POSITIVE GUIDED TYPE SH RELAYS \& TYPE LS CONTACTORS FOR SAFETY CIRCUITS

Certified as Positive Guided AEG Relays and Contactors
1. Independent Test Lab Certified Per IEC 947-5-1
2. 100\% Quality Tested Per IEC 947-5-1

Positive Guided for Safety

Purpose - Critical Circuits

IEC Standard 947-5-1 was developed to provide industrials much greater reliance of positive accurate relay signals. While relays and contactors that meet this standard can be used universally, the main applications are safety circuits and important automation machinery sequencing circuits.

Description

Positive-guided control relays and contactors

The control structure of a safety control system employs control relays and/or contactors to establish the intended functions of the machine. They must function in such a way, that the safety requirements can be met. To achieve this, contacts in these devices control each other mutually. This is only possible, if the position relations of the contacts always remain the same. The most important relation is between the NO and NC contacts. They must never be closed simultaneously, even if the NO contacts should be welded closed.

This feature is not normally available in standard relays. The positive-guided relays and contactors should be designed with a one-piece movable contact carrier, thus guaranteeing the same relative position for all the conatacts. In the new state, contacts of the opposite function have at least a contact distance of 0.5 mm between the opening of a NO contact and the closing of a NC contact (or vice versa). During the mechanical/ electrical life, this distance increases slightly, thus maintaining the safety characteristic.

This character of the positive-guided relay per IEC947-5 Standard for Control Relays is a special requirement for this type of device.

Safety and Reliability in Auxiliary Interlocks

Auxiliary interlocks signal action taken or required in machinery. If these signals are not constantly reliable, serious problems can result to man and machinery. Major manufacturers, then, demand the most reliable designs available in the industry.

Fulfilling safety requirements does not come free. One important means for achieving the necessary safety level is by using redundant devices. This use of additional equipment, increases not only the cost of the device, but also reduces the reliability of the control system. It is therefore essential to use very reliable devices in order to insure a reliable operation of the machinery. Otherwise one trades safety for poor performance.

POSITIVE GUIDANCE

With a one piece contact carrier, both auxiliary and main poles are assured to operate as a unit. This assures guaranteed positive guidance operation and true feedback signals to processors.

One piece construction applies to all type SH relays (SH4, 8, 10) and Type LS contactors. (LS4, 7, 17, 27, 37, to 25HP)

AUXILIARY CONTACTS RELIABLE OPERATION

Each pole has 2 movable contacts
The design of each pole in the auxiliary contact system has both parallel movable contacts and 300 micron radius serrated stationary contacts, further assuring contact reliability even with 24 volt DC low power circuits.

CONTACT CONTINUITY

Contact Continuity

The most important issue for reliability of control relays is the contact continuity, which is particularly important for low, increasingly common, control voltages (e.g., 24V DC). Environmental conditions influence the reliability of contacts These influences are dirt, dust, corrosion and aging. Of these, the most important influence is dust. Dust particles up to 20 microns can stick to a vertical plane. Larger grains fall through a vertically mounted contact.

Auxiliary Contact and Relay Contact Design

Design of auxiliary contact accounts for high reliability. The first method to improve the low voltage performance of auxiliary contacts is the use of small tips of about 300 micron radios size on the contact surface. This functions by crushing some of the smaller particles sticking to the contact surface. The next possibility is the use of contact bridges having the form of a (capitol) H . This works by doubling the number of contacts bridges and by connecting both bridges in the middle. This design requires, however, some flexibilty in the contact's bridge which in turn calls for a very thin contact bridge. Thus the smaller cross section allows only small currents. This then is a special purpose contact. Practical application however calls for high performance at low and high level currents.
 Thus the double bridge was developed having the best overall performance. Another design concern comes from investigating the dust particle sizes and behavior. The stationary contact is serrated to form small grooves with 20 micron distance. Dust particles sticking to these grooves do not obstruct the continuity when combined with a 300 micron contact tip as shown above. Tests performed with these contact systems have shown the systems with double bridges and the serrated contacts provide the needed reliable performance.

Magnet Design

Anti-stick magnet design cut out in magnet face in the center of the E magnet provides permanent air gap, assisting clean drop-out over long mechanical life. "E" Type magnet design using evolutionary computer technique.

Each double bridge pole has parallel movable contacts

Coils/Magnet Design

Type LS Coil voltage span is 40% wider than the NEMA standard requirement of $+10 \%$ and -15%. This assures cooler operation and longer life.

Name Plate A.C., Voltage
NEMA 25\% total span
AEG "LS" 35% total span $10 / 25$ or 40% wider voltage span

$$
-25 \%
$$

AEG Type LS

Example: 120V 60HZ Coil

NEMA Span 102 V to 132 V or 30 Volts AEG 90 V to 132 V or 42 Volts $12 / 30=40 \%$

Further insurance against brown outs/burn outs.

Arc Chute Design

U shaped arc runner magnetically starts arc toward contact tips. Iron ridge in center of main stationary contacts draw arc to ridge and off contacts saving silver. Iron tip at end of movable contact attracts arc to tip of contact saving silver.
Extra large contact air gap is designed with contacts in open position.

- Overloads with precision trip and differential singlephasing protection. All OL's are ambient temperature compensated.

nema

Additional Performance Insurance, for Safe Operation

For years and years, AEG has been considered a technical leader in electrical design. The above design features have been standard on AEG Type LS Contactors and SH Relays for many years and result in proven performance products. Each of the companies noted below has a major installation using AEG controls/switchgear.

SELECTED KEY INTERNATIONAL USERS OF AEG CONTROLS

SHELL R\&D	PHILLIPS PETROLEUM	FORD PLANTS	UNION CARBIDE	EXXON REFINERIES
SHELL OFFICE	SHELL REFINERIES	GM OPEL PLANTS	LINDE PLANTS	EXXON CHEMICAL PLANTS
AIR PRODUCTS	TEXACO	PORTLAND CEMENT	MARATHON	GENERAL FOODS
AMOCO CHEMICALS	EXXON R\&D	VOLKSWAGEN	MOBIL OIL REFINERIES GULF REFINERY	
BP REFINERIES	UNIROYAL	GOODYEAR	PROCTOR \& GAMBLE	NESTLE
MONSATO	UNILEVER	KAISER ALUMINUM	DUPONT	IBM

ONTROLS

POSITIVE GUIDED CONTACTORS

DESCRIPTION

Positive-guided contactors and motor starters feature N.O. and N.C. contacts which operate interdependently. For such power switching contactors and starters, the N.O. and N.C. contacts can never be closed simultaneously. In the event one of the N.O. contacts welds closed, no N.C. contacts can close. For exmaple, should one or more of the N.O. contacts weld/stick shut when closed, the N.C. contact(s) will remain open with a minimum gap of 0.5 mm . This applies to both main contacts as well as auxiliary contacts.

A simple illustration of the interdependent function of positive-guided (or forced-guided) contacts is shown in the chart. This important feature is desired in machine safety circuits where "fail-to-safe" and/or "single component failure control reliability" is desired. The positive relationship (interdependent operation) between N.O. and N.C. contacts permit self-checking/safety monitoring of the performance of these devices. Such contactors, regardless of whether a contact fails "open" or "closed", provide a higher level of safety system integrity and reliability. This is critical for feedback safety circuits.

POSITIVE GUIDED CONTACTORS

Catalog Number Auxiliary Contacts Current Rating (UL/CSA)|MAX HP

	NO	NC	Inductive	Resistive	@ 480V
LS07.01- ${ }^{\text {® }}$	-	1	10 AMP	16 AMP	3HP
LS4.01- ${ }^{\text {- }}$		1	16 AMP	20 AMP	7.5HP
LS4.22- ${ }^{\text {s }}$	2	2	16 AMP	20 AMP	7.5HP
LS7.01- ${ }^{\text {a }}$	-	1	20 AMP	25 AMP	10HP
LS7.22-®	2	2	20 AMP	25 AMP	10HP
LS17.01- ${ }^{\text {- }}$		1	27 AMP	30 AMP	10HP
LS17.22- $\stackrel{\otimes}{ }$	2	2	27 AMP	30 AMP	10HP
LS27.22- ${ }^{*}$	2	2	40 AMP	50 AMP	15HP
LS37.22- ${ }^{\text {® }}$	2	2	55 AMP	62 AMP	25HP
LS47.22-*	2	2	90 AMP	110 AMP	40HP

\diamond Designate coil voltage suffix letter. See pages AEG 22 and AEG 36 (Catalog IC-8), for pricing.
Positive Guided Starters
If full magnetic starter is required, add overload Type B27T from this catalog IC-8, pages 10-37.
NEMA RATING. Above contactors LS4, 7, 27, 47 fully meet NEMA Ratings and can be supplied NEMA labeled at NEMA Horse Power Ratings. (UL Listed/CSA).
See this Catalog IC-8, pages AEG 22, 23.

SAFETY SYSTEM - ç - CERTIFICATION POSITIVE GUIDED RELAYS \& CONTACTORS Per IEC 947-5
 3rd Party Test Laboratory Certified

For safety product testing, only a select number of Independent Test Laboratories are listed and approved to certify safety compliance.

PURPOSE - CRITICAL CIRCUITS

IEC STANDARD 947-5-1 was developed to provide industrials much greater relianceon positive accurate relay signals. While relays and contactors that meet this standard can be used universally, the main application is SAFETY CIRCUITS and important circuits in automation machinery.
Each of the noted AEG Type LS contactors, and AEG Type SH Relays have a 3rd Party Test Laboratory certification as Positive Guided (mechanically linked) contact elements. Each contactor and relay is 100% tested to verify that the required international standard is satisfied

- CONTACTORS ARE DESIGNED WITH INTERGRAL AUXILIARY CONTACTS

$\stackrel{\rightharpoonup}{*}$	COIL VOLTAGE SUFFIX	
AC®		
60HZ	50HZ	
-A	120 V	110 V
-	208V/230V	220 V
-E	480 V	440 V
-F	600 V	550 V
-D		380 V
-G	24V	22 V
-H	280V/277V	240 V
DC®		
-MTW	12VDC	
-NTW	24VDC	
-OTW	48VDC	Addition
-PTW	120VDC	Coil.
-RTW	220VDC	

Standard AC coil design tolerance is $+10 \%,-25 \%$ coil nameplate voltage.

Space Saving Dimensions Positive Guided Relays

USER BENEFITS
Full Approvals

World Wide Acceptance

Available Worldwide

Recognized as one of the leading heavy duty industrial product lines, Type XLS starters, contactors and Type SH relays are available in over 100 countries including every industrial nation in the free world.

Industry Accepted \& Preferred

RELIABILITY DEMANDING industries including steel, oil, cement, chemical, automotive, widely use and demand type SH controls in their systems.

Part \# with AC Coil \diamond Add coil suffix	$\begin{aligned} & \hline \text { POLES } \\ & \text { NO NC } \\ & \hline \end{aligned}$		AC Coil DC CoilOperation Operation	
Basic 4 pole			List	List
SH4-40-s	4	0	\$62	\$90
SH4-31-s	3	1	\$62	\$90
SH4-22-s)	,	2	\$62	\$90
Adder poles to above relays....Add up to 3 poles max.				
HS17.10 10 Amp NO Pole			\$13	\$13
HS17.01 10 Amp NC Pole			\$13	\$13
Basic 8 pole $30,000,000$ Operations				
SH8-80-s	8	0	\$104	\$132
SH8-62-s)	6	2	\$104	\$132
SH8-44-s)	4	4	\$104	\$132
Basic 10 pole Type				
SH10-55-8)	5	5	\$120	\$148
SH10-73-8)	7	3	\$120	\$148
SH10-10-¢	10	0	\$120	\$148

Type SH04, SH4, 8, 10
For critical safety circuits, self checking duplicate circuits can be required. The following type SH multipole relays have positive action of the contacts. This positive guided design assures that no normally open contact can close before any normally closed contact can open. The normally open contact will have a 0.5 mm contact gap.*

If a N.O. contact welds closed, no N.C. contact can close.
"Positive Guided" contacts are not positive break or positive opening contacts.
*Per the IEC safety standards (IEC 947-5-1)

AC Contact Rating Per Pole SH4, SH8, SH10 RELAYS			
Max. Voltage	Amperes		Contiuous Carrying Current Only (Amperes)
	Make	Break	(
	60	6.00	20
240	30	3.00	20
480	15	1.50	20
600	12	1.20	20
Maximum DC Contact Rating Per Pole			
125	5.0	1.1	20
250	5.0	0.55	20

COIL BURDEN

	SH04		SH4,8	
	AC (VA)	DC (Watts)	AC (VA)	DC (Watts)
Inrush	16	2.4^{*}	55	6.5
Holding	4.9	2.4	10	6.5

©COIL VOLTAGE SUFFIX				
AC)	60HZ	50HZ		-
-A	120 V	110 V	-MSW	12VDC
-C	208/230V	220 V	-NSW	24VDC
-D		380 V	-OSW	48VDC
-E	480 V	440 V	-PSW	110VDC
-F	600 V	550 V	-RSW	220VDC
-G	24 V	22 V		
- SW Single Winding DC Power Plant				

More sizes to choose
 \section*{BULLETIN C-1
 \section*{BULLETIN C-1

 POWER

 POWER

 SWITCHING

 SWITCHING CONTACTORS} CONTACTORS}

LS07

LS7

from means cost savings.

4 POLE CONTACTORS

See "K" Contactor Catalog Section from 20 Amp to 1250 Amp

COMPACT
 NEMA RATED

 BLOCK CONTACTORS TYPE LS

Size 00 thru (600 Amp)
Plus "K" Contactors
4 Pole to 1250 Amp

KEY DESIGN BENEFITS

Reliable Operation

-10,000,000 + Mechanical Life

- 1,000,000 Electrical Life
- 55으 Allowed Ambient Design
- Stainless Steel Springs
- "E" Magnet with Notched Air Gap
- Anti Rust Protected Magnets
- Higher in rush Current Allowed
- Elaborate Arc Quenching System
- Enclosed - Protected Contacts/Coil System

FOR SAFETY CIRCUITS

- Positive Guided Contactors, Type LS.
- Certified as Positive Guided Per IEC 947-5.
(See page AEG 9)

Load Matching \$ Savings

- With more size selections,

Significant Cost Savings result
Operational Savings

- Fast Coil Change
- 1,000,000 Electrical Life
- 55으 Allowed Ambient Design
- Stainless Steel Springs
- "E" Magnet with Notched Air Gap
- Anti Rust Protected Magnets
- Higher in rush Current Allowed
- Elaborate Arc Quenching System
- Enclosed - Protected Contacts/Coil System

FOR SAFETY CIRCUITS

- Positive Guided Contactors, Type LS.
- Certified as Positive Guided Per IEC 947-5.
(See page AEG 9)

Motor F.L. Current (Amps)
Electrical Life Curve

THREE POLE CONTACTORS C€							4 pole and N．C．Pole see page AEG 64			NEMA RATED
	Size	Horse Power Ratings 3 Phase		ENCLOSED						Comparable NEMA HP
					NEMA 1	NEMA 4X－		NEMA 7		
		Motor Volts	$\begin{gathered} \operatorname{Max} \\ \mathrm{HP} \\ \hline \end{gathered}$		Purpose	Dust Tight	Dust Tight	Area		
$\begin{aligned} & \mathbb{4} \\ & \text { 윤 } \end{aligned}$		200V	3 HP	$\begin{gathered} \text { LS07.10 } \\ -\otimes 0 \\ \$ 34 \end{gathered}$	$\begin{gathered} \text { LS07.10 } \\ -\otimes 1 \\ \$ 60 \end{gathered}$	$\begin{gathered} \text { LS07.10 } \\ -\diamond 4 X \\ \$ 124 \end{gathered}$	$\begin{gathered} \text { LSO7.10 } \\ -\widehat{-12} \\ \$ 126 \end{gathered}$			
		230V	3 HP 3 HP					－	$\begin{gathered} \text { LS07. } 10 \text { - } 40 \end{gathered}$	
		LIST						－	\＄194	
$\begin{aligned} & \mathbb{4} \varangle \\ & \text { 웅 } \end{aligned}$	00	200 V		$\begin{gathered} \text { LS4.10 } \\ -\diamond 0 \\ \$ 90 \end{gathered}$	$\begin{gathered} \text { LS4.10 } \\ -\widehat{\diamond} 1 \\ \$ 116 \end{gathered}$	$\begin{gathered} \text { LS4.10 } \\ -\diamond 4 X \\ \$ 161 \end{gathered}$	LS4．10 －>12 \＄163			$200 \mathrm{~V} \quad 1.5 \mathrm{HP}$
		230 V	$3 \text { HP }$						LS4．10	230 V 1．5 HP
		460 V	7．5 HP							$\begin{array}{ll}460 \mathrm{~V} & 2 \mathrm{HP} \\ 600 \mathrm{~V} & 2 \mathrm{HP}\end{array}$
		LIST	7．5 HP					－	\＄295	NEMA Size 00
E《《 ํํํ	0	200V	5 HP	$\begin{gathered} L S 7.10 \\ -\diamond 0 \\ \$ 115 \end{gathered}$	$\begin{gathered} \text { LS7.10 } \\ -\diamond 1 \\ \$ 141 \end{gathered}$	LS7．10	LS7．10		LS7．10	$200 \mathrm{~V} 3 \mathrm{3HP}$
		230 V 460 V	5 HP 10 HP			$-\diamond 4 X$	－>12	－	－$\uparrow 4$	$\begin{array}{\|ll} 230 \mathrm{~V} & 3 \mathrm{HP} \\ 460 \mathrm{~V} & 5 \mathrm{HP} \end{array}$
		$\begin{aligned} & 460 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \mathrm{HP} \\ & 10 \mathrm{HP} \end{aligned}$							$600 \mathrm{~V} \quad 5 \mathrm{HP}$
		LIST				\＄186	\＄188		\＄320	
太『	0＋	$200 \mathrm{~V}$	5 HP 75	$\begin{gathered} \text { LS17.10 } \\ -\diamond 0 \\ \$ 130 \end{gathered}$	$\begin{gathered} \text { LS17.10 } \\ -\diamond 1 \\ \$ 156 \end{gathered}$	$\begin{gathered} \text { LS17.10 } \\ -\diamond 4 X \\ \$ 201 \end{gathered}$	$\begin{gathered} \text { LS17.10 } \\ -\otimes 12 \\ \$ 203 \end{gathered}$	－	LS17．10	
		460 V	10 HP					－	－$\bigcirc 4$	
		600 V	15 HP							
		LIST							\＄335	
$\stackrel{\varangle}{8}$	1＋	200 V	7.5 HP	$\begin{gathered} \text { LS27.22 } \\ -\diamond 0 \\ \$ 145 \end{gathered}$	$\begin{gathered} \text { LS27.22 } \\ -\diamond 1 \\ \$ 171 \end{gathered}$	$\begin{gathered} \text { LS27.22 } \\ -\diamond 4 X \\ \$ 216 \end{gathered}$	$\begin{gathered} \text { LS27.22 } \\ -\otimes 12 \\ \$ 218 \end{gathered}$	$\begin{gathered} \text { LS27. } 22 \\ \text { - } \diamond 7 \\ \text { Contact } \\ \text { Factory } \\ \hline \end{gathered}$		200 V 7.5 HP
		230 V	10 HP						，	230 V 7.5 HP
		600 V	20 HP						－4	$600 \mathrm{~V} \quad 10 \mathrm{HP}$
		LIST							\＄350	NEMA Size 1
	$1^{3 / 4}$	200 V	10 HP	$\begin{gathered} \text { LS37.22 } \\ -\diamond 0 \\ \$ 173 \\ \hline \end{gathered}$	$\begin{gathered} \text { LS37.22 } \\ -\diamond 1 \\ \$ 222 \end{gathered}$	$\begin{gathered} \text { LS37.22 } \\ -\diamond 4 \mathrm{X} \\ \$ 301 \\ \hline \end{gathered}$	$\begin{gathered} \text { LS37.22 } \\ -\diamond 12 \\ \$ 337 \\ \hline \end{gathered}$	$\begin{aligned} & \text { LS37.22 } \\ & \text { - } \begin{array}{l} \text { Contact } \\ \text { Factory } \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 \text {. } \\ & \hline \end{aligned}$		
		230 V	10 HP						LS37．22	
		460 V	25 HP						－$\stackrel{\text { 4 }}{ }$	
		600 V	25 HP							
$\begin{aligned} & \text { ब4 } \\ & \text { 8욷 } \end{aligned}$	2				$\begin{gathered} \text { LS47.22 } \\ -\diamond 1 \\ \$ 289 \\ \hline \end{gathered}$				9663	
		$\begin{aligned} & 200 \mathrm{~V} \\ & 230 \mathrm{~V} \end{aligned}$	15 HP	$\begin{gathered} \text { LS47.22 } \\ -\diamond 0 \\ \$ 240 \\ \hline \end{gathered}$		$\begin{gathered} \text { LS47.22 } \\ -\diamond 4 \mathrm{X} \\ \$ 376 \end{gathered}$	$\begin{gathered} \text { LS47.22 } \\ -\otimes 12 \\ \$ 419 \end{gathered}$	$\begin{gathered} \text { LS47. } 22 \\ -\diamond 7 \\ \text { Contact } \\ \text { Factory } \\ \hline \end{gathered}$	LS47．22	$\begin{array}{ll} 200 \mathrm{~V} & 10 \mathrm{HP} \\ 230 \mathrm{~V} & 15 \mathrm{HP} \end{array}$
		460 V	40 HP						－$\uparrow 4$	460 V 25 HP
		600 V	50 HP							600 V ， 25 HP
		LIST							\＄705	NEMA Size 2
	$2^{1 / 2}$	200V	20 HP	$\begin{gathered} \text { LS57.22 } \\ -\diamond 0 \\ \$ 290 \end{gathered}$	$\begin{gathered} \text { LS57. } 22 \\ -\diamond 1 \\ \$ 339 \end{gathered}$	$\begin{gathered} \text { LS57.22 } \\ -\diamond 4 X \\ \$ 426 \end{gathered}$	$\begin{gathered} \text { LS57. } 22 \\ -\diamond 12 \\ \$ 469 \end{gathered}$	$\begin{gathered} \text { LS57. } 222 \\ \text { - } \otimes 7 \\ \text { Contact } \\ \text { Factory } \end{gathered}$		
		230 V	25 HP						－$\otimes 4$	
		600 V	60 HP							
		LIST							\＄755	

（T）Also Tungsten Rating to 277 Volt（UL）

30 Amp Power Auxiliary. (600 Volt)
See page AEG 24.
For 4 pole and N.C. Pole Contactors, thru 1250 Amp, see "K" Contactors section.

AUXILIARIES SUPPLIED AS STANDARD

1 NO	2 NO / 2 NC
LS07.10	LS27.22
LS4.10	LS37.22
LS7.10	LS47-LS247.22
LS17.10	LS22OK-LS375K.22

For Additional Auxiliaries See Page AEG 24.

International Ratings							
Type		LS07	LS4	LS7	LS17	LS27	LS37
Rated insulation voltage U_{i}, VDE 0110 IGr C	$\sim \mathrm{V}$	380	660	660	660	660	660
Mechanical lifespan a.c. operated d.c. operated	$\begin{array}{r} \times 10^{6} \mathrm{ops} \\ \times 10^{6} \mathrm{ops} \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & \left.15^{2}\right) \end{aligned}$	$\begin{aligned} & 10 \\ & \left.15^{2}\right) \end{aligned}$	$\begin{aligned} & 10 \\ & \left.15^{2}\right) \end{aligned}$	10	$\begin{aligned} & 10 \\ & 15^{2} \end{aligned}$
AC-1 Duty Power rating P_{N} Related current /th = Rated operating current /e Minimum cable cross sections with full rating Permissible practical switching frequency Rated operating current at $1000 \mathrm{ops} / \mathrm{hr}$.	kW A mm^{2} ops/hr. A	$\begin{aligned} & \hline \text { s.p. } 1 / 2 \\ & \left.16^{6}\right) \\ & 2,5 \\ & 50 \\ & 10^{6} \text {) } \end{aligned}$	$\begin{aligned} & \text { s.p. 1/2 } \\ & 20 \\ & 2,5 \\ & 50 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { s.p. 1/2 } \\ & 25 \\ & 4 \\ & 50 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { s.p. } 1 / 2 \\ & 32 \\ & 4 \\ & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline \text { s.p. 1/2 } \\ & 40 \\ & 6 \\ & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & \hline \text { s.p. 1/2 } \\ & 50 \\ & 10 \\ & 50 \\ & 40 \end{aligned}$
AC-3 Duty Rated current /e up to $3 \sim 440 \mathrm{~V}$ Permissible switching frequency at P_{N} and continuous operation	kW A ops/hr.	$\begin{aligned} & \text { s.p. 1/2 } \\ & \left.7,3^{6}\right)(380 \mathrm{~V}) \\ & 300 \end{aligned}$	$\begin{aligned} & \hline \text { s.p. 1/2 } \\ & 9,5 \\ & 1000 \end{aligned}$	$\begin{aligned} & \hline \text { s.p. } \mathbf{1 / 2} \\ & 12 \\ & 1000 \end{aligned}$	$\begin{aligned} & \hline \text { s.p. 1/2 } \\ & 16 \\ & 750 \end{aligned}$	$\begin{aligned} & \hline \text { s.p. 1/2 } \\ & 23 \\ & 750 \end{aligned}$	$\begin{aligned} & \text { s.p. 1/2 } \\ & 32 \\ & \\ & 750 \end{aligned}$
AC-4 Duty \quad Motor Rating P_{N} Rated current /e with realistic contact lifespan up to $3 \sim 440 \mathrm{~V}$ Permissible switching frequency Highest permissible loading at $380 \mathrm{~V} 3 \sim \quad \mathrm{P}_{\mathrm{N}} / \mathrm{e}$	kW A ops/hr. kW/A	- - - -	$\begin{aligned} & \text { s.p. 1/2 } \\ & 3,7 \\ & 250 \\ & \text { s.p. } 1 / 2 \end{aligned}$	$\begin{aligned} & \text { s.p. } \mathbf{1 / 2} \\ & 5,3 \\ & 250 \\ & \text { s.p. } \mathbf{1 / 2} \end{aligned}$	$\begin{aligned} & \text { s.p. 1/2 } \\ & 7,3 \\ & 250 \\ & \text { s.p. } 1 / 2 \end{aligned}$	$\begin{aligned} & \hline \text { s.p. } 1 / 2 \\ & 9,3 \\ & 250 \\ & \text { s.p. } 1 / 2 \end{aligned}$	$\begin{aligned} & \hline \text { s.p. } \mathbf{1 / 2} \\ & 16 \\ & 250 \\ & \text { s.p. } 1 / 2 \end{aligned}$
Capacitor switching capacity with Single switching/Parallel operation ${ }^{10}$) $3 \sim 230 \mathrm{~V}$ $3 \sim 400 \mathrm{~V}$ $3 \sim 525 \mathrm{~V}$ $3 \sim 690 \mathrm{~V}$	kvar kvar kvar kvar	- - - -	$\begin{aligned} & 2,5 / 2,5 \\ & 4 / 4 \\ & 4 / 4 \\ & 4 / 4 \end{aligned}$	$\begin{aligned} & 3 / 3 \\ & 5 / 5 \\ & 6 / 5 \\ & 6 / 5 \end{aligned}$	$\begin{aligned} & 3 / 3 \\ & 5 / 5 \\ & 6 / 5 \\ & 6 / 5 \end{aligned}$	$\begin{gathered} 7 / 7 \\ 13 / 13 \\ 17 / 13 \\ 17 / 13 \end{gathered}$	$\begin{aligned} & \left.10 / 12^{9}\right) \\ & \left.16,7 / 16,7^{9}\right) \\ & \left.25 / 25^{9}\right) \\ & \left.19 / 16,7^{9}\right) \end{aligned}$

Permissible D.C. loading,
with 3 poles connected in series
Rated current at

Switching times at $1,0 \mathrm{Us}$ (standard coil) ${ }^{8}$)

A.C. Operated	closing delay ms	$9 \ldots 30$	$10 . . .25$	$10 . .25$	$10 . . .25$	$10 . . .25$	$10 . . .25$
	opening delay ms	5 ... 25	5 ... 16	5 ... 16	5 ... 16	5 ... 16	5 ... 16
D.C. Operated	closing delay ms	$10 . .35$	$45 . .80$	$45 . .80$	$45 . .80$	-	$45 . . .80$
	opening delay ms	2 ... 8	$10 \ldots 30$	$\left.10 . . .30^{12}\right)$	$10 \ldots 30$	-	$10 . . .30$

[^0]

[^1]
TYPE LS DIMENSIONS AC POWER CONTACTORS

Space Saving Dimensions

3 Pole Contactor Dimensions

OVERALL DIMENSIONS (Inches Approximate)

Dimensions	LS07	LS4	LS7	LS17	LS27	LS37	LS47	LS57	LS77	LS107	LS177	LS247	LS220/280K
SIZE	MINI	$\mathbf{0 0}$	$\mathbf{0 0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}^{3 / 4}$	$\mathbf{2}$	$\mathbf{2}^{1 / 2}$	$\mathbf{3}$	$\mathbf{3}^{1 / 2}$	$\mathbf{4}^{1 / 2}$	$\mathbf{5}$	$\mathbf{5}^{1 / 2}$
Height	1.54	3.07	3.07	3.07	3.35	3.4	4.8	4.8	4.8	5.91	7.09	7.9	8.6
Width	1.77	1.77	1.77	1.77	1.77	2.0	3.5	3.5	3.5	4.72	5.31	5.7	7.2
Depth *	1.65	2.90	2.90	2.90	4.29	4.73	5.0	5.0	5.0	6.06	6.77	7.7	9.
Depth **		3.93	3.93	3.93	3.22	3.62							
Depth $\boldsymbol{\text { DC (SW Coils) }}$		4.4	4.4	4.4		5.2							
Depth $\boldsymbol{\Delta}$		3.75	3.75	3.75		4.3							

* Depth with top deck auxiliary set. (Includes DC - TW Coils) **Unit with no auxiliary (.00).
$\Delta=$ with top deck aux. (DC Single Winding) $\Delta \Delta=$ No top mount Aux.

MOUNTING DIMENSIONS (Inches Approximate)

Mounting Hole	y, z	w, y	y, w	y, w	y, w	z, y, z	x, y, z	z, y, z	z, y, z				
d	1.4	1.38	1.38	1.38	1.38	1.38	3.1	3.1	3.1	3.94	4.33	4.7	3.9
d 1	0.2	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.39	0.49	0.5	1.5
e		2.36	2.36	2.36	2.95	2.95	4.3	4.3	4.3	5.12	6.30	7.1	7.9
e 1		0.3	0.3	0.3	.2	.22	.26	.26	.26	0.39	0.39	0.4	0.6

BULLETIN OL-1

THERMAL OVERLOAD RELAYS

RELIABLE MOTOR PROTECTION WITH THESE FEATURES

- Differential single-phasing protection
- Consistent operation with direct heated bimetals
- Precise factory set and tested heaters
- Protected heaters (not as open to dust and contamination)
- Ambient compensated overloads from $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$, permitting no false tripping
- Sealable setting overloads with epoxy or paint for critical applications
- NEMA Class 10 design for "T" Frame Motors
- Both N.O. ("alarm") and N.C. ("trip") contacts
- Plug-on/bolt-on to contactor design
- Optional high inertia start overloads

STOP COSTLY DOWNTIME

Old fashioned O.L. heaters cause user problems, resulting in costly downtime. They also require field heater installation, resulting in these problems:

- Trip point varies due to (1) screw tightness, (2) heater position in relation to bimetal and (3) open design, with dust and contamination problems.
- No single phasing protection

EEControls Overload Relays eliminate these problems.

Tripping characteristic curve of three-pole thermal overload relays.
1: two-pole characteristic, relay without single phasing feature
2: two-pole characteristic, relay with single phasing feature
3: three-pole characteristic

OVERLOAD RELAYS
 Type B

Thermal overload relays with standard trip characteristic

For individual mounting

Contactor attached (either plug-in,			
or by separate connectors)			

[^2] B77-AD (910-391-268)

OVERLOAD RELAYS
 OVERLOAD RELAY CONNECTORS

*Direct Connect Overload to Contactors Listed. No extra parts needed.
** BL-271 is included with B77S from 11-32 Amps. BL-270 use in contactors without Finger Touch Guards, 32-80A BL-269 is included with B77S-P-32A.
** BL-273 is included with B77S from 32-80 Amps. New contactors, LS47,57,77,87 with Finger Touch Guards require BL-273 for Bus Connection to O.L.
** B177S Overload. No extra Bus Links are required to connect B177 to Contactors LS107, 177.
** BL-283 is required to mount B77S to LS22K - LS37K

- Old - Designed pre 1993

Note: For other Contactor/Overload Connections, overload must be separate wired to contactors.

- New - 1993 to present

Design and function of thermal overload relays

AEG thermal overload relays have three bimetal strips combied with a snap-action operating mechanism enclosed with a moulded plastic casing. As an overload current develops, the direct-heated strips heat up and deflect. At a present current marked on the relay setting scale, the snap-action mechanism releases, and actuates a change-over contact.

Tripping characteristics

Thermal relays always release with a certain delay period, t_{A}. This latter period varies inversely with the load current. The trip characteristic curves apply to overload tripping from the cold motor state. When warmed up to the final selected-current temperature, tripping already occurs with some 25% to 30% of the diagram-listed values.
The lowest reponse current starts with the cold-state figure, $1.05 \times \mathrm{I}_{\mathrm{E}}$, and should not initiate tripping in less than two hours. After warming up, the current setting, $1.2 \times \mathrm{I}_{\mathrm{E}}$ must have caused tripping within two hours while in operation.
Tripping delay from "cold" for a $6 \times \mathrm{I}_{\mathrm{E}}$ reponse value serves to define relay differentials in regard to diverse tripping characteristics.
Characteristic T II = trips after 5 s for $6 \times{ }^{\mathrm{I}} \mathrm{E}$
When a relay responds much later than 5 seconds, its delay period is added to the designation T II e.g.TII/30 $\mathrm{s}=$ trips within 30 seconds for $6 \times I_{E}$ full-load current.
The majority of all thermal relays work to grade T II for all practical purposes. Standard drive motors are thereby afforded a good measure of protectionduring a safe run-up.

Temperature compensation

Variations of ambient temperature over the range from $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (with types b 05 , b 27, b77 and b 177 : $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$) do not effect the release timing because of the inbuilt temperature compensating feature provided with all thermal overload relays. The prevailing ambient temperature is that measured close to the contactor.

[^3]
Single Phasing

Mode of Operation

A three-phase bimetal overload relay having no loss-of-phase protection is equipped with only one slide \#1 (as in Fig. 1). This slide component lies ahead of the bimetal strips and transmits their deflection onto the the trip mechanism. The thermal relays equipped with single-phasing protection are fitted with a second similar slide \#2 (as in Fig. 1) set behind the bimetal strips. This is linked with a twoarmed trip lever \#3.
Given a three-pole overload trip (as under Fig. 1(b), all three bent strips will have shifted from their "cold state" setting k, to the "three-pole warm" position, w 3. This motion makes slide \#2 give way to the bimetal strips right-handed motion, and the hinged lever \#3 is shifted accordingly. The resulting travel s2 of lever \#3 and of slides \#1 and \#2 equals in this case the bimetals travelled distance $s 1$, and so effects tripping on reaching point S .
Given a two-pole trip operation however (as illustrated in Fif. 1 (c), the one unheated bimetal strip in the middle blocks any movement of slide \#2. However, the leverarm ratio of u enlarges the distance s1 so travelled by the two bending bimetal strips to their "two-pole warm" end position w2, changing into s2 as traveled by two armed lever \#3. In other words, the two-pole overload makes for quicker tripping of a thermal relay with single phasing protection as compared to a regualr three-phase state of overloading.
Should the loss of a single phase happen to a so far three-pahse loaded drive relay system with a single phasing protection, then the affected bimetal strip will cool down. In doing so, it straightens and returns the bottom slide \#2 to it's cold-starting position. In this case, also, the overload trips more quickly.

(a)

Fig. 1: Mode of operation of thermal overload relay fitted with single-phasing protection.
(a) Unexcited
bimetal strips cold: $\mathrm{s}_{2}=\mathrm{s}_{1}=0$
(b) Three-phase tripping

3 strips warm:
$\mathrm{s}_{2}=\mathrm{s}_{1}$
(c) Two-phase excited
midway strip cold,
outer strips warm:
$\mathrm{s}_{2}=\mathrm{u} \cdot \mathrm{s}_{1}$
where:
$\mathrm{k}=$ bimetal "cold" position
$\mathrm{w}_{3}=$ bimetal "warm, 3-pole" position
$\mathrm{w}_{2}=$ bimetal "warm, 2-pole" position
$1=$ top slide 1
2 = bottom slide 2
3 = two-armed lever
$\mathrm{S}=$ tripping point
$\mathrm{s}_{1}=$ bimetals travel to trip
$\mathrm{s}_{2}=$ lever 3 travels to trip
ü = two-armed lever ratio

BULLETIN CR

CONTROL RELAYS

MINI POWER RELAY
TYPE SH04

CONTROL RELAY
TYPE SH4

MINI RELAY
Type SHO4 Mini Design $\boldsymbol{C} \in$

Rating: 16 AMP
600 Volt
AC or DC Coils

Pole Combinations

4 pole N.O.
3 pole N.O., 1 N.C.
2 pole N.O., 2 N.C.
1 pole N.O., 3 N.C.

Connection Options

Pressure Wire Terminals
Spade (Plug-On)
Wire Wrap (for PC's)
For MINI STARTERS
See Type XLS07
CONTROL RELAY
Type SH4 Compact Design (E

Rating: $20 \mathrm{AMP} / 30 \mathrm{AMP}$ 600 Volt
30,000,000 Operations
4 to 10 Poles
AC or DC Operation
Extreme Long Life
Protected Coil/Contacts
Rail Mounting
Field Flexible
Add on Poles
Add on Timer Kit
Add on Latch Kit

SH04

SH04F

SH05

AC \& DC OPERATED

With Pressure Wire Screws Terminals				
	CONTACTS		AC OPERATED	$\begin{gathered} \hline \text { DC } \\ \text { OPERATED } \end{gathered}$
	NO	NC	LIST	LIST
SH04.22-®	2	2	\$34	\$44
SH04.31- ${ }^{\text {® }}$	3	1	34	44
SH04.40- $\stackrel{\text { - }}{ }$	4	0	34	44
SH04.13- ${ }^{*}$	1	3	34	44

With Flat Plug (Spade) Connectors				
	CONTACTS		AC OPERATED	$\begin{gathered} \text { DC } \\ \text { OPERATED } \end{gathered}$
	NO	NC	LIST	LIST
SH04F.22- ${ }^{\text {s }}$	2	2	\$34	\$44
SH04F.31- ${ }^{*}$	3	1	34	44
SH04F.40- ${ }^{*}$	4	0	34	44
SH04F.13- ${ }^{*}$	1	3	34	44

Technical Data Type SH04

Rated insulation voltage 600V
Mechanical life endurance

AC 1 duty resistive

AC 11 duty heavy pilot duty 10 Amp

 For AC operation: 4 million operation cycles For DC operation: 10 million operation cycles Admissible operation frequecy: 50 operations/hour Contact life expectation under full load and rated operational current: 150,000 ops (16 Amp)Rated make/break capacity up to 200 V 60 Amp

DC 11 duty standard duty

Coil ratings
For $A C$ operation (working range 0.8 to 1.1 V):

For DC operation (working range 0.8 to 1.2 V):
Max. back-up fuse: 16 A slow
(for $24 \mathrm{~V}: 1.2 \mathrm{~W}$; for operationg range 0.8 to 1.7 V)

Switching times for 1.0 V

For AC operation closing delay 9 to 30 millisecs opening delay 5 to 25 millisecs For DC operation closing delay 10 to 35 millisecs opening delay 2 to 8 millisecs

MINI RELAYS - POSITIVE GUIDED DESIGN FOR SAFETY CIRCUITS (See page AEG 67)

Type SH04 Minirelays are applied for auxiliary wiring and remote control schemes. Taking as little as 1.2 W to pick up, the 24 Volt DC Minirelay SH04 and Minicontactor LS07 are ideal for operation of most electronic control systems as an interface relay.

Type SH05 Mini Relay is available to 8 pole.
Mini relay SH04 is certified as a Positive Guided Design per IEC 947-5 and independent Test Laboratory Certified per IEC 947-5.

DIMENSIONS (Inches Approximate)

MINI STARTERS TYPE 07

with Type B05 Overloads -
"The Reliable" Motor Protectors

Check with factory for details See pages AEG 12, 13

Space Saving Dimensions 4 Pole, 8 Pole, 10 Pole

Full Approvals - woldwide acceptance

AC Contact Rating Per Pole SH4, SH8, SH10 Relays			
Maximum Voltage	Amperes		Continuous
	Make	Break	20
120	60	6.00	20
240	30	3.00	20
480	15	1.50	20
600	12	1.20	20
Maximum DC Contact Rating Per Pole			
125	5.0	1.1	20
250	5.0	0.55	20

COIL VOLTAGE SUFFIX			
AC	60 Hz	50 Hz	DC.
-A	120 V	110 V	-MSW 12VDC
-C	208/230V	220 V	-NSW 24VDC
-D		380 V	-OSW 48VDC
-E	480 V	440 V	-PSW 120VDC
-F	600 V	550 V	-RSW 220VDC
-G	24 V	22 V	
-H	277/280V	240 V	-SW - Single Winding

PEUMATIC TIMER MODULE KIT

Field added to relays type SH4, LS4, LS7, LS			
Timer has 1 NO \& 1 NC timed contact			
6 AMP 500 Volt			
On Delay	$0.3-40 \mathrm{sec}$. Type TP 40 D	$\$ 80$	
	$10-180 \mathrm{sec}$. Type TP 180 D	80	
Off Delay	$0.3-40 \mathrm{sec}$. Type TP 40 I	80	
	$10-180 \mathrm{sec}$. Type TP 180 I	80	

MECHANICAL LATCH KIT

Field added to Relays Type SH4 (only)
with 120 Volt AC Coil Type WB30-120V $\$ 73$
NOTE: For silent operation without latch, consider SH17 with 4 NC Power Poles (30 Amp).

TYPE SH4 / SH8 / SH10 POSITIVE GUIDED RELAYS

Positive Guided Relays, 20 Amp.

Type SH4, SH8, SH10

For critical safety circuits, self-checking duplicate circuits can be required. The following type SH multipole relays have positive action on the contacts. This positive guided design assures that no normally open contact can close before any normally closed contact can open. The normally open contact will have a 0.5 mm contact gap.*
In the event one of the contacts welds closed, the other contacts are prevented from changing state (a N.C. contact will not open/and a N.O. contact is prevented from closing).
"Positive Guided" contacts are not positive break or positive open contacts.
*Per IEC safety standard IEC 947-5-1
See pages AEG 7, 9, 10 for additional data on Positive Guidance.

Enclosed Protected Designs

The type SH Relays are more enclosed and protected from dusts and corrosive atmostpheres, thereby being preferred for the more difficult environments.

Reliable Operation

Historically, the dominant users of Type SH4 and SH8 have been difficult-environment and process industries where extra designed protections from harsh environments yield the most reliable operation. This type of industry is also highly capital intensive where down time costs cannot be tolerated. To satisfy the need for reliable operation all ratings are conservative and extra capacity is designed into each unit.
Each type SH unit includes:

- Din Rail Mount
- High impact, fungus inert, and moisture resistant housings
- 100% stainless stell springs
- Permanent air-gap kotch in "E" magnets for dependable drop out
- High temperature capability: $60^{\circ} \mathrm{C}$ ambient
- 10,000,000 to $30,000,000$ operation mechaical life

DIMENSIONS

OVERALL DIMENSIONS (inches approximate)

Dimensions	SHO4	SH4	SH8
SIZE		MINI	
Height	1.54	3.07	3.07
Width	1.77	1.77	1.77
Depth	1.65	2.90	3.94
Depth*		3.62	

MOUNTING DIMENSIONS (inches approximate)

Holes	y.z	w.y	w.y	Deph
d	1.4	1.38	1.38	
d1	0.2	0.3	0.3	
e	2.36	2.36		
e1	0.3	0.3		
*Depth with top deck auxiliary set				

TYPE SH17-40 4 Pole Normally Open

TYPE SH17-44
8 Pole, 4 Normally Closed 4 Normally Open

COIL VOLTAGE SUFFIX			
AC	60 Hz	50 Hz	DC.
-A	120 V	110 V	-MSW 12VDC
-C	208/230V	220 V	-NSW 24VDC
-D		380 V	-OSW 48VDC
-E	480 V	440V	-PSW 120VDC
-F	600 V	550 V	-RSW 220VDC
-G	24 V	22 V	(Add \$28 List)
- H	277/280V	240 V	-SW - Single Winding

```
- 2 to }8\mathrm{ Poles
- Normally Open 30 Amp
- Normally Closed 30 Amp
- UL/CSA RATINGS }600\mathrm{ VOLT AC
- 30 Amp General Purpose
-30 Amp Discharge Lamps
- LIGHTING CONTACTORS RATINGS
- 20 Amp Tungsten Lamps (25 Amp CSA)
- AC or DC Coils
```

| Catalog \# | Poles | AC Coil |
| :--- | :--- | :--- | :---: |
| List | | |

DC OPERATED

Low DC Coil Burden

A Positive Guided design per IEC 947-5

(Also usable on Safety Circuits, see page AEG 7)
Application: DC Power plants are available in the full range of AEG Relays \& Contactors through 6,000 Amps.
Very low coil burden magnet systems are recommended for electric systems which frequently use 24 Volt control power. Specifically designed for these applications are AEG Type LS07, LS4, LS17, and LS37 contactors through 20 HP, 60 Amp, and Type SH04, SH4, and SH8 power relays. Larger contactors use the tapped coil system. No bulky economizing resistor is needed.

Type SH04 Mini Relays, 4 Pole

Type SH04 Mini Contacts Rated: 16 Amp, 600 Volt AC

\left.| DC OPERATED | | | |
| :--- | :---: | :---: | :---: |
| With pressure wire screws terminals | | | |
| Contacts | | | |
| | NO | NC | DC |
| List | | | |$\right]$

Types SH4, SH8 Power Relays
Contacts Rated 20 Amp, 600 Volt AC

Catalog \#	DC Operated		
Basic 4 Pole		NC	List
SH4-40-®	4	0	\$90
SH4-31-s	3	1	90
SH4-22-8)	2	2	90
Adder poles to above relays...Add up to 3 poles max			
HS17.10	1	-	\$13
HS17.01	-	1	13
Basic 8 Pole 30,000,000 Operations			
SH8-80-ヶ>	8	0	\$132
SH8-62-s	6	2	132
SH8-44-*	4	4	132

Coil Burden (Watts) Pick up 6.5W Hold in 6.5W
DC COIL VOLTAGE
SUFFIX
-MSW 12VDC
-NSW 24VDC
-OSW 48VDC
-PSW 120VDC
-RSW 220VDC

Type SH8 Contacts Rated 20 Amp, 600 Volt AC

Surge Suppressors

AC Suppressors

Design
A series connected resistor and capacitor, contained in a small molding, are conected in parallel with the control relay coil.
RC-Elemets mount onto LS4, LS7, LS17, LS27, and LS37 contactors ad SH4, SH8, and SH8 power relays. Module snaps into
 top of contactor.

DC Suppressors

Design
The diode which is enclosed in a small molding is connected in parallel with the relay coil.

Catalog \#	Description	List
RC-A02/48	(24...48V) for LS07 to LS37	$\$ 20$
RC-A02/220	(110...220V) for LS07 to LS37	20
LRC-V2-6.8	(24V) for LS47-107	26
LRC-V2-0.68	$(120 \mathrm{~V})$ for LS47-107	26

[^0]: See AEG Technical Bulletin for more complete technical data and definitions.

 1) Type LS 7 C: $220 / 380,500 / 600 \mathrm{~V} 3 \sim 5 / 10 / 12,5 \mathrm{kVar}$, see page $1 / 12$. 2) as LS 37 however $\mathrm{P}_{\mathrm{N}}(\mathrm{AC} 3) 500 \mathrm{~V}, 3 \sim: 15 \mathrm{~kW}$. 3) $\mathrm{P}_{\mathrm{N}}(\mathrm{AC} \mathrm{3)} 220 \mathrm{~V} / 380 \mathrm{~V} / 500 \mathrm{~V} / 600 \mathrm{~V}, 3 \sim$: $3 \mathrm{~kW} / 5,5 \mathrm{~kW} / 5,5 \mathrm{~kW} 4$) as LS27, s. S. $1 / 2$ 5) as LS7, s. S. $1 / 2$ 6) Pin terminal AC $1: 8 \mathrm{~A}$; AC $3: 220 \mathrm{~V} / 380 \mathrm{~V}, 3 \sim: 0,75 \mathrm{~kW} / 1,1 \mathrm{~kW}, I_{\mathrm{e}}=2,8 \mathrm{~A}$
 2) Type LS07: Voltage tolerance $8 \ldots 1,2 U_{C}$, at 24 V -: $1,2 \mathrm{~W}$, with voltage tolerance $0,8 \ldots 1,7 U_{\mathrm{C}} \quad 8$)These are typical values and some variation can be expected
 3) $220 \mathrm{~V}: 12 \mathrm{~A} 10$) $220 \mathrm{~V}: 21 \mathrm{~A} 11$) ()= Values for contactors without economy resistor (reduced power consumption). Closing delay 50 ... 85 ms , opening delay 20 ... 35 ms
[^1]: 8) These are typical values, and some variation can be expected
 9) No potential separation
 $\mathbf{P}_{\mathbf{N}}$ - Rated Power
[^2]: Adaptors to Separate Mount B27T Overloads.
 Catalog No.
 List
 B 27T-AD (910-391-281)
 \$12
 Adapter to Separate Mount B77S Overloads. \$20

[^3]: NOTE: In position A or H the auxiliary contact 95-96 cannot inadvertently be opened.

