BCC Series

- Baseplate-cooled
- Wide Operating Temperature Range
- ETSI, EMC and Environmental Compliant
- Parallel Operation
- Remote On/Off
- Low Temperature Option
- 3 Year Warranty

Specification

Input

Input Voltage	- $90-264$ VAC
Input Frequency	- $47-63 \mathrm{~Hz}$
Input Current	- 3 A max at 90 VAC (BCC200)
	6 A max at 90 VAC $($ BCC 400$)$
Inrush Current	$\bullet 60 \mathrm{~A}$ at $264 \mathrm{VAC}+25^{\circ} \mathrm{C}$ cold start
Power Factor	$\bullet>0.9$
Earth Leakage Current	- $<1.5 \mathrm{~mA}$ at 230 VAC
Input Protection	- Internal T10 A/250 V fuse

Output

Output Power	- See table
Output Voltage	- See table
Output Voltage Trim	- 60% to 110% Vnom
Initial Set Accuracy	- $\pm 1 \%$ nominal
Minimum Load	- No minimum load
Hold Up Time	- 10 ms min
Line Regulation	- $\pm 0.5 \%$
Load Regulation	- See table
Ripple \& Noise	- <1\% pk-pk, 20 MHz bandwidth
Overvoltage Protection	- 105-140\% Vnom (3.3 V version 130-166\%)
Overtemperature Protection	- Shuts down at $+115^{\circ} \mathrm{C}$ baseplate temperature, recycle mains to reset
Overload Protection	- 102-140\% constant current limiting with auto recovery
Temperature Coefficient	- $0.05 \% /{ }^{\circ} \mathrm{C}$
Remote Sense	- Compensates for lead drops of up to 500 mV
Remote On/Off	- A logic ' 0 ' on the Remote On/Off connection electronically disables the output
Current Share	- Up to 3 power supplies can be connected in parallel sharing within 10%, total output power derates by 10%

General	
Efficiency	- 80% typical
Isolation	- 3000 VAC Input to Output 1500 VAC Input to Ground 500 VAC Output to Ground
Switching Frequency	- PWM 360 kHz typ, PFC 90 kHz typ
MTBF	- 160 kHrs to MIL-HDBK-217F at $25^{\circ} \mathrm{C}$, GB

Environmental

Operating Temperature $--20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, with baseplate maintained below $+83^{\circ} \mathrm{C}$ utilizing system cooling, $-40^{\circ} \mathrm{C}$ option available - add suffix '-L' to model number
Cooling

- Conduction via 6 mm baseplate

Operating Humidity

Storage Temperature
Shock \& Vibration

- 20-95\% RH, non-condensing. Units can be conformally coated for high humidity environments - add suffix '-E'
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- $2 \mathrm{~g} 10 \mathrm{~min} / 1$ cycle, 10 Hz to 500 Hz , 60 mins each axis

EMC \& Safety

Emissions
Harmonic Currents
ESD Immunity
Radiated Immunity
EFT/Burst
Surge
Conducted Immunity
Dips \& Interruptions

Safety Approvals

- EN55022, level B conducted \& level A radiated
- EN61000-3-2, EN61000-3-3
- EN61000-4-2, level 3 Perf Criteria A
- EN61000-4-3, 3 V/m Perf Criteria A
- EN61000-4-4, level 3 Perf Criteria A
- EN61000-4-5, level 3 Perf Criteria A
- EN61000-4-6, level 3 Perf Criteria A
- EN61000-4-11, 30\% 10 ms , $60 \% 100 \mathrm{~ms}, 100 \% 5000 \mathrm{~ms}$, Perf Criteria A, B, B
- UL60950-1: CSA22.2 No. 60950-1-03, CE Mark LVD, EN60950-1

Models and Ratings \qquad

Output	Output	Output	Output	Model
Power	Voltage	Current	Load Regulation	Number ${ }^{(1,2)}$
165 W	3.3 V	50.0 A	1.5\%	BCC200PS03
200 W	5.0 V	40.0 A	1.5\%	BCC200PS05
210 W	7.5 V	28.0 A	1.5\%	BCC200PS07
240 W	12.0 V	20.0 A	1.5\%	BCC200PS12
264 W	3.3 V	80.0 A	1.5\%	BCC400PS03
400 W	5.0 V	80.0 A	1.5\%	BCC400PS05
405 W	7.5 V	54.0 A	1.5\%	BCC400PS07
408 W	12.0 V	34.0 A	1.0\%	BCC400PS12
405 W	15.0 V	27.0 A	1.0\%	BCC400PS15
396 W	18.0 V	22.0 A	1.0\%	BCC400PS18
408 W	24.0 V	17.0 A	1.0\%	BCC400PS24
406 W	28.0 V	14.5 A	1.0\%	BCC400PS28

Notes

1. For $-40^{\circ} \mathrm{C}$ operating temperature, add suffix '- L ' to model number.
2. For conformally coated option, add suffix '-E' to model number.
3. 600 W model available for OEM quantities - contact sales.

Mechanical Details

Overall dimensions are in inches (mm)
Weight: $2.87 \mathrm{lbs}(1.3 \mathrm{~kg})$

Tolerance: ± 0.05 in $(\pm 1.5 \mathrm{~mm})$ length and width ± 0.02 in $(\pm 0.5 \mathrm{~mm})$ height

Input:
AMP Mate'n'lok 3 way.
Mating housing AMP 350766-1.
Socket crimp AMP 926893-1.
Pin 3: Live
Pin 2: Earth
Pin 1: Neutral
Output:
Power output +ve and -ve by M6 studs.
Use appropriate ring terminals and wire for the load current.
Maximum torque: $17.7 \mathrm{lbs}-\mathrm{in}(2 \mathrm{Nm})$
Signal connections on two 0.1 (2.5) headers (PL1 \& PL2).
Mating Housing: Molex 22-01-2065.
Mating Crimp: Molex 08-50-0032.

PL1 Connections	
Pin	Function
1	Current Balance
2	Voltage Balance
3	Trim
4	-Remote Sense
5	+Remote Sense
6	Remote On/Off

PL2 Connections	
Pin	Function
1	Current Balance
2	Voltage Balance
3	Trim
4	-Remote Sense
5	+Remote Sense
6	Remote On/Off

Accessories

1. Input \& output connector kit - order part 'BCC CONKIT'.
2. For thermal pad, order part 'BCC THERM'.

Application Notes

Current and voltage balance pins are used to connect units in parallel - see drawing. Remote On/Off: Output is on with pin left floating, pull pin down to -Output to turn output off.
Remote sense pins are used to compensate for lead drops, for up to 0.5 V maximum. When not used, move switch SW1 to local positions. See below for switch positions. The BCC series is approximately 80% efficient, so for 400 W load consumption, the cooling system used will have to be able to absorb 100 W while maintaining the baseplate to a maximum of $+83^{\circ} \mathrm{C}$.

Remote sense switchers - single unit		
	Remote	Local
SW1 D 1)	OFF	ON
SW1 C (2)	OFF	ON
SW1 B (3)	ON	OFF
SW1 A (4)	ON	OFF

Parallel units with remote sense			
	PSU 1	PSU 2	PSU 3
SW1 D (1)	OFF	OFF	OFF
SW1 C (2)	OFF	OFF	OFF
SW1 B (3)	ON	OFF	OFF
SW1 A (4)	ON	OFF	OFF

Parallel units without remote sense			
	PSU 1	PSU 2	PSU 3
SW1 D (1)	ON	OFF	OFF
SW1 C (2)	ON	OFF	OFF
SW1 B (3)	OFF	OFF	OFF
SW1 A (4)	OFF	OFF	OFF

Contact sales office for a full set of application notes.

Examples of parallel operation

Ensure output power leads are of equal length and type for all units and that they are capable of carrying the load current. Set all units to the required output $\pm 0.1 \mathrm{~V}$. The voltage setting pot on unit 1 can be used to set the overall output voltage if required.

TH

