitToHex9-41
BootUp9-41
ByteAddrTest 9-52
ChBaud9-51
clrHID09-39
clrMSR.9-40
CmpStr9-52
config_MMU.9-44
ConfigCaches9-44
ConfigEthernet9-46
ConfigSerDevs 9-42
configSerDevs.9-44
connecthandler 9-43
disable_dcache.9-42
disable_icache 9-42
disconnecthandler 9-43
DispGroup 9-48
DisplayTemp.9-40
enable_dcache9-42
enable_icache.9-42
FindBitSet9-41
flush_dcache 9-42
flush_L2 9-42
FromFifo9-45
get_c. .9-44
get_d .9-44
get_dbatl_entry9-40
get_dbatu_entry 9-40
getchar9-51
getDEC9-40

getHID0 9-39
getMSR. 9-40
getPVR 9-40
getSRR0 9-40
getTBL 9-40
getTBU 9-40
HexToBin 9-41
InitFifo 9-45
Interact. 9-53
IntrErr . 9-46
invalidate_dcache 9-42
invalidate_icache 9-42
KBHit . 9-51
key_c . 9-44
L2_off . 9-42
L2_on . 9-42
LongAddrTest. 9-53
maskints 9-46
MemBase 9-48
MemTop. 9-48
mmu_data_disable 9-42
mmu_data_enable. 9-42
mmu_inst_disable 9-42
mmu_inst_enable 9-42
NvHkOffset. 9-48
NvMonAddr 9-48
NvMonOffset 9-48
NvMonSize 9-48
NVOp . 9-48
PingPongAddrTest 9-53
Probe . 9-43
put_c . 9-44
put_d . 9-44
putchar. 9-51
RestartMon. 9-46
RotTest 9-53
Seed . 9-51
setDEC 9-40
setHID0 9-39
setMSR 9-40
SetNvDefaults 9-48
SetUnExpIntFunct 9-51
StrCat . 9-52
StrCmp 9-52
StrCpy. 9-52
StrLen . 9-52
TestSuite 9-52
time_delay 9-53
ToFifo . 9-45
tx_empty 9-44
tx_empty_d 9-44
TxMT. 9-51

unmaskints 9-46
vectinit 9-43
WordAddrTest 9-53

fuse location. 2-4

G
glossary of acronyms 10-1
grounding 2-1

I
initialization

error, nonvolatile memory. . . . 9-38
of board to defaults 9-45
of memory from the monitor. . 9-12
of nonvolatile memory, caution9-26

installation of the board 2-8
installation on baseboard. 2-9
interrupts

CPU . 3-2
PCI . 5-5

J
j key . 9-2
JTAG/COP interface 3-4
jumper location 2-4
jumper, boot device select. 4-2

K
k key . 9-2
keys

ESC . 9-2
j . 9-2
k . 9-2

L
LED locations 2-6
LEDs . 2-5

M
mean time between failures (MTBF)1-5
memory

boot ROM/flash 4-2
checksum. 9-18
clearing 9-18
compare addresses 9-18
controller 4-1
copy . 9-18
destructive test 9-21
PmPPC User’s Manual 0002M634-06i-2

Index (continued)
memory (continued)
display.9-18
erase socketed flash9-22
fill with specified value9-19
flash block write9-22
flash clear status9-22
flash erase block9-22
get configuration9-37
initializing from the monitor. . .9-12
management 9-47
map, NVRAM 4-5
modify 9-20
monitor commands 9-17
nondestructive test 9-20
read. .9-20
rewrite monitor image9-22
search .9-19
search for string 9-19
socketed flash block write 9-22
swap .9-20
test failure. 9-1
user flash. 4-2
write .9-21
write ASCII string 9-21

memory map 1-3
monarch . 5-5
monitor

character arguments 9-13
command syntax 9-12
commands. See commands,
monitor.
flags .9-13
flash commands9-21
functions. See functions, monitor.
group. See monitor group.
NVRAM commands 9-23
persistent memory9-7, 9-12
power-up/reset sequence 9-4
typographic conventions9-13
version number 2-12

monitor group
BootParams 9-25, 9-27
Cache .9-24
console9-23
Download9-24
HardwareConfig9-25
Manufacturing 9-25
Misc 9-24, 9-29
Network 9-24
Service 9-25

N
non-persistent memory, monitor. . 9-5
nonvolatile memory

checking 9-26
commands 9-23
modifying 9-26

notation conventions 1-6
number bases for monitor
arguments 9-12
numeric format 9-12

P
PCI bridge . 5-1
PCI signals. 5-7
persistent memory, monitor 9-7, 9-12
PMC module initialization. 9-36
power requirements. 2-9
power-up

errors . 9-38
monitor sequence 9-4

power-up diagnostics 9-1
cache test 9-30
Ethernet test. 9-30
NVRAM test 9-30
serial test 9-30

product code, Ethernet 6-4
product ID. 2-12
product repair. 2-13

R
records

data . 9-32
data count 9-33
termination and start address . 9-33
user defined 9-32

references and manuals 1-6
registers

FCR . 7-5
HCR0 . 2-7
IER . 7-2
IIR . 7-2
LCR . 7-3
LSR . 7-4
PIOR . 5-5
reset control 3-1

regulatory certifications 1-5
reset

monitor sequence 9-4

PCI . 5-7
returning boards 2-13

S
screen messages 9-37
SDRAM. See DRAM.
serial and version numbers. 2-12
serial I/O

baud rate 7-6
control . 7-1
control from the monitor. 9-51
registers 7-2

serial number 2-12
setup requirements 2-8
specifications

environmental 2-9
mechanical. 2-1
power. 2-9

S-records 9-31, 9-32
file example 9-34

static control 2-1
string format 9-12
symbol format 9-12, 9-13
synchronous. 4-4
syntax for monitor commands. . . 9-12

T
table of contents ii-iii
tables, list ofiv-ix
technical references 1-6
technical support
terminology 1-6
troubleshooting, general 2-11
typographic conventions 9-13

U
UL certifications 1-5
user flash read/write array mode
examples . 4-3

V
vendor and device IDs, PCI 5-2
version

monitor 2-12
operating system 2-12

vi editing commands 9-2
vibration testing. 1-5
0002M634-06 PmPPC User’s Manual i-3

Index (continued)
PmPPC User’s Manual 0002M634-06i-4

0002M634-06 PmPPC User’s Manual

Notes

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Emerson Network Power, Embedded Computing
8310 Excelsior Drive ■ Madison, WI 53717-1935 USA
US Toll Free: 1-800-356-9602 ■ Voice: +1-608-831-5500 ■ FAX: 1-608-831-4249
Email: info@artesyncp.com

www.emersonembeddedcomputing.com

Business-Critical Continuity, Emerson Network Power and the
Emerson Network Power logo are trademarks and

service marks of Emerson Electric Co.
© 2007 Emerson Electric Co.

Emerson Network Power
The global leader in enabling
Business-Critical Continuity™

■ AC Power Systems

■ Connectivity

■ DC Power Systems

■ Embedded Computing

■ Embedded Power

■ Integrated Cabinet Solutions

■ Outside Plant

■ Power Switching & Controls

■ Precision Cooling

■ Services

■ Site Monitoring

■ Surge & Signal Protection

E M E R S O N. C O N S I D E R I T S O L V E D.™

http://www.emersonembeddedcomputing.com
mailto:info@artesyncp.com

	Regulatory Agency Warnings & Notices
	Contents
	Figures
	Tables
	Registers

	Overview
	Components and Features
	Functional Overview
	Physical Memory Map
	Additional Information
	Product Certification
	Terminology and Notation
	Technical References

	Setup
	Electrostatic Discharge
	PmPPC Circuit Board
	Connectors
	LEDs
	Board Configuration Registers

	PmPPC Setup
	Power Requirements
	Environmental Considerations
	Installation

	Troubleshooting
	Technical Support
	Product Repair

	CPU
	Processor Reset
	Processor Initialization
	Interrupt Handling
	Cache Memory
	CPC700 Processor Interface
	JTAG/COP Interface

	On-card Memory Configuration
	CPC700 Memory Interface
	Boot Memory Configuration
	User Flash
	On-Card SDRAM
	Nonvolatile Memory Map

	PMC/PCI Interface
	PCI Bridge
	PCI Interface Registers
	PCI Configuration Registers

	PCI Initialization
	PCI Interrupts
	Monarch Functionality
	66MHz Bus Operation
	PCI Arbitration
	PCI Reset
	PCI Bus Control Signals
	PMC Connector Pinouts

	Ethernet
	CS8900A Configuration
	Ethernet Address
	Ethernet Port

	Serial Input/Output
	UART Control
	Serial Port Registers
	Interrupt Enable Register
	Interrupt Identification Register
	Line Control Register
	Line Status Register
	FIFO Control Register

	Programmable Baud Rate
	Connectors and Cabling

	Other CPC 700 Functions
	Bus Support
	Universal Interrupt Controller
	IIC Ports
	General Purpose Timers
	Miscellaneous Control

	Monitor
	Monitor Features
	Start-Up Display
	History
	Command-Line Editor
	PowerPC Debugger

	Basic Operation
	Power-Up/Reset Sequence
	Initializing Memory

	Monitor Command Reference
	Command Syntax
	Typographic Conventions

	Boot Commands
	bootbus
	booteprom
	bootrom
	bootflash
	bootserial
	boottftp
	bootverify

	Memory Commands
	checksummem
	clearmem
	cmpmem
	copymem
	displaymem
	fillmem
	findmem
	findnotmem
	findstr
	readmem
	setmem
	swapmem
	testmem
	um
	writemem
	writestr

	Flash Commands
	flashblkwr
	flashclrstat
	flasheraseblk
	flashsocketerase
	flashsocketblkwr
	rewritemonitor

	NVRAM Commands
	nvdisplay
	nvinit
	nvopen
	nvset
	nvupdate
	Default Boot Device Configuration Example
	Download Port Configuration Example

	Test Commands
	ethertest
	serialtest
	nvramtest
	cachetest

	Remote Host Commands
	download
	call
	Binary Download Format
	Motorola S-Record Download Format
	User-Defined (S0)
	Data Records (S1, S2, S3)
	Data Count Records (S5)
	Termination and Start Address Records (S7, S8, S9)

	Arithmetic Commands
	add
	div
	mul
	rand
	sub

	Other Commands
	configboard
	enumerate_pci (Monarch only)
	pci_show
	ethernetaddr
	getboardconfig
	help

	Command Errors and Screen Messages
	Monitor Function Reference
	PmPPC-Specific Functions
	CPC700 Indirect Reads
	CPC700 Indirect Writes
	Hardware Implementation Dependent Register
	Miscellaneous
	Display Processor Temperature

	Standard Emerson Functions
	Conversions
	Booting
	Cache Control
	MMU Control
	Baud Rate
	Exceptions
	Serial I/O
	Initialize Board
	Initialize FIFO
	Initialize Ethernet Address
	Interrupts
	Interrupt Error
	Legal Value Check
	Memory Management
	Miscellaneous
	Emerson Monitor
	Support Functions
	Seed
	Serial Support
	Unexpected Interrupt Handler
	Strings
	Test Suite
	Timer
	Printing

	Acronyms
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	P
	R
	S
	T
	U
	V

