
SPARC V8 32-bit Processor
LEON3 / LEON3-FT

CompanionCore Data Sheet

GAISLER
Features

• SPARC V8 integer unit with 7-stage pipeline
• Hardware multiply, divide and MAC units
• Separate instruction and data caches
• Support for 2 - 32 register windows
• Radix-2 divider (non-restoring)
• Single-vector trapping for reduced code size
• Advanced debug support unit
• Optional IEEE-STD-754 compliant FPU
• 20 DMIPS at 25 MHz system clock
• Fault-tolerant version available
• Support for Fusion, IGLOO, ProASIC3E/L,

RT ProASIC3, Axcelerator and RTAX
Copyright Aeroflex Gaisler AB

I-Cache D-Cac

3-Port Register Fi

AMBA AHB Master (32

AHB I/F

LEON3
Co-Processor

HW MUL/DIV

IEEE-754 FPU

Local IRAM

SRMMUITLB

7-Stage
Integer Pipelin
Description

The LEON3 is a 32-bit processor based on the
SPARC V8 architecture. It implements a 7-stage
pipeline and separate instruction and data caches
(Harvard architecture). The number of register
windows is configurable within the limit of the
SPARC standard. A unique debug interface
allows non-intrusive hardware debugging and
provides access to all registers and memory.
he

le

-bit)

Interrupt controller

Trace Buffer

Debug port

Interrupt port

Debug support unit

Local DRAM

DTLB

e

Applications

The LEON3 processor is designed for embedded
applications, combining high performance with
low complexity and low power consumption.
The LEON3 processor is highly configurable.

The fault-tolerant version of the LEON3
processor in combination with the radiation
tolerant Actel RTAX FPGA gives a total
immunity to radiation effects. This makes it
ideally suited for space and other high-rel
applications.
March 2010, Version 1.1

2 LEON3 / LEON3-FT

GAISLER
1 Introduction

1.1 Overview

The LEON3 SPARC V8 processor core has been designed to fit into architectures from which a large
variety of applications can be derived.

The LEON3 SPARC V8 processor core can be combined with the IEEE-STD-754 compliant Floating
Point Unit (GRFPU Lite).

The architecture is centered around the AMBA Advanced High-speed Bus (AHB), to which the
LEON3 core and other high-bandwidth units are connected. Low-bandwidth units connected to the
AMBA Advanced Peripheral Bus (APB) which is accessed through an AHB to APB bridge. The
architecture is shown in figure 1.

Figure 1. Architectural block diagram of a typical system using the LEON3 processor

LEON3FT
32-bit SPARC
Integer Unit

I-cache

Debug
Support

UnitD-cache

CAN
2.0

Controller

Memory
Controller
with EDAC

SDRAM
Controller
with EDAC

SpaceWire
Codec

Interface

Mil-Std-1553
BC/RT/MT
Interface

2 x UART
16 x GPIO

Mil-Std-1553
RT

Interface

32-bit AMBA AHB

Timers
Interrupt

AHB / APB

UART
Debug

Link

JTAG
Debug

Link

On-Chip
Memory

with EDAC

FPU

PROM/SRAM SDRAM LVDS I/F

32 32

CAN-2.0 Dual-1553 Dual-1553

AHB
CTRL
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

3 LEON3 / LEON3-FT

GAISLER
1.2 Signal overview

The LEON3 signals are shown in figure 2. Note that the AMBA AHB and debug signals are imple-
mented VHDL records and are not shown in detail.

1.3 Implementation characteristics

The LEON3 processor is inherently portable and can be implemented on most FPGA and ASIC tech-
nologies. Table 1 shows the approximate cell count and frequency for different example configura-
tions on Actel RTAX and RT ProASIC3, with 8 kbyte instruction and 4 kbyte data caches.

The LEON3 core is available in VHDL source code or as a pre-synthesized netlist.

The LEON3-FT core is available as a pre-synthesized netlist only.

Table 1. Implementation characteristics (Cells / RAM blocks / AHB MHz)

Core configuration RTAX2000S-1 RT ProASIC3 RT ProASIC3 with TMR

LEON3 6500 / 31 / 25 MHz - -

LEON3 + GRFPU Lite 13500 / 35 / 20 MHz - -

LEON3-FT 7500 / 31 / 25 MHz 8400 / 39 / 25 MHz 12300 / 39 / 25 MHz

LEON3-FT + GRFPU-FT Lite 14600 / 35 / 20 MHz 18200 / 47 / 20 MHz 24800 / 47 / 20 MHz

Figure 2. Signal overview

clk
rstn

irqi.irl[3:0]
irqi.rst
irqi.run

irqo.irl[3:0]
irqo.intack

dbgo

Interrupt

Clock & Reset

dbgi

ahboahbi
ahbsi

AMBA

Debug
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

4 LEON3 / LEON3-FT

GAISLER
2 LEON3 - High-performance SPARC V8 32-bit Processor

2.1 Overview

LEON3 is a 32-bit processor core conforming to the IEEE-1754 (SPARC V8) architecture. It is
designed for embedded applications, combining high performance with low complexity and low
power consumption.

The LEON3 core has the following main features: 7-stage pipeline with Harvard architecture, sepa-
rate instruction and data caches, hardware multiplier and divider, on-chip debug support and multi-
processor extensions.

Note: this manual describes the full functionality of the LEON3 core. Through the use of VHDL
generics, parts of the described functionality can be suppressed or modified to generate a smaller or
faster implementation.

2.1.1 Integer unit

The LEON3 integer unit implements the full SPARC V8 standard, including hardware multiply and
divide instructions. The number of register windows is configurable within the limit of the SPARC
standard (2 - 32), with a default setting of 8. The pipeline consists of 7 stages with a separate instruc-
tion and data cache interface (Harvard architecture).

2.1.2 Cache sub-system

LEON3 has a highly configurable cache system, consisting of a separate instruction and data cache.
Both caches can be configured with 1 - 4 sets, 1 - 256 kbyte/set, 16 or 32 bytes per line. Sub-blocking
is implemented with one valid bit per 32-bit word. The instruction cache uses streaming during line-
refill to minimize refill latency. The data cache uses write-through policy and implements a double-
word write-buffer. The data cache can also perform bus-snooping on the AHB bus. A local scratch

Integer pipeline

I-Cache D-Cache

3-Port Register File

AMBA AHB Master (32-bit)

AHB I/F

7-Stage

Interrupt controller

Co-Processor

HW MUL/DIV

IEEE-754 FPU Trace Buffer

Debug port

Interrupt port

Debug support unit

Local DRAMLocal IRAM

Figure 3. LEON3 processor core block diagram

SRMMU DTLBITLB
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

5 LEON3 / LEON3-FT

GAISLER
pad ram can be added to both the instruction and data cache controllers to allow 0-waitstates access
memory without data write back.

2.1.3 Floating-point unit and co-processor

The LEON3 integer unit provides interfaces for a floating-point unit (FPU), and a custom co-proces-
sor. Two FPU controllers are available, one for the high-performance GRFPU (available from Gaisler
Research) and one for the Meiko FPU core (available from Sun Microsystems). The floating-point
processors and co-processor execute in parallel with the integer unit, and does not block the operation
unless a data or resource dependency exists.

2.1.4 Memory management unit

A SPARC V8 Reference Memory Management Unit (SRMMU) can optionally be enabled. The
SRMMU implements the full SPARC V8 MMU specification, and provides mapping between multi-
ple 32-bit virtual address spaces and 36-bit physical memory. A three-level hardware table-walk is
implemented, and the MMU can be configured to up to 64 fully associative TLB entries.

2.1.5 On-chip debug support

The LEON3 pipeline includes functionality to allow non-intrusive debugging on target hardware. To
aid software debugging, up to four watchpoint registers can be enabled. Each register can cause a
breakpoint trap on an arbitrary instruction or data address range. When the (optional) debug support
unit is attached, the watchpoints can be used to enter debug mode. Through a debug support interface,
full access to all processor registers and caches is provided. The debug interfaces also allows single
stepping, instruction tracing and hardware breakpoint/watchpoint control. An internal trace buffer can
monitor and store executed instructions, which can later be read out over the debug interface.

2.1.6 Interrupt interface

LEON3 supports the SPARC V8 interrupt model with a total of 15 asynchronous interrupts. The inter-
rupt interface provides functionality to both generate and acknowledge interrupts.

2.1.7 AMBA interface

The cache system implements an AMBA AHB master to load and store data to/from the caches. The
interface is compliant with the AMBA-2.0 standard. During line refill, incremental burst are gener-
ated to optimise the data transfer.

2.1.8 Power-down mode

The LEON3 processor core implements a power-down mode, which halts the pipeline and caches
until the next interrupt. This is an efficient way to minimize power-consumption when the application
is idle, and does not require tool-specific support in form of clock gating. To implement clock-gating,
a suitable clock-enable signal is produced by the processor.

2.1.9 Multi-processor support

LEON3 is designed to be use in multi-processor systems. Each processor has a unique index to allow
processor enumeration. The write-through caches and snooping mechanism guarantees memory
coherency in shared-memory systems.
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

6 LEON3 / LEON3-FT

GAISLER
2.1.10 Performance

Using 8K + 4K caches and a 16x16 multiplier, the dhrystone 2.1 benchmark reports 1.3 dhrystone
MIPS/MHz using the gcc-4.4.2 compiler (-O3 -mcpu=v8).

2.2 LEON3 integer unit

2.2.1 Overview

The LEON3 integer unit implements the integer part of the SPARC V8 instruction set. The implemen-
tation is focused on high performance and low complexity. The LEON3 integer unit has the following
main features:

• 7-stage instruction pipeline

• Separate instruction and data cache interface

• Support for 2 - 32 register windows

• Hardware multiplier with optional 16x16 bit MAC and 40-bit accumulator

• Radix-2 divider (non-restoring)

• Single-vector trapping for reduced code size
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

7 LEON3 / LEON3-FT

GAISLER
Figure 4 shows a block diagram of the integer unit.

2.2.2 Instruction pipeline

The LEON integer unit uses a single instruction issue pipeline with 7 stages:
1. FE (Instruction Fetch): If the instruction cache is enabled, the instruction is fetched from the instruction cache.

Otherwise, the fetch is forwarded to the AHB bus. The instruction is valid at the end of this stage and is latched
inside the IU.

2. DE (Decode): The instruction is decoded and the CALL and Branch target addresses are generated.
3. RA (Register access): Operands are read from the register file or from internal data bypasses.
4. EX (Execute): ALU, logical, and shift operations are performed. For memory operations (e.g., LD) and for JMPL/

RETT, the address is generated.
5. ME (Memory): Data cache is read or written at this time.
6. XC (Exception) Traps and interrupts are resolved. For cache reads, the data is aligned as appropriate.
7. WR (Write): The result of any ALU, logical, shift, or cache operations are written back to the register file.

Figure 4. LEON3 integer unit datapath diagram

alu/shift mul/div
y

register file

D-cache
address/dataout
datain

32
32

operand2rs1

imm

Ywres

result m_y

Decode

Execute

Memory

Write-back

rs2rs1

rd

tbr, wim, psr

30 jmpl address

e pc

30

+1

d_pc

jmpa

f_pc

Add

call/branch address

tbr‘0’

e_pc

m_pc

w_pc

d_inst

e_inst

m_inst

w_inst

Fetch

I-cache
addressdata

Register Access

x_yxres

Exception

x_pcx_inst

r_pcr_inst

y, tbr, wim, psr

r_imm
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

8 LEON3 / LEON3-FT

GAISLER
Table 2 lists the cycles per instruction (assuming cache hit and no icc or load interlock):

* Multiplication cycle count is 1 clock for the 32x32 multiplier and 4 clocks for the 16x16 version.

The processor pipeline can be configured for one or two cycles load delay. A branch interlock occurs
if an instruction that modifies the ICC bits in %psr is followed by a BICC or TICC instructions within
two clocks.

2.2.3 SPARC Implementor’s ID

Gaisler Research is assigned number 15 (0xF) as SPARC implementor’s identification. This value is
hard-coded into bits 31:28 in the %psr register. The version number for LEON3 is 3, which is hard-
coded in to bits 27:24 of the %psr.

2.2.4 Divide instructions

Full support for SPARC V8 divide instructions is provided (SDIV, UDIV, SDIVCC & UDIVCC). The
divide instructions perform a 64-by-32 bit divide and produce a 32-bit result. Rounding and overflow
detection is performed as defined in the SPARC V8 standard.

2.2.5 Multiply instructions

The LEON processor supports the SPARC integer multiply instructions UMUL, SMUL UMULCC
and SMULCC. These instructions perform a 32x32-bit integer multiply, producing a 64-bit result.
SMUL and SMULCC performs signed multiply while UMUL and UMULCC performs unsigned
multiply. UMULCC and SMULCC also set the condition codes to reflect the result. The multiply
instructions are performed using a 32x32 pipelined hardware multiplier, or a 16x16 hardware multi-
plier which is iterated four times. To improve the timing, the 16x16 multiplier can optionally be pro-
vided with a pipeline stage.

2.2.6 Multiply and accumulate instructions

To accelerate DSP algorithms, two multiply&accumulate instructions are implemented: UMAC and
SMAC. The UMAC performs an unsigned 16-bit multiply, producing a 32-bit result, and adds the
result to a 40-bit accumulator made up by the 8 lsb bits from the %y register and the %asr18 register.
The least significant 32 bits are also written to the destination register. SMAC works similarly but per-
forms signed multiply and accumulate. The MAC instructions execute in one clock but have two

Table 2. Instruction timing

Instruction Cycles (MMU disabled) Cycles (MMU fast-write) Cycles (MMU slow-write)

JMPL, RETT 3 3 3

Double load 2 2 2

Single store 2 2 4

Double store 3 3 5

SMUL/UMUL 1/4* 1/4* 1/4*

SDIV/UDIV 35 35 35

Taken Trap 5 5 5

Atomic load/store 3 3 5

All other instructions 1 1 1
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

9 LEON3 / LEON3-FT

GAISLER
clocks latency, meaning that one pipeline stall cycle will be inserted if the following instruction uses
the destination register of the MAC as a source operand.

Assembler syntax:

umacrs1, reg_imm, rd
smacrs1, reg_imm, rd

Operation:
prod[31:0] = rs1[15:0] * reg_imm[15:0]
result[39:0] = (Y[7:0] & %asr18[31:0]) + prod[31:0]
(Y[7:0] & %asr18[31:0]) = result[39:0]
rd = result[31:0]

%asr18 can be read and written using the RDASR and WRASR instructions.

2.2.7 Hardware breakpoints

The integer unit can be configured to include up to four hardware breakpoints. Each breakpoint con-
sists of a pair of application-specific registers (%asr24/25, %asr26/27, %asr28/29 and %asr30/31)
registers; one with the break address and one with a mask:

Any binary aligned address range can be watched - the range is defined by the WADDR field, masked
by the WMASK field (WMASK[x] = 1 enables comparison). On a breakpoint hit, trap 0x0B is gener-
ated. By setting the IF, DL and DS bits, a hit can be generated on instruction fetch, data load or data
store. Clearing these three bits will effectively disable the breakpoint function.

2.2.8 Instruction trace buffer

The instruction trace buffer consists of a circular buffer that stores executed instructions. The trace
buffer operation is controlled through the debug support interface, and does not affect processor oper-
ation (see the DSU description). The size of the trace buffer is configurable from 1 to 64 kB through a
VHDL generic. The trace buffer is 128 bits wide, and stores the following information:

• Instruction address and opcode

• Instruction result

• Load/store data and address

• Trap information

• 30-bit time tag

01231

DL

WADDR[31:2]
%asr24, %asr26
%asr28, %asr30

0231
DSWMASK[31:2]%asr25, %asr27

%asr29, %asr31

Figure 5. Watch-point registers

IF
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

10 LEON3 / LEON3-FT

GAISLER
The operation and control of the trace buffer is further described in section 29.4. Note that in multi-
processor systems, each processor has its own trace buffer allowing simultaneous tracing of all
instruction streams.

2.2.9 Processor configuration register

The application specific register 17 (%asr17) provides information on how various configuration
options were set during synthesis. This can be used to enhance the performance of software, or to sup-
port enumeration in multi-processor systems. The register can be accessed through the RDASR
instruction, and has the following layout:

Field Definitions:
[31:28]: Processor index. In multi-processor systems, each LEON core gets a unique index to support enumeration. The

value in this field is identical to the hindex generic parameter in the VHDL model.
value in this field is identical to the hindex generic parameter in the VHDL model.
[17]: Clock switching enabled (CS). If set switching between AHB and CPU frequency is available.
[16:15]: CPU clock frequency (CF). CPU core runs at (CF+1) times AHB frequency.
[14]: Disable write error trap (DWT). When set, a write error trap (tt = 0x2b) will be ignored. Set to zero after reset.
[13]: Single-vector trapping (SVT) enable. If set, will enable single-vector trapping. Fixed to zero if SVT is not

implemented. Set to zero after reset.
[12]: Load delay. If set, the pipeline uses a 2-cycle load delay. Otherwise, a 1-cycle load delay i s used. Generated from

the lddel generic parameter in the VHDL model.
[11:10]: FPU option. “00” = no FPU; “01” = GRFPU; “10” = Meiko FPU, “11” = GRFPU-Lite
[9]: If set, the optional multiply-accumulate (MAC) instruction is available
[8]: If set, the SPARC V8 multiply and divide instructions are available.
[7:5]: Number of implemented watchpoints (0 - 4)
[4:0]: Number of implemented registers windows corresponds to NWIN+1.

04831

RESERVED%asr17

Figure 6. LEON3 configuration register (%asr17)

NWIN

28

INDEX

7 5

NWPV8

9

M

12 11 10

FPULD

13

SVDW

1416 1517

CS CF
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

11 LEON3 / LEON3-FT

GAISLER
2.2.10 Exceptions

LEON adheres to the general SPARC trap model. The table below shows the implemented traps and
their individual priority. When PSR (processor status register) bit ET=0, an exception trap causes the
processor to halt execution and enter error mode, and the external error signal will then be asserted.

Table 3. Trap allocation and priority

Trap TT Pri Description

reset 0x00 1 Power-on reset

write error 0x2b 2 write buffer error during data store

instruction_access_error 0x01 3 Error during instruction fetch

illegal_instruction 0x02 5 UNIMP or other un-implemented instruction

privileged_instruction 0x03 4 Execution of privileged instruction in user mode

fp_disabled 0x04 6 FP instruction while FPU disabled

cp_disabled 0x24 6 CP instruction while Co-processor disabled

watchpoint_detected 0x0B 7 Hardware breakpoint match

window_overflow 0x05 8 SAVE into invalid window

window_underflow 0x06 8 RESTORE into invalid window

register_hadrware_error 0x20 9 register file EDAC error (LEON-FT only)

mem_address_not_aligned 0x07 10 Memory access to un-aligned address

fp_exception 0x08 11 FPU exception

cp_exception 0x28 11 Co-processor exception

data_access_exception 0x09 13 Access error during data load, MMU page fault

tag_overflow 0x0A 14 Tagged arithmetic overflow

divide_exception 0x2A 15 Divide by zero

interrupt_level_1 0x11 31 Asynchronous interrupt 1

interrupt_level_2 0x12 30 Asynchronous interrupt 2

interrupt_level_3 0x13 29 Asynchronous interrupt 3

interrupt_level_4 0x14 28 Asynchronous interrupt 4

interrupt_level_5 0x15 27 Asynchronous interrupt 5

interrupt_level_6 0x16 26 Asynchronous interrupt 6

interrupt_level_7 0x17 25 Asynchronous interrupt 7

interrupt_level_8 0x18 24 Asynchronous interrupt 8

interrupt_level_9 0x19 23 Asynchronous interrupt 9

interrupt_level_10 0x1A 22 Asynchronous interrupt 10

interrupt_level_11 0x1B 21 Asynchronous interrupt 11

interrupt_level_12 0x1C 20 Asynchronous interrupt 12

interrupt_level_13 0x1D 19 Asynchronous interrupt 13

interrupt_level_14 0x1E 18 Asynchronous interrupt 14

interrupt_level_15 0x1F 17 Asynchronous interrupt 15

trap_instruction 0x80 - 0xFF 16 Software trap instruction (TA)
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

12 LEON3 / LEON3-FT

GAISLER
2.2.11 Single vector trapping (SVT)

Single-vector trapping (SVT) is an SPARC V8e option to reduce code size for embedded applications.
When enabled, any taken trap will always jump to the reset trap handler (%tbr.tba + 0). The trap type
will be indicated in %tbr.tt, and must be decoded by the shared trap handler. SVT is enabled by setting
bit 13 in %asr17. The model must also be configured with the SVT generic = 1.

2.2.12 Address space identifiers (ASI)

In addition to the address, a SPARC processor also generates an 8-bit address space identifier (ASI),
providing up to 256 separate, 32-bit address spaces. During normal operation, the LEON3 processor
accesses instructions and data using ASI 0x8 - 0xB as defined in the SPARC standard. Using the
LDA/STA instructions, alternative address spaces can be accessed. The table shows the ASI usage for
LEON. Only ASI[5:0] are used for the mapping, ASI[7:6] have no influence on operation.

2.2.13 Power-down

The processor can be configured to include a power-down feature to minimize power consumption
during idle periods. The power-down mode is entered by performing a WRASR instruction to
%asr19:
wr %g0, %asr19

During power-down, the pipeline is halted until the next interrupt occurs. Signals inside the processor
pipeline and caches are then static, reducing power consumption from dynamic switching.

2.2.14 Processor reset operation

The processor is reset by asserting the RESET input for at least 4 clock cycles. The following table
indicates the reset values of the registers which are affected by the reset. All other registers maintain
their value (or are undefined).

Table 4. ASI usage

ASI Usage

0x01 Forced cache miss

0x02 System control registers (cache control register)

0x08, 0x09, 0x0A, 0x0B Normal cached access (replace if cacheable)

0x0C Instruction cache tags

0x0D Instruction cache data

0x0E Data cache tags

0x0F Data cache data

0x10 Flush instruction cache

0x11 Flush data cache

Table 5. Processor reset values

Register Reset value

PC (program counter) 0x0

nPC (next program counter) 0x4

PSR (processor status register) ET=0, S=1
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

13 LEON3 / LEON3-FT

GAISLER
By default, the execution will start from address 0. This can be overridden by setting the RSTADDR
generic in the model to a non-zero value. The reset address is always aligned on a 4 kbyte boundary. If
RSTADDR is set to 16#FFFFF#, then the reset address is taken from the signal IRQI.RSTVEC. This
allows the reset address to be changed dynamically.

2.2.15 Multi-processor support

The LEON3 processor support synchronous multi-processing (SMP) configurations, with up to 16
processors attached to the same AHB bus. In multi-processor systems, only the first processor will
start. All other processors will remain halted in power-down mode. After the system has been initial-
ized, the remaining processors can be started by writing to the ‘MP status register’, located in the
multi-processor interrupt controller. The halted processors start executing from the reset address (0 or
RSTADDR generic). Enabling SMP is done by setting the smp generic to 1 or higher. Cache snooping
should always be enabled in SMP systems to maintain data cache coherency between the processors.

2.2.16 Cache sub-system

The LEON3 processor implements a Harvard architecture with separate instruction and data buses,
connected to two independent cache controllers. Both instruction and data cache controllers can be
separately configured to implement a direct-mapped cache or a multi-set cache with set associativity
of 2 - 4. The set size is configurable to 1 - 256 kbyte, divided into cache lines with 16 or 32 bytes of
data. In multi-set configurations, one of three replacement policies can be selected: least-recently-
used (LRU), least-recently-replaced (LRR) or (pseudo-) random. If the LRR algorithm can only be
used when the cache is 2-way associative. A cache line can be locked in the instruction or data cache
preventing it from being replaced by the replacement algorithm.

NOTE: The LRR algorithm uses one extra bit in tag rams to store replacement history. The LRU algo-
rithm needs extra flip-flops per cache line to store access history. The random replacement algorithm
is implemented through modulo-N counter that selects which line to evict on cache miss.

Cachability for both caches is controlled through the AHB plug&play address information. The mem-
ory mapping for each AHB slave indicates whether the area is cachable, and this information is used
to (statically) determine which access will be treated as cacheable. This approach means that the cach-
ability mapping is always coherent with the current AHB configuration. The AMBA plug&play cach-
ability can be overriden using the CACHED generic. When this generic is not zero, it is treated as a
16-bit field, defining the cachability of each 256 Mbyte address block on the AMBA bus. A value of
16#00F3# will thus define cachable areas in 0 - 0x20000000 and 0x40000000 - 0x80000000.

2.2.17 AHB bus interface

The LEON3 processor uses one AHB master interface for all data and instruction accesses. Instruc-
tions are fetched with incremental bursts if the IB bit is set in the cache control register, otherwise sin-
gle READ cycles are used. Data is accessed using byte, half-word and word accesses. A double load/
store data access will generate an incremental burst with two accesses.

The HPROT signals of the AHB bus are driven to indicate if the accesses is instruction or data, and if
it is a user or supervisor access.
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

14 LEON3 / LEON3-FT

GAISLER
2.3 Instruction cache

2.3.1 Operation

The instruction cache can be configured as a direct-mapped cache or as a multi-set cache with asso-
ciativity of 2 - 4 implementing either LRU or random replacement policy or as 2-way associative
cache implementing LRR algorithm. The set size is configurable to 1 - 64 kbyte and divided into
cache lines of 16- 32 bytes. Each line has a cache tag associated with it consisting of a tag field, valid
field with one valid bit for each 4-byte sub-block and optional LRR and lock bits. On an instruction
cache miss to a cachable location, the instruction is fetched and the corresponding tag and data line
updated. In a multi-set configuration a line to be replaced is chosen according to the replacement pol-
icy.

If instruction burst fetch is enabled in the cache control register (CCR) the cache line is filled from
main memory starting at the missed address and until the end of the line. At the same time, the
instructions are forwarded to the IU (streaming). If the IU cannot accept the streamed instructions due
to internal dependencies or multi-cycle instruction, the IU is halted until the line fill is completed. If
the IU executes a control transfer instruction (branch/CALL/JMPL/RETT/TRAP) during the line fill,
the line fill will be terminated on the next fetch. If instruction burst fetch is enabled, instruction
streaming is enabled even when the cache is disabled. In this case, the fetched instructions are only
forwarded to the IU and the cache is not updated. During cache line refill, incremental burst are gener-
ated on the AHB bus.

If a memory access error occurs during a line fill with the IU halted, the corresponding valid bit in the
cache tag will not be set. If the IU later fetches an instruction from the failed address, a cache miss
will occur, triggering a new access to the failed address. If the error remains, an instruction access
error trap (tt=0x1) will be generated.

2.3.2 Instruction cache tag

A instruction cache tag entry consists of several fields as shown in figure 7:

Field Definitions:
[31:10]: Address Tag (ATAG) - Contains the tag address of the cache line.
[9]: LRR - Used by LRR algorithm to store replacement history, otherwise 0.
[8]: LOCK - Locks a cache line when set. 0 if cache locking not implemented.
[7:0]: Valid (V) - When set, the corresponding sub-block of the cache line contains valid data. These bits are set when a

sub-block is filled due to a successful cache miss; a cache fill which results in a memory error will leave the valid
bit unset. A FLUSH instruction will clear all valid bits. V[0] corresponds to address 0 in the cache line, V[1] to
address 1, V[2] to address 2 and so on.

Figure 7. Instruction cache tag layout examples

07891031

VALIDATAG LRR LOCK

03891231

VALIDATAG LRR LOCK

Tag for 1 Kbyte set, 32 bytes/line

Tag for 4 Kbyte set, 16bytes/line

00 0000
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

15 LEON3 / LEON3-FT

GAISLER
NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache configu-
ration. As an example, a 4 kbyte cache with 16 bytes per line would only have four valid bits and 20
tag bits. The cache rams are sized automatically by the ram generators in the model.

2.4 Data cache

2.4.1 Operation

The data cache can be configured as a direct-mapped cache or as a multi-set cache with associativity
of 2 - 4 implementing either LRU or (pseudo-) random replacement policy or as 2-way associative
cache implementing LRR algorithm. The set size is configurable to 1 - 64 kbyte and divided into
cache lines of 16 - 32 bytes. Each line has a cache tag associated with it consisting of a tag field, valid
field with one valid bit for each 4-byte sub-block and optional lock and LRR bits. On a data cache
read-miss to a cachable location 4 bytes of data are loaded into the cache from main memory. The
write policy for stores is write-through with no-allocate on write-miss. In a multi-set configuration a
line to be replaced on read-miss is chosen according to the replacement policy. Locked AHB transfers
are generated for LDST and SWAP instructions. If a memory access error occurs during a data load,
the corresponding valid bit in the cache tag will not be set. and a data access error trap (tt=0x9) will be
generated.

2.4.2 Write buffer

The write buffer (WRB) consists of three 32-bit registers used to temporarily hold store data until it is
sent to the destination device. For half-word or byte stores, the stored data replicated into proper byte
alignment for writing to a word-addressed device, before being loaded into one of the WRB registers.
The WRB is emptied prior to a load-miss cache-fill sequence to avoid any stale data from being read
in to the data cache.

Since the processor executes in parallel with the write buffer, a write error will not cause an exception
to the store instruction. Depending on memory and cache activity, the write cycle may not occur until
several clock cycles after the store instructions has completed. If a write error occurs, the currently
executing instruction will take trap 0x2b.

Note: the 0x2b trap handler should flush the data cache, since a write hit would update the cache while
the memory would keep the old value due the write error.

2.4.3 Data cache tag

A data cache tag entry consists of several fields as shown in figure 8:

Field Definitions:
[31:10]: Address Tag (ATAG) - Contains the address of the data held in the cache line.
[9]: LRR - Used by LRR algorithm to store replacement history. ‘0’ if LRR is not used.
[8]: LOCK - Locks a cache line when set. ‘0’ if instruction cache locking was not enabled in the configuration.

Figure 8. Data cache tag layout

07891031

VALIDATAG LRR LOCK
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

16 LEON3 / LEON3-FT

GAISLER
[3:0]: Valid (V) - When set, the corresponding sub-block of the cache line contains valid data. These bits are set when a
sub-block is filled due to a successful cache miss; a cache fill which results in a memory error will leave the valid
bit unset. V[0] corresponds to address 0 in the cache line, V[1] to address 1, V[2] to address 2 and V[3] to address 3.

NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache configu-
ration. As an example, a 2 kbyte cache with 32 bytes per line would only have eight valid bits and 21
tag bits. The cache rams are sized automatically by the ram generators in the model.

2.5 Additional cache functionality

2.5.1 Cache flushing

Both instruction and data cache are flushed by executing the FLUSH instruction. The instruction
cache is also flushed by setting the FI bit in the cache control register, or by writing to any location
with ASI=0x15. The data cache is also flushed by setting the FD bit in the cache control register, or by
writing to any location with ASI=0x16. Cache flushing takes one cycle per cache line, during which
the IU will not be halted, but during which the caches are disabled. When the flush operation is com-
pleted, the cache will resume the state (disabled, enabled or frozen) indicated in the cache control reg-
ister. Diagnostic access to the cache is not possible during a FLUSH operation and will cause a data
exception (trap=0x09) if attempted.

2.5.2 Diagnostic cache access

Tags and data in the instruction and data cache can be accessed through ASI address space 0xC, 0xD,
0xE and 0xF by executing LDA and STA instructions. Address bits making up the cache offset will be
used to index the tag to be accessed while the least significant bits of the bits making up the address
tag will be used to index the cache set.

Diagnostic read of tags is possible by executing an LDA instruction with ASI=0xC for instruction
cache tags and ASI=0xE for data cache tags. A cache line and set are indexed by the address bits mak-
ing up the cache offset and the least significant bits of the address bits making up the address tag. Sim-
ilarly, the data sub-blocks may be read by executing an LDA instruction with ASI=0xD for instruction
cache data and ASI=0xF for data cache data. The sub-block to be read in the indexed cache line and
set is selected by A[4:2].

The tags can be directly written by executing a STA instruction with ASI=0xC for the instruction
cache tags and ASI=0xE for the data cache tags. The cache line and set are indexed by the address bits
making up the cache offset and the least significant bits of the address bits making up the address tag.
D[31:10] is written into the ATAG field (see above) and the valid bits are written with the D[7:0] of
the write data. Bit D[9] is written into the LRR bit (if enabled) and D[8] is written into the lock bit (if
enabled). The data sub-blocks can be directly written by executing a STA instruction with ASI=0xD
for the instruction cache data and ASI=0xF for the data cache data. The sub-block to be read in the
indexed cache line and set is selected by A[4:2].

In multi-way caches, the address of the tags and data of the ways are concatenated. The address of a
tag or data is thus:

ADDRESS = WAY & LINE & DATA & “00”

Examples: the tag for line 2 in way 1 of a 2x4 Kbyte cache with 16 byte line would be:

A[13:12] = 1 (WAY)

A[11:5] = 2 (TAG)
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

17 LEON3 / LEON3-FT

GAISLER
=> TAG ADDRESS = 0x1040

The data of this line would be at addresses 0x1040 - 0x104C

2.5.3 Cache line locking

In a multi-set configuration the instruction and data cache controllers can be configured with optional
lock bit in the cache tag. Setting the lock bit prevents the cache line to be replaced by the replacement
algorithm. A cache line is locked by performing a diagnostic write to the instruction tag on the cache
offset of the line to be locked setting the Address Tag field to the address tag of the line to be locked,
setting the lock bit and clearing the valid bits. The locked cache line will be updated on a read-miss
and will remain in the cache until the line is unlocked. The first cache line on certain cache offset is
locked in the set 0. If several lines on the same cache offset are to be locked the locking is performed
on the same cache offset and in sets in ascending order starting with set 0. The last set can not be
locked and is always replaceable. Unlocking is performed in descending set order.

NOTE: Setting the lock bit in a cache tag and reading the same tag will show if the cache line locking
was enabled during the LEON3 configuration: the lock bit will be set if the cache line locking was
enabled otherwise it will be 0.

2.5.4 Local instruction ram

A local instruction ram can optionally be attached to the instruction cache controller. The size of the
local instruction is configurable from 1-256 kB. The local instruction ram can be mapped to any 16
Mbyte block of the address space. When executing in the local instruction ram all instruction fetches
are performed from the local instruction ram and will never cause IU pipeline stall or generate an
instruction fetch on the AHB bus. Local instruction ram can be accessed through load/store integer
word instructions (LD/ST). Only word accesses are allowed, byte, halfword or double word access to
the local instruction ram will generate data exception.

2.5.5 Local scratch pad ram

Local scratch pad ram can optionally be attached to both instruction and data cache controllers. The
scratch pad ram provides fast 0-waitstates ram memories for both instructions and data. The ram can
be between 1 - 256 kbyte, and mapped on any 16 Mbyte block in the address space. Accessed per-
formed to the scratch pad ram are not cached, and will not appear on the AHB bus. The scratch pads
rams do not appear on the AHB bus, and can only be read or written by the processor. The instruction
ram must be initialized by software (through store instructions) before it can be used. The default
address for the instruction ram is 0x8e000000, and for the data ram 0x8f000000. See section 2.10 for
additional configuration details. Note: local scratch pad ram can only be enabled when the MMU is
disabled.

2.5.6 Data Cache snooping

To keep the data cache synchronized with external memory, cache snooping can be enabled through
the dsnoop generic. When enabled, the data cache monitors write accesses on the AHB bus to cache-
able locations. If an other AHB master writes to a cacheable location which is currently cached in the
data cache, the corresponding cache line is marked as invalid.

2.5.7 Cache Control Register

The operation of the instruction and data caches is controlled through a common Cache Control Reg-
ister (CCR) (figure 9). Each cache can be in one of three modes: disabled, enabled and frozen. If dis-
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

18 LEON3 / LEON3-FT

GAISLER
abled, no cache operation is performed and load and store requests are passed directly to the memory
controller. If enabled, the cache operates as described above. In the frozen state, the cache is accessed
and kept in sync with the main memory as if it was enabled, but no new lines are allocated on read
misses.

[23]: Data cache snoop enable [DS] - if set, will enable data cache snooping.
[22]: Flush data cache (FD). If set, will flush the instruction cache. Always reads as zero.
[21]: Flush Instruction cache (FI). If set, will flush the instruction cache. Always reads as zero.
[16]: Instruction burst fetch (IB). This bit enables burst fill during instruction fetch.
[15]: Instruction cache flush pending (IP). This bit is set when an instruction cache flush operation is in progress.
[14]: Data cache flush pending (DP). This bit is set when an data cache flush operation

is in progress.
[5]: Data Cache Freeze on Interrupt (DF) - If set, the data cache will automatically be frozen when an asynchronous

interrupt is taken.
[4]: Instruction Cache Freeze on Interrupt (IF) - If set, the instruction cache will automatically be frozen when an

asynchronous interrupt is taken.
[3:2]: Data Cache state (DCS) - Indicates the current data cache state according to the following: X0= disabled, 01 =

frozen, 11 = enabled.
[1:0]: Instruction Cache state (ICS) - Indicates the current data cache state according to the

following: X0= disabled, 01 = frozen, 11 = enabled.

If the DF or IF bit is set, the corresponding cache will be frozen when an asynchronous interrupt is
taken. This can be beneficial in real-time system to allow a more accurate calculation of worst-case
execution time for a code segment. The execution of the interrupt handler will not evict any cache
lines and when control is returned to the interrupted task, the cache state is identical to what it was
before the interrupt. If a cache has been frozen by an interrupt, it can only be enabled again by
enabling it in the CCR. This is typically done at the end of the interrupt handler before control is
returned to the interrupted task.

2.5.8 Cache configuration registers

The configuration of the two caches if defined in two registers: the instruction and data configuration
registers. These registers are read-only and indicate the size and configuration of the caches.

[31]: Cache locking (CL). Set if cache locking is implemented.
[29:28]: Cache replacement policy (REPL). 00 - no replacement policy (direct-mapped cache), 01 - least recently used

(LRU), 10 - least recently replaced (LRR), 11 - random
[27]: Cache snooping (SN). Set if snooping is implemented.
[26:24]: Cache associativity (SETS). Number of sets in the cache: 000 - direct mapped, 001 - 2-way associative, 010 - 3-way

associative, 011 - 4-way associative
[23:20]: Set size (SSIZE). Indicates the size (Kbytes) of each cache set. Size = 2SIZE

Figure 9. Cache control register

ICSDCSIFIB
01234514151631

DPIP DF

621
FIFD

2223
DS

Figure 10. Cache configuration register

SETS LRSTART
03418 12151631 1119

LSIZELR

2023
SSIZESNREPLCL

30 29 28 27 26 25 24

LRSIZE M
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

19 LEON3 / LEON3-FT

GAISLER
[19]: Local ram (LR). Set if local scratch pad ram is implemented.
[18:16]: Line size (LSIZE). Indicated the size (words) of each cache line. Line size = 2LSZ

[15:12]: Local ram size (LRSZ). Indicates the size (Kbytes) of the implemented local scratch pad ram. Local ram size =
2LRSZ

[11:4]: Local ram start address. Indicates the 8 most significant bits of the local ram start address.
[3]: MMU present. This bit is set to ‘1’ if an MMU is present.

All cache registers are accessed through load/store operations to the alternate address space (LDA/
STA), using ASI = 2. The table below shows the register addresses:

2.5.9 Software consideration

After reset, the caches are disabled and the cache control register (CCR) is 0. Before the caches may
be enabled, a flush operation must be performed to initialized (clear) the tags and valid bits. A suitable
assembly sequence could be:
flush
set 0x81000f, %g1
sta%g1, [%g0] 2

2.6 Memory management unit

A SPARC V8 reference MMU (SRMMU) can optionally be enabled in the LEON3 configuartion. For
details on the SRMMU operation, see the SPARC V8 manual.

2.6.1 MMU/Cache operation

When the MMU is disabled, the MMU is bypassed and the caches operate with physical address map-
ping. When the MMU is enabled, the caches tags store the virtual address and also include an 8-bit
context field. Both the tag address and context field must match to generate a cache hit.

If cache snooping is desired when the MMU is enabled, bit 2 of the dsnoop generic must be set. This
will also store the physical address in each cache tag, which is then used for snooping. The size of
each data cache way has to be smaller or equal to the MMU page size, which typically is 4 Kbyte (see
below). This is necessary to avoid aliasing in the cache since the virtual tags are indexed with a virtual
offset while the physical tags are indexed with a physical offset. Physical tags and snoop support is
needed for SMP systems using the MMU (linux-2.6).

Because the cache is virtually tagged, no extra clock cycles are needed in case of a cache load hit. In
case of a cache miss or store hit (write-through cache), 2 extra clock cycles are used to generate the
physical address if there is a TLB hit. If there is a TLB miss the page table must be traversed, resulting
in up to four AMBA read accesses and one possible writeback operation. If a combined TLB is used
by the instruction cache, the translation is stalled until the TLB is free. If fast TLB operation is
selected (tlb_type = 2), the TLB will be accessed simultaneously with tag access, saving 2 clocks on

Table 6. ASI 2 (system registers) address map

Address Register

0x00 Cache control register

0x04 Reserved

0x08 Instruction cache configuration register

0x0C Data cache configuration register
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

20 LEON3 / LEON3-FT

GAISLER
cache miss. This will increase the area somewhat, and may reduce the timing, but usually results in
better overall throughput.

An MMU page fault will generate trap 0x09, and update the MMU status registers as defined in the
SPARC V8 Manual. The cache and memory will not be modified on an MMU page fault.

2.6.2 Translation look-aside buffer (TLB)

The MMU can be configured to use a shared TLB, or separate TLB for instructions and data. The
number of TLB entries can be set to 2 - 32 in the configuration record. The organisation of the TLB
and number of entries is not visible to the software and does thus not require any modification to the
operating system.

2.6.3 Variable minimum page sizes

The standard minimum page size for the SRMMU is 4 Kbyte. The minimum page size can also be
configured to 8, 16 or 32 Kbyte in order to allow for large data cache ways. The page sizes for level 1,
2 and 3 is seen in the table below:

The layouts of the indexes are choosen so that PTE pagetables can be joined together inside one
MMU page without leaving holes. The page size can optionally also be choosen by the program at
run-time by setting generic mmupgsz to 1. In this case the page size is choosen by bit [17:16] in the
MMU control register.

2.6.4 MMU registers

The following MMU registers are implemented:

The MMU control register layout can be seen below, while the definition of the remaning MMU reg-
isters can be found in the SPARC V8 manual.

Table 7. MMU pagse size

Scheme Level-1 Level-2 Level-3

4 Kbyte (default) 16 Mbyte 256 Kbyte 4 Kbyte

8 Kbyte 32 Mbyte 512 Kbyte 8 Kbyte

16 Kbyte 64 Mbyte 1 Mbyte 16 Kbyte

32 Kbyte 256 Mbyte 2 Mbyte 32 Kbyte

Table 8. MMU registers (ASI = 0x19)

Address Register

0x000 MMU control register

0x100 Context pointer register

0x200 Context register

0x300 Fault status register

0x400 Fault address register
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

21 LEON3 / LEON3-FT

GAISLER
.

[31:28]: MMU Implementation ID. Hardcoded to “0000”..
[27:24]: MMU Version ID. Hardcoded to “0001”.
[23:21]: Number of ITLB entires. The number of ITLB entries is calculated as 2ITLB. If the TLB is shared between

instructions and data, this filed indicates to total number of TLBs.
[20:18]: Number of DTLB entires. The number of DTLB entries is calculated as 2DTLB. If the TLB is shared between

instructions and data, this filed is zero.
[17:16]: Page size. The size of the smallest MMU page. 0 = 4 Kbyte; 1 = 8 Kbyte; 2 = 16 Kbyte; 3 = 32 Kbyte. If the page

size is programmable, this field is writable, otherwise it is read-only.
[15]: TLB disable. When set to 1, the TLB will be disabled and each data access will generate an MMU page table walk.
[14]: Separate TLB. This bit is set to 1 if separate instructions and data TLM are implemented.
[1]: No Fault. When NF= 0, any fault detected by the MMU causes FSR and FAR to be updated and causes a fault to be

generated to the processor. When NF= 1, a fault on an access to ASI 9 is handled as when NF= 0; a fault on an access
to any other ASI causes FSR and FAR to be updated but no fault is generated to the processor.

[0]: Enable MMU. 0 = MMU disabled, 1 = MMU enabled.

2.6.5 ASI mappings

When the MMU is used, the following ASI mappings are added:

2.6.6 Snoop tag diagnostic access

If the MMU has been configured to use separate snoop tags, they can be accessed via ASI 0x1E. This
is primarily useful for RAM testing, and should not be performed during normal operation. The figure
below shows the layout of the snoop tag for a 1 Kbyte data cache:

Table 9. MMU ASI usage

ASI Usage

0x10 Flush page

0x10 MMU flush page

0x13 MMU flush context

0x14 MMU diagnostic dcache context access

0x15 MMU diagnostic icache context access

0x19 MMU registers

0x1C MMU bypass

0x1D MMU diagnostic access

0x1E MMU snoop tags diagnostic access

Figure 11. MMU control register

0121720 151631 18
PSZDTLB

2123
ITLBVERIMPL

28 27 24
NF ERESERVEDTD ST

14

Figure 12. Snoop cache tag layout

09 2 11031

ATAG PAR IV“0000”
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

22 LEON3 / LEON3-FT

GAISLER
[31:10] Address tag. The physical address tag of the cache line.
[1]: Parity. The odd parity over the data tag. LEON3FT only.
[0]: Invalid. When set, the cache line is not valid and will cause a cache miss if accessed by the processor. Only present

if fast snooping is enabled.

2.7 Floating-point unit and custom co-processor interface

The SPARC V8 architecture defines two (optional) co-processors: one floating-point unit (FPU) and
one user-defined co-processor. Two different FPU’s can be interfaced the LEON3 pipeline: Gaisler
Research’s GRFPU and GRFPU-Lite. Selection of which FPU to use is done through the VHDL
model’s generic map. The characteristics of the FPU’s are described in the next sections.

2.7.1 Gaisler Research’s floating-point unit (GRFPU)

The high-performance GRFPU operates on single- and double-precision operands, and implements all
SPARC V8 FPU instructions. The FPU is interfaced to the LEON3 pipeline using a LEON3-specific
FPU controller (GRFPC) that allows FPU instructions to be executed simultaneously with integer
instructions. Only in case of a data or resource dependency is the integer pipeline held. The GRFPU is
fully pipelined and allows the start of one instruction each clock cycle, with the exception is FDIV
and FSQRT which can only be executed one at a time. The FDIV and FSQRT are however executed
in a separate divide unit and do not block the FPU from performing all other operations in parallel.

All instructions except FDIV and FSQRT has a latency of three cycles, but to improve timing, the
LEON3 FPU controller inserts an extra pipeline stage in the result forwarding path. This results in a
latency of four clock cycles at instruction level. The table below shows the GRFPU instruction timing
when used together with GRFPC:

The GRFPC controller implements the SPARC deferred trap model, and the FPU trap queue (FQ) can
contain up to 7 queued instructions when an FPU exception is taken. When the GRFPU is enabled in
the model, the version field in %fsr has the value of 2.

2.7.2 GRFPU-Lite

GRFPU-Lite is a smaller version of GRFPU, suitable for FPGA implementations with limited logic
resources. The GRFPU-Lite is not pipelined and executes thus only one instruction at a time. To
improve performance, the FPU controller (GRLFPC) allows GRFPU-Lite to execute in parallel with

Table 10. GRFPU instruction timing with GRFPC

Instruction Throughput Latency

FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD, FSMULD, FITOS, FITOD,
FSTOI, FDTOI, FSTOD, FDTOS, FCMPS, FCMPD, FCMPES. FCMPED 1 4

FDIVS 14 16

FDIVD 15 17

FSQRTS 22 24

FSQRTD 23 25
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

23 LEON3 / LEON3-FT

GAISLER
the processor pipeline as long as no new FPU instructions are pending. Below is a table of worst-case
throughput of the GRFPU-Lite:

When the GRFPU-Lite is enabled in the model, the version field in %fsr has the value of 3.

2.8 Vendor and device identifiers

The core has vendor identifiers 0x01 (Gaisler Research) and device identifiers 0x003. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

2.9 Implementation

2.9.1 Area and timing

Both area and timing of the LEON3 core depends strongly on the selected configuration, target tech-
nology and the used synthesis tool. The table below indicates the typical figures for two baseline con-
figurations.

2.9.2 Technology mapping

LEON3 has two technology mapping generics, fabtech and memtech. The fabtech generic controls the
implementation of some pipeline features, while memtech selects which memory blocks will be used
to implement cache memories and the IU/FPU register file. Fabtech can be set to any of the provided
technologies (0 - NTECH) as defined in the GRPIB.TECH package. See the GRLIB Users’s Manual
for available settings for memtech.

2.9.3 RAM usage

The LEON3 core maps all usage of RAM memory on the syncram, syncram_2p and syncram_dp
components from the technology mapping library (TECHMAP). The type, configuration and number
of RAM blocks is described below.

Register file

Table 11. GRFPU-Lite worst-case instruction timing with GRLFPC

Instruction Throughput Latency

FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD, FSMULD, FITOS, FITOD,
FSTOI, FDTOI, FSTOD, FDTOS, FCMPS, FCMPD, FCMPES. FCMPED 8 8

FDIVS 31 31

FDIVD 57 57

FSQRTS 46 46

FSQRTD 65 65

Table 12. Area and timing

Configuration

Actel AX2000 ASIC (0.13 um)

Cells RAM64 MHz Gates MHz

LEON3, 8 + 8 Kbyte cache 6,500 40 30 25,000 400

LEON3, 8 + 8 Kbyte cache + DSU3 7,500 40 25 30,000 400
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

24 LEON3 / LEON3-FT

GAISLER
The register file is implemented with two synram_2p blocks for all technologies where the
regfile_3p_infer constant in TECHMAP.GENCOMP is set to 0. The organization of the syncram_2p
is shown in the following table:

If regfile_3p_infer is set to 1, the synthesis tool will automatically infer the register. On FPGA tech-
nologies, it can be in either flip-flops or RAM cells, depending on the tool and technology. On ASIC
technologies, it will be flip-flops. The amount of flip-flops inferred is equal to the number of registers:

Number of flip-flops = ((NWINDOWS *16) + 8) * 32

FP register file

If FPU support is enabled, the FP register file is implemented with four synram_2p blocks when the
regfile_3p_infer constant in TECHMAP.GENCOMP is set to 0. The organization of the syncram_2p
blocks is 16x32.

If regfile_3p_infer is set to 1, the synthesis tool will automatically infer the FP register file. For ASIC
technologies the number of inferred flip-flops is equal to number of bits in the FP register file which is
32 * 32 = 1024.

Cache memories

RAM blocks are used to implement the cache tags and data memories. Depending on cache configura-
tion, different types and sizes of RAM blocks are used.

The tag memory is implemented with one syncram per cache way when no snooping is enabled. The
tag memory depth and width is calculated as follows:

Depth = (cache way size in bytes) / (cache line size in bytes)

Width = 32 - log2(cache way size in bytes) + (cache line size in bytes)/4 + lrr + lock

For a 2 Kbyte cache way with lrr replacement and 32 bytes/line, the tag RAM depth will be (2048/32)
= 64. The width will be: 32 - log2(2048) + 32/4 + 1 = 32 - 11 + 8 + 1 = 28. The tag RAM organization
will thus be 64x28 for the configuration. If the MMU is enabled, the tag memory width will increase
with 8 to store the process context ID, and the above configuration will us a 64x36 RAM.

If snooping is enabled, the tag memories will be implemented using the syncram_dp component
(dual-port RAM). One port will be used by the processor for cache access/refill, while the other port
will be used by the snooping and invalidation logic. The size of the syncram_dp block will be the
same as when snooping is disabled. If physical snooping is enabled (separate snoop tags), one extra
RAM block per data way will be instatiated to hold the physical tags. The width of the RAM block
will be the same as the tag address: 32 - log2(way size). A 4 Kbyte data cache way will thus require a
32 - 12 = 20 bit wide RAM block for the physical tags. If fast snooping is enabled, the tag RAM (vir-

Table 13. syncram_2p sizes for LEON3 register file

Register windows Syncram_2p organization

2 - 3 64x32

4 - 7 128x32

8 - 15 256x32

16-31 512x31

32 1024x32
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

25 LEON3 / LEON3-FT

GAISLER
tual and physical) will be implemented using syncram_2p instead of syncram_dp. This can be used to
implement snooping on technologies which lack dual-port RAM but have 2-port RAM.

The data part of the caches (storing instructions or data) is always 32 bit wide. The depth is equal to
the way size in bytes, divided by 4. A cache way of 2 Kbyte will thus use syncram component with
and organization of 512x32.

Instruction Trace buffer

The instruction trace buffer will use four identical RAM blocks (syncram) to implement the buffer
memory. The syncrams will always be 32-bit wide. The depth will depend on the TBUF generic,
which indicates the total size of trace buffer in Kbytes. If TBUF = 1 (1 Kbyte), then four RAM blocks
of 64x32 will be used. If TBUF = 2, then the RAM blocks will be 128x32 and so on.

Scratch pad RAM

If the instruction scratch pad RAM is enabled, a syncram block will be instantiated with a 32-bit data
width. The depth of the RAM will correspond to the configured scratch pad size. An 8 Kbyte scratch
pad will use a syncram with 2048x32 organization. The RAM block for the data scratch pad will be
configured in the same way as the instruction scratch pad.

2.9.4 Double clocking

The LEON3 CPU core be clocked at twice the clock speed of the AMBA AHB bus. When clocked at
double AHB clock frequency, all CPU core parts including integer unit and caches will operate at
double AHB clock frequency while the AHB bus access is performed at the slower AHB clock fre-
quency. The two clocks have to be synchronous and a multicycle paths between the two clock
domains have to be defined at synthesis tool level. A separate component (leon3s2x) is provided for
the double clocked core. Double clocked versions of DSU (dsu3_2x) and MP interrupt controller
(irqmp2x) are used in a double clocked LEON3 system. An AHB clock qualifier signal (clken input)
is used to identify end of AHB cycle. The AHB qualifier signal is generated in CPU clock domain and
is high during the last CPU clock cycle under AHB clock low-phase. Sample leon3-clk2x design pro-
vides a module that generates an AHB clock qualifier signal.

Double-clocked design has two clock domains: AMBA clock domains (HCLK) and CPU clock
domain (CPUCLK). LEON3 (leon3s2x component) and DSU3 (dsu3_2x) belong to CPU clock
domain (clocked by CPUCLK), while the rest of the system is in AMBA clock domain (clocked by
HCLK). Paths between the two clock domains (paths starting in CPUCLK domain and ending in
HCLK and paths starting in HCLK domain and ending in CPUCLK domain) are multicycle paths
with propagation time of two CPUCLK periods (or one HCLK period) with following exceptions:

Start point Through End point Propagation time

leon3s2x core

CPUCLK ahbi CPUCLK 2 CPUCLK

CPUCLK ahbsi CPUCLK 2 CPUCLK

CPUCLK ahbso CPUCLK 2 CPUCLK

HCLK irqi CPUCLK 1 CPUCLK

CPUCLK irqo HCLK 1 CPUCLK

CPUCLK u0_0/p0/c0/sync0/r[*]
(register)

1 CPUCLK
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

26 LEON3 / LEON3-FT

GAISLER
2.9.5 Clock gating

To further reduce the power consumption of the processor, the clock can be gated-off when the pro-
cessor has entered power-down state. Since the cache controllers and MMU operate in parallel with
the processor, the clock cannot be gated immediately when the processor has entered the power-down
state. Instead, a power-down signal (DBGO.idle) is generated when all outstanding AHB accesses
have been completed and it is safe to gate the clock. This signal should be clocked though a positive-
edge flip-flop followed by a negative-edge flip-flop to guarantee that the clock is gated off during the
clock-low phase. To ensure proper start-up state, the clock should not be gated during reset.

Start point Through End point Propagation time

dsu3_2x core

CPUCLK ahbmi CPUCLK 2 CPUCLK

CPUCLK ahbsi CPUCLK 2 CPUCLK

dsui CPUCLK 1 CPUCLK

r[*] (register) rh[*] (register) 1 CPUCLK

irqmp2x core

r2[*] (register) r[*] (register) 1 CPUCLK

Figure 13. Examples of LEON3 clock gating

AHB CLK

GCLK

CLK

RESETN
DBGO.IDLE

D Q D Q

LEON3CG

AHB CLK

GCLK

CLK

RESETN
DSUO.PWD[n]

D Q

LEON3CG
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

27 LEON3 / LEON3-FT

GAISLER
The processor should exit the power-down state when an interrupt become pending. The signal
DBGO.ipend will then go high when this happen, and should be used to re-enable the clock.

When the debug support unit (DSU3) is used, the DSUO.pwd signal should be used instead of
DBGO.idle. This will ensure that the clock also is re-enabled when the processor is switched from
power-down to debug state by the DSU. The DSUO.pwd is a vector with one power-down signal per
CPU (for SMP systems). DSUO.pwd takes DBGO.ipend into account, and no further gating or latch-
ing needs to be done of this signal. If cache snooping has been enabled, the continuous clock will
ensure that the snooping logic is activated when necessary and will keep the data cache synchronized
even when the processor clock is gated-off. In a multi-processor system, all processor except node 0
will enter power-down after reset and will allow immediate clock-gating without additional software
support.

Clock-tree routing must ensure that the continuous clock (CLK) and the gated clock (GCLK) are
phase-aligned. The template design leon3-clock-gating shows an example of a clock-gated system.
The leon3cg entity should be used when clock gating is implemented. This entity has one input more
(GCLK) which should be driven by the gated clock. Using the double-clocked version of leon3
(leon3s2x), the GCLK2 is the gated double-clock while CLK and CLK2 should be continuous.

2.9.6 Scan support

If the SCANTEST generic is set to 1, support for scan testing is enabled. This will make use of the
AHB scan support signals in the following manner: when AHBI.testen and AHBI.scanen are both ‘1’,
the select signals to all RAM blocks (cache RAM, register file and DSU trace buffers) are disabled.
This means that when the scan chain is shifted, no accidental write or read can occur in the RAM
blocks. The scan signal AHBI.testrst is not used as there are no asynchronous resets in the LEON3
core.
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

28 LEON3 / LEON3-FT

GAISLER
2.10 Configuration options

Table 14 shows the configuration options of the core (VHDL generics).

Table 14. Configuration options

Generic Function Allowed range Default

hindex AHB master index 0 - NAHBMST-1 0

fabtech Target technology 0 - NTECH 0 (inferred)

memtech Vendor library for regfile and cache RAMs 0 - NTECH 0 (inferred)

nwindows Number of SPARC register windows. Choose 8 windows to be
compatible with Bare-C and RTEMS cross-compilers.

2 - 32 8

dsu Enable Debug Support Unit interface 0 - 1 0

fpu Floating-point Unit

0 : no FPU
1 - 7: GRFPU 1 - inferred multiplier, 2 - DW multiplier, 3 - Mod-
ule Generator multiplier, 4 - Technology specific multiplier
8 - 14: GRFPU-Lite 8 - simple FPC, 9 - data forwarding FPC, 10
- non-blocking FPC
15: Meiko

16 - 31: as above (modulo 16) but use netlist

0 - 31 0

v8 Generate SPARC V8 MUL and DIV instructions

0 : No multiplier or divider

1 : 16x16 multiplier

2 : 16x16 pipelined multiplier

16#32# : 32x32 pipelined multiplier

0 - 16#3F# 0

cp Generate co-processor interface 0 -1 0

mac Generate SPARC V8e SMAC/UMAC instruction 0 - 1 0

pclow Least significant bit of PC (Program Counter) that is actually
generated. PC[1:0] are always zero and are normally not gener-
ated. Generating PC[1:0] makes VHDL-debugging easier.

0, 2 2

notag Currently not used - -

nwp Number of watchpoints 0 - 4 0

icen Enable instruction cache 0 - 1 1

irepl Instruction cache replacement policy.

0 - least recently used (LRU), 1 - least recently replaced (LRR),
2 - random

0 - 1 0

isets Number of instruction cache sets 1 - 4 1

ilinesize Instruction cache line size in number of words 4, 8 4

isetsize Size of each instruction cache set in kByte 1 - 256 1

isetlock Enable instruction cache line locking 0 - 1 0

dcen Data cache enable 0 - 1 1

drepl Data cache replacement policy.

0 - least recently used (LRU), 1 - least recently replaced (LRR),
2 - random

0 - 1 0

dsets Number of data cache sets 1 - 4 1

dlinesize Data cache line size in number of words 4, 8 4
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

29 LEON3 / LEON3-FT

GAISLER
dsetsize Size of each data cache set in kByte 1 - 256 1

dsetlock Enable data cache line locking 0 - 1 0

dsnoop Enable data cache snooping

Bit 0-1: 0: disable, 1: slow, 2: fast (see text)

Bit 2: 0: simple snooping, 1: save extra physical tags (MMU
snooping)

0 - 6 0

ilram Enable local instruction RAM 0 - 1 0

ilramsize Local instruction RAM size in kB 1 - 512 1

ilramstart 8 MSB bits used to decode local instruction RAM area 0 - 255 16#8E#

dlram Enable local data RAM (scratch-pad RAM) 0 - 1 0

dlramsize Local data RAM size in kB 1 - 512 1

dlramstart 8 MSB bits used to decode local data RAM area 0 - 255 16#8F#

mmuen Enable memory management unit (MMU) 0 - 1 0

itlbnum Number of instruction TLB entries 2 - 64 8

dtlbnum Number of data TLB entries 2 - 64 8

tlb_type 0 : separate TLB with slow write
1: shared TLB with slow write
2: separate TLB with fast write

0 - 2 1

tlb_rep LRU (0) or Random (1) TLB replacement 0 - 1 0

lddel Load delay. One cycle gives best performance, but might create a
critical path on targets with slow (data) cache memories. A 2-
cycle delay can improve timing but will reduce performance
with about 5%.

1 - 2 2

disas Print instruction disassembly in VHDL simulator console. 0 - 1 0

tbuf Size of instruction trace buffer in kB (0 - instruction trace dis-
abled)

0 - 64 0

pwd Power-down. 0 - disabled, 1 - area efficient, 2 - timing efficient. 0 - 2 1

svt Enable single-vector trapping 0 - 1 0

rstaddr Default reset start address 0 - (2**20-1) 0

smp Enable multi-processor support 0 - 15 0

cached Fixed cacheability mask 0 - 16#FFFF# 0

scantest Enable scan test support 0 - 1 0

mmupgsz MMU Page size. 0 = 4K, 1 = 8K, 2 = 16K, 3 = 32K, 4 = pro-
grammable.

0 - 4 0

Table 14. Configuration options

Generic Function Allowed range Default
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

30 LEON3 / LEON3-FT

GAISLER
2.11 Signal descriptions

Table 15 shows the interface signals of the core (VHDL ports).

2.12 Library dependencies

Table 16 shows the libraries used when instantiating the core (VHDL libraries).

2.13 Component declaration

The core has the following component declaration.

entity leon3s is
 generic (
 hindex : integer := 0;
 fabtech : integer range 0 to NTECH := 0;
 memtech : integer range 0 to NTECH := 0;
 nwindows : integer range 2 to 32 := 8;
 dsu : integer range 0 to 1 := 0;
 fpu : integer range 0 to 3 := 0;
 v8 : integer range 0 to 2 := 0;
 cp : integer range 0 to 1 := 0;

Table 15. Signal descriptions

Signal name Field Type Function Active

CLK N/A Input AMBA and processor clock (leon3s, leon3cg) -

CLK2 Input Processor clock in 2x mode (leon3sx2)

GCLK2 Input Gated processor clock in 2x mode (leon3sx2)

RSTN N/A Input Reset Low

AHBI * Input AHB master input signals -

AHBO * Output AHB master output signals -

AHBSI * Input AHB slave input signals -

IRQI IRL[3:0] Input Interrupt level High

RST Input Reset power-down and error mode High

RUN Input Start after reset (SMP system only)

IRQO INTACK Output Interrupt acknowledge High

IRL[3:0] Output Processor interrupt level High

DBGI - Input Debug inputs from DSU -

DBGO - Output Debug outputs to DSU -

ERROR Processor in error mode, execution halted Low

GCLK Input Gated processor clock for leon3cg

* see GRLIB IP Library User’s Manual

Table 16. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER LEON3 Component, signals LEON3 component declaration, interrupt and
debug signals declaration
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

31 LEON3 / LEON3-FT

GAISLER
 mac : integer range 0 to 1 := 0;
 pclow : integer range 0 to 2 := 2;
 notag : integer range 0 to 1 := 0;
 nwp : integer range 0 to 4 := 0;
 icen : integer range 0 to 1 := 0;
 irepl : integer range 0 to 2 := 2;
 isets : integer range 1 to 4 := 1;
 ilinesize : integer range 4 to 8 := 4;
 isetsize : integer range 1 to 256 := 1;
 isetlock : integer range 0 to 1 := 0;
 dcen : integer range 0 to 1 := 0;
 drepl : integer range 0 to 2 := 2;
 dsets : integer range 1 to 4 := 1;
 dlinesize : integer range 4 to 8 := 4;
 dsetsize : integer range 1 to 256 := 1;
 dsetlock : integer range 0 to 1 := 0;
 dsnoop : integer range 0 to 6:= 0;
 ilram : integer range 0 to 1 := 0;
 ilramsize : integer range 1 to 512 := 1;
 ilramstart : integer range 0 to 255 := 16#8e#;
 dlram : integer range 0 to 1 := 0;
 dlramsize : integer range 1 to 512 := 1;
 dlramstart : integer range 0 to 255 := 16#8f#;
 mmuen : integer range 0 to 1 := 0;
 itlbnum : integer range 2 to 64 := 8;
 dtlbnum : integer range 2 to 64 := 8;
 tlb_type : integer range 0 to 1 := 1;
 tlb_rep : integer range 0 to 1 := 0;
 lddel : integer range 1 to 2 := 2;
 disas : integer range 0 to 1 := 0;
 tbuf : integer range 0 to 64 := 0;
 pwd : integer range 0 to 2 := 2; -- power-down
 svt : integer range 0 to 1 := 1; -- single vector trapping
 rstaddr : integer := 0;
 smp : integer range 0 to 15 := 0; -- support SMP systems
 cached : integer := 0; -- cacheability table
 scantest : integer := 0
);

port (
 clk : in std_ulogic;
 rstn : in std_ulogic;
 ahbi : in ahb_mst_in_type;
 ahbo : out ahb_mst_out_type;
 ahbsi : in ahb_slv_in_type;
 ahbso : in ahb_slv_out_vector;
 irqi : in l3_irq_in_type;
 irqo : out l3_irq_out_type;
 dbgi : in l3_debug_in_type;
 dbgo : out l3_debug_out_type
);
end;
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

32 LEON3 / LEON3-FT

GAISLER
3 LEON3FT - Fault-Tolerant SPARC V8 Processor

3.1 Overview

LEON3 is a 32-bit processor core conforming to the IEEE-1754 (SPARC V8) architecture. It is
designed for embedded applications, combining high performance with low complexity and low
power consumption.

The LEON3 core has the following main features: 7-stage pipeline with Harvard architecture, sepa-
rate instruction and data caches, on-chip debug support and multi-processor extensions.

The LEON3FT processor is a derivative of the standard LEON3 SPARC V8 processor, enhanced with
fault-tolerance against SEU errors. The fault-tolerance is focused on the protection of on-chip RAM
blocks, which are used to implement IU/FPU register files and the cache memory. The LEON3FT
processor is functionally identical to the standard LEON3 processor, and this chapter only outlines the
FT features.

3.2 Register file SEU protection

3.2.1 IU SEU protection

The SEU protection for the integer unit register file can be implemented in four different ways,
depending on target technology and available RAM blocks. The SEU protection scheme is selected
during synthesis, using the iuft VHDL generic. Table 17 below shows the implementation characteris-
tics of the four possible SEU protection schemes.

The SEU error detection has no impact on behavior, but a correction cycle (scheme 1 and 3) will delay
the current instruction with 6 clock cycles. An uncorrectable error in the IU register file will cause
trap 0x20 (register_access_error).

3.2.2 FPU SEU protection

The FPU register file has similar SEU protection as the IU register file, but with less configuration
options. When the GRFPU is selected and the FPU register file protection is enabled, the protection
scheme is always 8-bit parity without pipeline restart. For GRFPU-Lite the protection scheme is
always 4-bit parity with pipeline restart. An uncorrectable error in the FPU register file will cause an
(deferred) FPU exception with %fsr.ftt set to 5 (hardware_error). When FPU register file protection is
disabled the FPU register file is implemented using flip-flops.

Table 17. Integer unit SEU protection schemes

ID Implementation Description

0 Hardened flip-flops or TMR Register file implemented with SEU hardened flip-flops. No error checking.

1 4-bit parity with restart 4-bit checksum per 32-bit word. Detects and corrects 1 bit per byte (4 bits
per word). Pipeline restart on correction.

2 8-bit parity without restart 8-bit checksum per 32-bit word. Detects and corrects 1 bit per byte (4 bits
per word). Correction on-the-fly without pipeline restart.

3 7-bit BCH with restart 7-bit BCH checksum per 32-bit word. Detects 2 bits and corrects 1 bit per
word. Pipeline restart on correction.
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

33 LEON3 / LEON3-FT

GAISLER
3.2.3 ASR16 register

ASR register 16 (%asr16) is used to control the IU/FPU register file SEU protection. It is possible to
disable the SEU protection by setting the IDI/FDI bits, and to inject errors using the ITE/FTE bits.
Corrected errors in the register file are counted, and available in ICNT and FCNT fields. The counters
saturate at their maximum value (7), and should be reset by software after read-out.

[31:30]: FP FT ID - Defines which SEU protection is implemented in the FPU (table 17).
[29:27]: FP RF error counter - Number of detected parity errors in the FP register file.
[26:18]: Reserved
[17]: FPU RF Test Enable - Enables FPU register file test mode. Parity bits are xored with TB before written to the FPU

register file.
[16]: FP RF protection disable (FDI) - Disables FP RF parity protection when set.
[15:14]: IU FT ID - Defines which SEU protection is implemented in the IU (table 17).
[13:11]: IU RF error counter - Number of detected parity errors in the IU register file.
[10:3]: RF Test bits (FTB) - In test mode, these bits are xored with correct parity bits before written to the register file.
[2]: DP ram select (DP) - Only applicable if the IU or FPU register files consists of two dual-port rams. See table below.
[1]: IU RF Test Enable - Enables register file test mode. Parity bits are xored with TB before written to the register file.
[0]: IU RF protection disable (IDI) - Disables IU RF parity protection when set.

3.2.4 Register file EDAC/parity bits diagnostic read-out

The register file EDAC/parity bits can be read out through the DSU address space at 0x300800, or by
the processor using an LDUHA instruction to ASI 0x0F. The ECC bits are read out for both read ports
simultaneously as defined in the figure below:

Table 18. DP ram select usage

ITE/FTE DP Function

1 0 Write to IU register (%i, %l, %o, %g) will only write location of %rs2

Write to FPU register (%f) will only write location of %rs2

1 1 Write to IU register (%i, %l, %o, %g) will only write location of %rs1

Write to FPU register (%f) will only write location of %rs1

0 X IU and FPU registers written nominally

Figure 14. %asr16 - Register protection control register

FDI

162629
RESERVED

27 17

FCNT IDI

01013
TB[7:0]

11 3 2
DP ITE

1

ICNTFPFT
31 30

IUFT
15 14

FTE

Figure 15. Register file ECC read-out layout

RF ECC Port 2RESERVED

16 07

RF ECC port 1
831
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

34 LEON3 / LEON3-FT

GAISLER
When the checkbits are read out using LDUHA, bit 29 (RFT) in the cache control register should be
set to 1. The desired register should be used as address, as shown below (%l0):
lduha [%l0 + %l0] 0x0F, %g1

Bit 0 (RF EDAC disable) in %asr16 should be set to 1 during diagnostic read-out with LDUHA, to
avoid EDAC correction cycles or error traps.

3.2.5 IU/FPU register file error injection

For test purposes, the IU and FPU register file EDAC/parity checkbits can be modified by software.
This is done by setting the ITE or FTE bits to ‘1’. In this mode, the EDAC/parity bits are first XORed
with the contents of %asr16.FTB before written to the register files.

3.3 Cache memory

Each word in the tag or data memories is protected by four check bits. An error during cache access
will cause a cache line flush, and a re-execution of the failing instruction. This will ensure that the
complete cache line (tags and data) is refilled from external memory. For every detected error, a
counter in the cache control register is incremented. The counters saturate at their maximum value (3),
and should be reset by software after read-out. The cache memory check bits can be diagnostically
read by setting the PS bit in the cache control register and then perform a normal tag or data diagnos-
tic read.

3.3.1 Cache Control Register

[29]: Register file test select (RFT). If set, will allow the read-out of IU register file checkbits via ASI 0x0F.
[28]: Parity Select [PS] - if set diagnostic read will return 4 check bits in the lsb bits, otherwise tag or data word is

returned.
[27:24]: Test Bits [TB] - if set, check bits will be xored with test bits TB during diagnostic write
[23]: Data cache snoop enable [DS] - if set, will enable data cache snooping.
[22]: Flush data cache (FD). If set, will flush the instruction cache. Always reads as zero.
[21]: Flush Instruction cache (FI). If set, will flush the instruction cache. Always reads as zero.
[20:19]: FT scheme: “00” = no FT, “01” = 4-bit checking implemented
[16]: Instruction burst fetch (IB). This bit enables burst fill during instruction fetch.
[15]: Instruction cache flush pending (IP). This bit is set when an instruction cache flush operation is in progress.
[14]: Data cache flush pending (DP). This bit is set when an data cache flush operation is in progress.
[13:12]: Instruction Tag Errors (ITE) - Number of detected parity errors in the instruction tag cache.
[11:10]: Instruction Data Errors (IDE) - Number of detected parity errors in the instruction data cache.
[9:8]: Data Tag Errors (DTE) - Number of detected parity errors in the data tag cache.
[7:6]: Data Data Errors (IDE) - Number of detected parity errors in the data data cache.
[5]: Data Cache Freeze on Interrupt (DF) - If set, the data cache will automatically be frozen when an asynchronous

interrupt is taken.
[4]: Instruction Cache Freeze on Interrupt (IF) - If set, the instruction cache will automatically be frozen when an

asynchronous interrupt is taken.
[3:2]: Data Cache state (DCS) - Indicates the current data cache state according to the following: X0= disabled, 01 =

frozen, 11 = enabled.
[1:0]: Instruction Cache state (ICS) - Indicates the current data cache state according to the following: X0= disabled, 01

= frozen, 11 = enabled.

Figure 16. Cache control register

ICSDCSIFIB
01234514151631

DPIP DF
621

FIFD
2223

DS
7
DDEDTEIDEITE

89101112132728

TBPS

29 24 20 19

FTRFT

30
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

35 LEON3 / LEON3-FT

GAISLER
3.3.2 Diagnostic cache access

The context and parity bits for data and instruction caches can be read out via ASI 0xC - 0xF when the
PS bit in the cache control register is set. The data will be organized as shown below:

Figure 17. Data cache tag diagnostic access when CCR.PS = ‘1’

04 331

TAG PAR[3:0]ASI = 0xC MMU CTX [7:0]

ASI = 0xD

16 1523

DATA PAR[3:0]

ASI = 0xE

ASI = 0xF
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

36 LEON3 / LEON3-FT

GAISLER
3.4 DSU memory map

The FPU register file check bits can be accessed at address 0x301800 - 0x30187C.

Table 19. DSU memory map

Address offset Register

0x000000 DSU control register

0x000008 Time tag counter

0x000020 Break and Single Step register

0x000024 Debug Mode Mask register

0x000040 AHB trace buffer control register

0x000044 AHB trace buffer index register

0x000050 AHB breakpoint address 1

0x000054 AHB mask register 1

0x000058 AHB breakpoint address 2

0x00005c AHB mask register 2

0x100000 - 0x110000 Instruction trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,

..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x110000 Instruction Trace buffer control register

0x200000 - 0x210000 AHB trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,

..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x300000 - 0x3007FC IU register file, port1 (%asr16.dpsel = 0)

IU register file, port 2 (%asr16.dpsel = 1)

0x300800 - 0x300FFC IU register file check bits

0x301000 - 0x30107C

0x301800 - 0x30187C

FPU register file

FPU register file check bits

0x400000 - 0x4FFFFC IU special purpose registers

0x400000 Y register

0x400004 PSR register

0x400008 WIM register

0x40000C TBR register

0x400010 PC register

0x400014 NPC register

0x400018 FSR register

0x40001C CPSR register

0x400020 DSU trap register

0x400024 DSU ASI register

0x400040 - 0x40007C ASR16 - ASR31 (when implemented)

0x700000 - 0x7FFFFC ASI diagnostic access (ASI = value in DSU ASI register, address = address[19:0])
ASI = 0x9 : Local instruction RAM
ASI = 0xB : Local data RAM
ASI = 0xC : Instruction cache tags
ASI = 0xD : Instruction cache data
ASI = 0xE : Data cache tags
ASI = 0xF : Instruction cache data
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

37 LEON3 / LEON3-FT

GAISLER
3.4.1 Data scrubbing

There is generally no need to perform data scrubbing on either IU/FPU register files or the cache
memory. During normal operation, the active part of the IU/FPU register files will be flushed to mem-
ory on each task switch. This will cause all registers to be checked and corrected if necessary. Since
most real-time operating systems performs several task switches per second, the data in the register
files will be frequently refreshed.

The similar situation arises for the cache memory. In most applications, the cache memory is signifi-
cantly smaller than the full application image, and the cache contents is gradually replaced as part of
normal operation. For very small programs, the only risk of error build-up is if a part of the applica-
tion is resident in the cache but not executed for a long period of time. In such cases, executing a
cache flush instruction periodically (e.g. once per minute) is sufficient to refresh the cache contents.

3.4.2 Initialization

After power-on, the check bits in the IU and FPU register files are not initialized. This means that
access to an un-initialized (un-written) register could cause a register access trap (tt = 0x20). Such
behavior is considered as a software error, as the software should not read a register before it has been
written. It is recommended that the boot code for the processor writes all registers in the IU and FPU
register files before launching the main application.

The check bits in the cache memories do not need to be initialized as this is done automatically during
cache line filling.

3.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x053. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

3.6 Limitations

The LEON3FT core does not support the following functions present in the LEON3 model:

- Local instruction/data scratch pad RAM

- Cache locking
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

38 LEON3 / LEON3-FT

Copyright Aeroflex Gaisler AB March 2010, Version 1.1

GAISLER

4 Reference documents

[AMBA] AMBA Specification, Rev 2.0, ARM IHI 0011A, 13 May 1999, Issue A, first
release, ARM Limited

[GRLIB] GRLIB IP Library User's Manual, Aeroflex Gaisler, www.aeroflex.com/gaisler

[GRIP] GRLIB IP Core User's Manual, Aeroflex Gaisler, www.aeroflex.com/gaisler

[SPARC] The SPARC Architecture Manual, Version 8, Revision SAV080SI9308, SPARC
International Inc.

5 Ordering information

Ordering information is provided in table 20 and a legend is provided in table 21.

Table 20. Ordering information

Product Source code Netlist Technology

LEON3 VHDL N/A Any

LEON3 + GRFPU Lite N/A EDIF/VHDL Any

LEON3-FT N/A EDIF/VHDL RTAX, RT ProASIC3

LEON3-FT + GRFPU-FT Lite N/A EDIF/VHDL RTAX, RT ProASIC3

Table 21. Ordering legend

Designator Option Description

Product LEON3 LEON3 Integer Unit

LEON3 + GRFPU Lite LEON3 Integer Unit + Floating Point Unit

LEON3-FT Fault-Tolerant Integer Unit

LEON3-FT + GRFPU-FT Lite Fault-Tolerant Integer Unit + Floating Point Unit

Netlist EDIF EDIF gate-level netlist

VHDL VHDL gate-level netlist

Technology AX Axcelerator

RTAX Radiation-Tolerant Axcelerator

PROASIC3 ProASIC3

PROASIC3E ProASIC3E

PROASIC3L ProASIC3L

RT PROASIC3 Radiation-Tolerant ProASIC3

FUSION Fusion

IGLOO IGLOO

39 LEON3 / LEON3-FT

GAISLER
Table of contents

1 Introduction.. 2
1.1 Overview ... 2
1.2 Signal overview... 3
1.3 Implementation characteristics.. 3

2 LEON3 - High-performance SPARC V8 32-bit Processor.. 4
2.1 Overview ... 4

2.1.1 Integer unit .. 4
2.1.2 Cache sub-system.. 4
2.1.3 Floating-point unit and co-processor .. 5
2.1.4 Memory management unit .. 5
2.1.5 On-chip debug support.. 5
2.1.6 Interrupt interface.. 5
2.1.7 AMBA interface.. 5
2.1.8 Power-down mode .. 5
2.1.9 Multi-processor support .. 5
2.1.10 Performance .. 6

2.2 LEON3 integer unit ... 6
2.2.1 Overview... 6
2.2.2 Instruction pipeline ... 7
2.2.3 SPARC Implementor’s ID... 8
2.2.4 Divide instructions .. 8
2.2.5 Multiply instructions ... 8
2.2.6 Multiply and accumulate instructions ... 8
2.2.7 Hardware breakpoints ... 9
2.2.8 Instruction trace buffer.. 9
2.2.9 Processor configuration register ... 10
2.2.10 Exceptions... 11
2.2.11 Single vector trapping (SVT).. 12
2.2.12 Address space identifiers (ASI) .. 12
2.2.13 Power-down .. 12
2.2.14 Processor reset operation .. 12
2.2.15 Multi-processor support .. 13
2.2.16 Cache sub-system.. 13
2.2.17 AHB bus interface... 13

2.3 Instruction cache.. 14
2.3.1 Operation... 14
2.3.2 Instruction cache tag ... 14

2.4 Data cache ... 15
2.4.1 Operation... 15
2.4.2 Write buffer ... 15
2.4.3 Data cache tag ... 15

2.5 Additional cache functionality .. 16
2.5.1 Cache flushing .. 16
2.5.2 Diagnostic cache access .. 16
2.5.3 Cache line locking... 17
2.5.4 Local instruction ram .. 17
2.5.5 Local scratch pad ram ... 17
2.5.6 Data Cache snooping .. 17
2.5.7 Cache Control Register ... 17
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

40 LEON3 / LEON3-FT

GAISLER
2.5.8 Cache configuration registers ... 18
2.5.9 Software consideration.. 19

2.6 Memory management unit... 19
2.6.1 MMU/Cache operation ... 19
2.6.2 Translation look-aside buffer (TLB) ... 20
2.6.3 Variable minimum page sizes ... 20
2.6.4 MMU registers .. 20
2.6.5 ASI mappings.. 21
2.6.6 Snoop tag diagnostic access.. 21

2.7 Floating-point unit and custom co-processor interface ... 22
2.7.1 Gaisler Research’s floating-point unit (GRFPU).. 22
2.7.2 GRFPU-Lite .. 22

2.8 Vendor and device identifiers .. 23
2.9 Implementation.. 23

2.9.1 Area and timing... 23
2.9.2 Technology mapping... 23
2.9.3 RAM usage ... 23
2.9.4 Double clocking .. 25
2.9.5 Clock gating .. 26
2.9.6 Scan support.. 27

2.10 Configuration options.. 28
2.11 Signal descriptions .. 30
2.12 Library dependencies .. 30
2.13 Component declaration.. 30

3 LEON3FT - Fault-Tolerant SPARC V8 Processor .. 32
3.1 Overview ... 32
3.2 Register file SEU protection.. 32

3.2.1 IU SEU protection... 32
3.2.2 FPU SEU protection ... 32
3.2.3 ASR16 register.. 33
3.2.4 Register file EDAC/parity bits diagnostic read-out .. 33
3.2.5 IU/FPU register file error injection... 34

3.3 Cache memory... 34
3.3.1 Cache Control Register ... 34
3.3.2 Diagnostic cache access .. 35

3.4 DSU memory map... 36
3.4.1 Data scrubbing .. 37
3.4.2 Initialization .. 37

3.5 Vendor and device identifiers .. 37
3.6 Limitations... 37

4 Reference documents ... 38

5 Ordering information ... 38
Copyright Aeroflex Gaisler AB March 2010, Version 1.1

Aeroflex Gaisler AB tel +46 31 7758650

Kungsgatan 12 fax +46 31 421407

411 19 Göteborg sales@gaisler.com

Sweden www.aeroflex.com/gaisler

Copyright © March 2010 Aeroflex Gaisler AB.

All information is provided as is. There is no warranty that it is correct or suitable for any purpose, neither
implicit nor explicit.

Information furnished by Aeroflex Gaisler AB is believed to be accurate and reliable.

However, no responsibility is assumed by Aeroflex Gaisler AB for its use, nor for any infringements of pat-
ents or other rights of third parties which may result from its use.

No license is granted by implication or otherwise under any patent or patent rights of Aeroflex Gaisler AB.

41 LEON3 / LEON3-FT

Copyright Aeroflex Gaisler AB March 2010, Version 1.1

GAISLER

GAISLER

http://www.gaisler.com

	1 Introduction
	1.1 Overview
	1.2 Signal overview
	1.3 Implementation characteristics

	2 LEON3 - High-performance SPARC V8 32-bit Processor
	2.1 Overview
	2.1.1 Integer unit
	2.1.2 Cache sub-system
	2.1.3 Floating-point unit and co-processor
	2.1.4 Memory management unit
	2.1.5 On-chip debug support
	2.1.6 Interrupt interface
	2.1.7 AMBA interface
	2.1.8 Power-down mode
	2.1.9 Multi-processor support
	2.1.10 Performance

	2.2 LEON3 integer unit
	2.2.1 Overview
	2.2.2 Instruction pipeline
	2.2.3 SPARC Implementor’s ID
	2.2.4 Divide instructions
	2.2.5 Multiply instructions
	2.2.6 Multiply and accumulate instructions
	2.2.7 Hardware breakpoints
	2.2.8 Instruction trace buffer
	2.2.9 Processor configuration register
	2.2.10 Exceptions
	2.2.11 Single vector trapping (SVT)
	2.2.12 Address space identifiers (ASI)
	2.2.13 Power-down
	2.2.14 Processor reset operation
	2.2.15 Multi-processor support
	2.2.16 Cache sub-system
	2.2.17 AHB bus interface

	2.3 Instruction cache
	2.3.1 Operation
	2.3.2 Instruction cache tag

	2.4 Data cache
	2.4.1 Operation
	2.4.2 Write buffer
	2.4.3 Data cache tag

	2.5 Additional cache functionality
	2.5.1 Cache flushing
	2.5.2 Diagnostic cache access
	2.5.3 Cache line locking
	2.5.4 Local instruction ram
	2.5.5 Local scratch pad ram
	2.5.6 Data Cache snooping
	2.5.7 Cache Control Register
	2.5.8 Cache configuration registers
	2.5.9 Software consideration

	2.6 Memory management unit
	2.6.1 MMU/Cache operation
	2.6.2 Translation look-aside buffer (TLB)
	2.6.3 Variable minimum page sizes
	2.6.4 MMU registers
	2.6.5 ASI mappings
	2.6.6 Snoop tag diagnostic access

	2.7 Floating-point unit and custom co-processor interface
	2.7.1 Gaisler Research’s floating-point unit (GRFPU)
	2.7.2 GRFPU-Lite

	2.8 Vendor and device identifiers
	2.9 Implementation
	2.9.1 Area and timing
	2.9.2 Technology mapping
	2.9.3 RAM usage
	2.9.4 Double clocking
	2.9.5 Clock gating
	2.9.6 Scan support

	2.10 Configuration options
	2.11 Signal descriptions
	2.12 Library dependencies
	2.13 Component declaration

	3 LEON3FT - Fault-Tolerant SPARC V8 Processor
	3.1 Overview
	3.2 Register file SEU protection
	3.2.1 IU SEU protection
	3.2.2 FPU SEU protection
	3.2.3 ASR16 register
	3.2.4 Register file EDAC/parity bits diagnostic read-out
	3.2.5 IU/FPU register file error injection

	3.3 Cache memory
	3.3.1 Cache Control Register
	3.3.2 Diagnostic cache access

	3.4 DSU memory map
	3.4.1 Data scrubbing
	3.4.2 Initialization

	3.5 Vendor and device identifiers
	3.6 Limitations

	4 Reference documents
	5 Ordering information

