

STANDARD FEATURES

- Highly Configurable, with a seemingly Infinite number of Options
- Any slot voltage from 1.5 v to 150 v is available
- Remote Sensing
- Open Sense protection
- Isolated output
- Short circuit and overload protection with enhanced surge capabilities
- No minimum load required
- Internal EMI Filtering
- Pluggable connectors
- Can be mounted on two surfaces in any orientation

SPECIFICATIONS

Input Voltage: 105-125 VAC, $50-420 \mathrm{~Hz}$, single phase. (100-132 VAC, 60 Hz with 30% derating.)
AC Input Current (maximum): 1.3A (LM6A case), 2A (LM8A case), 3A (LM10A case).
Internal Failure Protection: Provided by internal fuse.
Input Undervoltage: An input of less than 105 VAC will not damage power supply.
Regulation, Ripple (in constant voltage mode):
See tables on pages 6 and 7.
Regulation, Ripple (in constant current mode):
(Wide Adjust Output models)
Line Regulation: $\pm 0.01 \%$ or 2 mA , whichever is greater.
Load Regulation: $\pm 0.01 \%$ or 2 mA , whichever is greater.
Current Ripple: 0.25% rms.
Start-up Time: 75 to 150 msec .
Start-up Surge: 15% overcurrent for 500 ms surge capability (Single Output models).
Turn-off: Exponentially decays to zero.
Transient Response: $300 \mu \mathrm{~S}$ to return to $\pm 1 \%$ of output setting. Maximum of $\pm 3 \%$ output excursion following a load step change from 50% to 100%.
Short Circuit and Overload Protection: A short or overload forces the power supply into foldback protection, (Single Output models) or into constant current mode (Wide Adjust Output models), with automatic recovery.
Ambient Operating Temperature: -20 to $+71^{\circ} \mathrm{C}$.
Storage Temperature: -55 to $+85^{\circ} \mathrm{C}$.
Temperature Coefficient (after 30 minute warm-up):
Voltage mode; $\pm 0.01 \% /{ }^{\circ} \mathrm{C}$ (typical).
Current mode (Wide Adjust models); $\pm 0.005 \% /{ }^{\circ} \mathrm{C}$ (typical).

Altitude rating: operation to $10,000 \mathrm{ft}$ and storage to $40,000 \mathrm{ft}$.
Polarity: Output is floating; either positive or negative terminal may be grounded or floated up to 300 volts above ground. Optional controls and monitors are referenced to the negative terminal.
Drift, Warm-up (first 30 minutes after turn-on, @ $25^{\circ} \mathrm{C}$): Voltage mode; $\pm 0.03 \%$ or 5 mv , whichever is greater.
Current mode (Wide Adjust models); $\pm 0.01 \%$ or 10 ma , whichever is greater.
Drift, Long Term (@ $\mathbf{2 5}^{\circ} \mathrm{C}$):
Voltage mode; $\pm 0.01 \%$ or 5 mv , whichever is greater, over 8 hours. Voltage mode; $\pm 0.015 \%$ or 10 mv , whichever is greater, over 1000 hours.
Current mode (Wide Adjust models); $\pm 0.01 \%$ or 5 ma , whichever is greater, over 8 hours.
Current mode (Wide Adjust models); $\pm 0.02 \%$ or 10 ma , whichever is greater, over 1000 hours.
Remote Sensing: Provision for sensing the output voltage across the load, so that drops in the load line are compensated, is a standard feature. Compensates up to 0.5 Vdc drop per output line (or within the limits of the output voltage adjustment range). (Wide Adjust Output models compensate up to 0.5 Vdc drop per output line.)
Output Voltage Adjustment: Screwdriver accessible through the front panel.
Dielectric Withstand Voltage Isolation
Input to output: 4242 Vdc 1000 Vdc
Input to case: 2121 Vdc 500 VAC
Output to case: 750 Vdc 300 VAC
Cooling: Forced-air cooled; air enters rear of power supply and exits from front cover.
Mounting: Threaded mounting holes permit mounting to a chassis, cabinet wall or bracket. To mount from the power supply side of the mounting surface use Mounting Kit GB8 or GBR. For DIN rail mounting use Mounting Kit LH35DIN or LR35DIN.

OPTIONS page (1 of 3)

Gold Box "Infinity" Power Supplies

Overvoltage Protection Options \$15 + *\$35(one-time only)
Choose one: A1 or A2 or A3 or A4A1; OVP set 15% above rated output. Non-latching. (Available on Single Output models only. Not available with option C9.)A2; OVP set 15% above rated output. Latching. Includes latching overcurrent option "C9". Reset by momentarily removing ACinput power.
A3; OVP adjustable from Vout minimum to 15% higher than the maximum rated output voltage. Non-latching. Screwdriveradjustment accessible through the top panel. (Available on Single Output models only.)
A4; OVP tracks as Vout is adjusted; OVP triggers between 1v minimum above Vout to 15% above Vout. Latching. (Availableon Wide Adjust Output models only.)
IEC AC Input Connector Options \$15
Choose one: B1 or B2
B1; IEC inlet on the rear, with accessible fuse. (Not available with options B4, K5, L2 or on case size LM6A.)
B2; IEC inlet on the front, with accessible fuse. (Not available with options B5, C8, L2.)
6' IEC AC input Cord 115 VAC, Option "K3" \$15
6' IEC AC input Cord 230 VAC, Option "K4"

\qquad \$15

AC Input Voltage Options

Choose one: B3 or B4 or B5 or B6 or L1 or L2 or L3B3; 210-250 VAC input. Internally fused for a single phase source. (Not available with option C8.)\$15
B4; 105-125 VAC or 210-250 VAC input, selectable with switch on rear. Internally fused for a single phase source. \$25
(Not available with options B1, B9, C8, or on case size LM6A.)
B5; 105-125 VAC or 210-250 VAC input, selectable with switch on front. Internally fused for a single phase source. \$25
(Not available with option B2, B8.)
B6; 105-125 VAC or 210-250 VAC strapable input. External fusing required. (Not available with options C8, E6.) \$20
Input voltage of 115 or 230 VAC can be selected by the use of jumpers on a 4 place pluggable terminal block located on thefront panel.L1; 90-110 VAC input. Internally fused for a single phase source $\$ 40$ (Add 5 days to standard shipping time.)(Not available with options C8, E6.)
L2; 22-26 VAC input. Internally fused for a single phase source

\qquad
.\$40 (Add 5 days to standard shipping time.)(Not available with options B1, B2, B8, B9, C8, E6.)L3; 195-220 VAC input. Internally fused for a single phase source $\$ 40$ (Add 5 days to standard shipping time.)(Not available with options C8, E6.)
Power Switch Options \$10
Choose one: B8 or B9
B8; AC on/off rocker switch on front panel. (Not available with options C8, L2.)
B9; AC on/off rocker switch on rear panel. (Not available with options B4, C8, L2 or on case size LM6A.)
Voltage Output Adjust and Current Limit Adjust Options
(standard:screwdriver slot accessible through the front panel for Vout adjust.)
Choose one: C1 or C2
C1; Front panel knobs; (one for voltage, one for current) used to adjust output voltage and current \$55
(Current adjustment range is same as for option "C2")
C2; Current Limit adjustment screwdriver slot accessible through the front panel. \$10
Single Output models; current adjustment range is $\pm 10 \%$ of maximum rated output current.
Wide Adjust Output models; current adjustment range is from zero to maximum rated output current.
Inhibit or Enable Options

\qquad
. 10 + *\$35(one-time only)

Choose one: C3 or C4
C3; Inhibit control, TTL compatible. To disable the supply, apply a voltage between the "Rtn" terminal and the "Inh/Ena" terminal. The voltage can be any value from +3 Vdc to +15 Vdc.
C4; Enable Control, TTL compatible. To enable the DC output, the "Inh/Ena" terminal must either be shorted to the "Rtn" terminal or pulled to within 0.8 Vdc of the "Rtn" terminal. An open collector or contact closure can be used.

```
Output Programming Options (Wide Adjust models only)
```

\qquad

``` \$15 + *\$35(one-time only) (voltage and/or current)
```

```
Choose one: C5 or C6
```

Choose one: C5 or C6
C5;The output voltage and current may be programmed from 0 to full rating by means of control voltage inputs of 0 to +5 Vdc . C6; The output voltage and current may be programmed from 0 to full rating by means of control voltage inputs of 0 to +10 Vdc . Voltage mode accuracy: 0.5%. Current mode accuracy: 0.5%. Accuracy percentages do not apply below 5% of output rating.

```

\section*{C7; Voltage and Current Monitoring, Option "C7" \\ \(\qquad\) . \(\$ 15\) + *\$35(one-time only)}

For models with no programming or with \(0-10 \mathrm{v}\) programming (option " C 6 "):
Voltage Monitor Terminal: Permits remote monitoring of output voltage, stepped down by a ratio of 10:1 (for 3.3 v to 90 v models) or \(100: 1\) (for 100 v to 150 v models). Accuracy is \(0.5 \%\) of maximum rated output voltage.
Current Monitor Terminal: For models with greater than 10 amps output current: permits remote monitoring of output current, stepped down by a ratio of \(100 \mathrm{mV} / \mathrm{Amp}\) (accuracy is \(1 \%\) of maximum rated output current). For models with less than 10 amps output current: permits remote monitoring of output current, stepped down by a ratio of \(1000 \mathrm{mV} / \mathrm{Amp}\) (accuracy is \(1 \%\) of maximum rated output current).
For models with \(0-5 \mathrm{v}\) programming (option "C5"):
Voltage Monitor Terminal: Permits remote monitoring of output voltage, stepped down by a ratio of 10:1 (for 3.3 v to 45 v models) or \(100: 1\) (for 48 v to 150 v models). Accuracy is \(0.5 \%\) of maximum rated output voltage.
Current Monitor Terminal: For models with greater than 45 amps output current: permits remote monitoring of output current, stepped down by a ratio of \(10 \mathrm{mV} / \mathrm{Amp}\). For models with from 5 amps to 45 amps output current: permits remote monitoring of output current, stepped down by a ratio of \(100 \mathrm{mV} / \mathrm{Amp}\). For models with less than 4.5 amps output current: permits remote monitoring of output current, stepped down by a ratio of \(1000 \mathrm{mV} / \mathrm{Amp}\).
(Accuracy is \(1 \%\) of maximum rated output current.)
(When monitoring the output voltage and/or current by means of the monitor terminals, the use of an instrument having an input impedance of at least 10 megohms is recommended.)
C8; AC on/off control, Option "C8" ........ \(\$ 35\)
Apply control voltage between terminals 21 and 22 to turn power supply on. Control voltage range is 11 to 28 Vdc (@ 65ma maximum). (Not available with options B2, B3, B4, B6, B8, B9, E6, L1, L2, L3.)

C9; Latching Overcurrent control, Option "C9" .\$5
If current is greater than \(15 \%\) of the maximum rated output current, the power supply latches off. Reset by momentarily removing AC input power. This option is included with Option A2. (Available on Single Output models only. Not available with options A1, C5, C6.)
D1; Over Temperature protection, Option "D1" . 15
An internal thermostat will automatically shut down the power supply in the event of an over temperature condition. Power supply resets automatically.

\section*{D2; Thermostatically controlled fan, Option "D2" \\ ........\$25}

Fan runs at reduced speed until maximum speed is required.
E1; Output blocking protection diode, Option "E1" \(\qquad\)
Used for battery charging or redundant applications. Derate output by \(10 \%\).
E2; Transient protection for electrically noisy environments, Option "E2" \$35
Transient protection for AC input and DC output.
E3; High Frequency pulsed load filtering, Option "E3" . \(\$ 30\)
Recommended for applications such as "switched loads" and "stepper motors".
E4; Series Operation Diode, Option "E4" .\$15
Allows power supplies to operate in series, for applications requiring higher output voltage.
E5; High Isolation Output, Option "E5" ........\$25
May be floated at 1000 Vdc above case.
(Available only on Single Output models with no options or with options B1-B9, D1, D2, F1, K6.)
E6; AC Inrush Current Limiting, Option "E6" \(\qquad\) . \(\$ 35\)
AC inrush is limited by a 10 ohm impedance. (Not available with options B6, C8, L1, L2, L3.)
*The " \(\$ 35\) (one-time only charge)" is only added to the total cost of the power supply one time no matter how many options are ordered. See How To Order.

\section*{F1; Table top rubber mounting feet, Option "F1" ......... \$15}

Alarm with Relay Contacts Options .........\$15 + *\$35(one-time only)
Choose one: G1 or G2
G1; NC Relay contacts close when output voltage drops more than \(10 \%\) below nominal.
G2; NO Relay contacts open when output voltage drops more than \(10 \%\) below nominal.
G3; Status LEDs on Front Cover, Option "G3" .........\$15 + *\$35(one-time only)
Green LED indicates Vout is between \(-10 \%\) and \(+15 \%\) of rated output.
Red LED indicates a fault condition; thermal (for units with option D1), overcurrent, under or overvoltage.
(Available on Single Output models only.)
G4; 'Voltage output OK' Monitor, Option "G4" \(\qquad\) . \(\mathbf{1 0}\) + *\$35(one-time only)
TTL High when Vout is between \(-10 \%\) and \(+15 \%\) of rated output. (Available on Single Output models only.)
G5; Temperature monitor, Option "G5" \(\qquad\) . \(\mathbf{\$ 2 5}+\) *\$35(one-time only)
The temperature monitor is used to measure the power supply's internal temperature. Monitor output voltage is set to 2.5 Vdc at \(25^{\circ} \mathrm{C}\) and varies above or below this value by 0.1 Vdc per \({ }^{\circ} \mathrm{C}\). For example, if the temperature is \(20^{\circ} \mathrm{C}\) the output will be 2 Vdc . (Not available with options \(\mathrm{H} 1-\mathrm{H} 8\) ).
H1-H8; Additional, Low Current, Auxiliary Voltage Options \$25 + *\$35(one-time only)
\(<1 \%\) initial Accuracy, \(\pm 0.2 \%\) Line and \(\pm 0.2 \%\) Load Regulation, \(<10 \mathrm{mv}\) peak-to-peak ripple. (Not available with option G5.) Choose one: H 1 or H 2 or H 3 or H 4 or H 5 or H 6 or H 7 or H 8
H1; Auxiliary output: \(3.3 \mathrm{Vdc}, 0.1 \mathrm{amp}\)
H2; Auxiliary output: \(5 \mathrm{Vdc}, 0.1 \mathrm{amp}\)
H3; Auxiliary output: \(12 \mathrm{Vdc}, 0.1 \mathrm{amp}\)
H4; Auxiliary output: \(13.8 \mathrm{Vdc}, 0.1 \mathrm{amp}\)
H5; Auxiliary output: \(15 \mathrm{Vdc}, 0.1 \mathrm{amp}\)
H6; Auxiliary output: \(\quad-5 \mathrm{Vdc}, 0.1 \mathrm{amp}\)
H7; Auxiliary output: \(-12 \mathrm{Vdc}, 0.1 \mathrm{amp}\)
H8; Auxiliary output: -15 Vdc, 0.1 amp
J3; Redundancy ('OR-ing' or 'Blocking Diode'), Option "J3" \$190
Redundancy is attained by simply wiring two units in parallel. Derate output by 10\%. (Available on Single Output models only. Not available with options C5, C6, C9, E5.)
Includes:
- Non-latching OVP set \(15 \%\) above rated output (Option A1).
- Alarm with relay contacts that close when output voltage drops more than \(10 \%\) below nominal (Option G1).
- Output blocking protection diode (Option E1).
- Remote sensing.

K3; 6' IEC AC input Cord 115 VAC, Option "K3" .\$15

K4; 6' IEC AC input Cord 230 VAC, Option "K4" \$15
K5; Rear Panel AC input fuse, Option "K5" (Not available with option B1 or on case size LM6A.) \$10

K6; Final Test Data, Option "K6" .\$35
Final test data also includes an extended 8 hour burn-in.
K7; AC on/off LED on Front Cover, Option "K7" \$10
Red LED indicates AC is on.
L1 thru L3; see B3 thru B6 (that section includes L1, L2 and L3, which follows B3 thru B6.)
*The " \(\$ 35\) (one-time only charge)" is only added to the total cost of the power supply one time no matter how many options are ordered. See How To Order.

\section*{How to Order:}

There are a seemingly infinite number of options available for the new Acopian Gold Box "Infinity" power supplies! And even more options will be available soon! This worksheet should make it easy to select and price the model that you desire.
- Add options as a suffix to the power supply model number. For example, if options C3 and C9 are selected, the suffix on the model number is C39, denoting options C3 and C9.
- The " \(\$ 35\) (one-time only charge)" is just that; once that \(\$ 35\) is added into the cost of the power supply, it doesn't need to be added again for any other option that is selected. See example below.

For example, power supply model L5MC500 with options A1, B6, C3 and C9:
L5MC500 ........... \(\$ 280\)
A1..................... \(\$ 15+\) * \(\$ 35\) (one-time only)
B6.................. \(\$ 20\)
C3.................. \(\$ 10+\) \$35(one-time only)
C9..................... \(\$ 5 \quad\) Do not include this \(\$ 35\) because it has

This model number would be L5MC500A1B6C39, and the price would be \(\$ 280+(15+35)+20+10+5=\$ 365\)

\section*{Gold Box "Infinity" SINGLE OUTPUT MODELS}
------------ Any other voltage between 1.5 and 150 can easily be made.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Nominal Output Voltage} & \multirow[t]{3}{*}{Adjust Range \(\pm \mathrm{V}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Output Current Amps. at}} & \multicolumn{2}{|l|}{Regulation} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Ripple mV (@ 25 MHz BW)}} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { (\$) } \\
& \text { Price }
\end{aligned}
\]} & \multirow[b]{3}{*}{Model} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { Case } \\
& \text { Size }
\end{aligned}
\]} \\
\hline & & & & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Load } \\
\text { Lmv }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Line } \\
& \pm m v
\end{aligned}
\]} & & & & & \\
\hline & & \(40^{\circ} \mathrm{C}\) & \(71^{\circ} \mathrm{C}\) & & & RMS & P-P & & & \\
\hline 1.5 & 0.5 & 5 & 3.5 & 2 & 2 & 0.25 & 0.75 & 280 & L1.5MC500 & LM6A \\
\hline 1.5 & 0.5 & 10 & 7 & 2 & 2 & 0.25 & 0.75 & 340 & L1.5MC1000 & LM8A \\
\hline 1.5 & 0.5 & 13.2 & 9.2 & 2 & 2 & 0.25 & 0.75 & 380 & L1.5MC1320 & LM10A \\
\hline 3.3 & 0.5 & 5 & 3.5 & 2 & 2 & 0.25 & 0.75 & 280 & L3.3MC500 & LM6A \\
\hline 3.3 & 0.5 & 10 & 7 & 2 & 2 & 0.25 & 0.75 & 340 & L3.3MC1000 & LM8A \\
\hline 3.3 & 0.5 & 13.2 & 9.2 & 2 & 2 & 0.25 & 0.75 & 380 & L3.3MC1320 & LM10A \\
\hline 5 & 0.5 & 5 & 3.5 & 2 & 2 & 0.25 & 0.75 & 280 & L5MC500 & LM6A \\
\hline 5 & 0.5 & 10 & 7 & 2 & 2 & 0.25 & 0.75 & 340 & L5MC1000 & LM8A \\
\hline 5 & 0.5 & 13.2 & 9.2 & 2 & 2 & 0.25 & 0.75 & 380 & L5MC1320 & LM10A \\
\hline 6 & 0.5 & 5 & 3.5 & 2 & 2 & 0.25 & 0.75 & 280 & L6MC500 & LM6A \\
\hline 6 & 0.5 & 10 & 7 & 2 & 2 & 0.25 & 0.75 & 340 & L6MC1000 & LM8A \\
\hline 6 & 0.5 & 13.2 & 9.2 & 2 & 2 & 0.25 & 0.75 & 380 & L6MC1320 & LM10A \\
\hline 7 & 0.5 & 5 & 3.5 & 2 & 2 & 0.25 & 0.75 & 280 & L7MC500 & M6A \\
\hline 7 & 0.5 & 10 & 7 & 2 & 2 & 0.25 & 0.75 & 340 & L7MC1000 & LM8A \\
\hline 7 & 0.5 & 13.2 & 9.2 & 2 & 2 & 0.25 & 0.75 & 380 & L7MC1320 & LM10A \\
\hline 8 & 0.5 & 5 & 3.5 & 2 & 2 & 0.25 & 0.75 & 280 & L8MC500 & LM6A \\
\hline 8 & 0.5 & 10 & 7 & 2 & 2 & 0.25 & 0.75 & 340 & L8MC1000 & LM8A \\
\hline 8 & 0.5 & 13.2 & 9.2 & 2 & 2 & 0.25 & 0.75 & 380 & L8MC1320 & LM10A \\
\hline 10 & 0.5 & 4.7 & 3.3 & 2 & 2 & 0.25 & 0.75 & 290 & L10MC470 & LM6A \\
\hline 10 & 0.5 & 8.5 & 6 & 2 & 2 & 0.25 & 0.75 & 345 & L10MC850 & LM8A \\
\hline 10 & 0.5 & 12 & 8.4 & 2 & 2 & 0.25 & 0.75 & 385 & L10MC1200 & LM10A \\
\hline 12 & 1 & 4.5 & 3.2 & 2 & 2 & 0.25 & 0.75 & 290 & L12MC450 & LM6A \\
\hline 12 & 1 & 7.2 & 5 & 2 & 2 & 0.25 & 0.75 & 345 & L12MC720 & LM8A \\
\hline 12 & 1 & 10 & 7 & 2 & 2 & 0.25 & 0.75 & 385 & L12MC1000 & LM10A \\
\hline 13.8 & 1 & 4 & 2.8 & 2 & 2 & 0.25 & 0.75 & 290 & L13.8MC400 & LM6A \\
\hline 13.8 & 1 & 6.3 & 4.4 & 2 & 2 & 0.25 & 0.75 & 345 & L13.8MC630 & LM8A \\
\hline 13.8 & 1 & 8.7 & 6 & 2 & 2 & 0.25 & 0.75 & 385 & L13.8MC870 & LM10A \\
\hline 15 & 1 & 3.1 & 2.2 & 2 & 2 & 0.25 & 0.75 & 290 & L15MC310 & LM6A \\
\hline 15 & 1 & 6.1 & 4.2 & 2 & 2 & 0.25 & 0.75 & 345 & L15MC610 & LM8A \\
\hline 15 & 1 & 9.4 & 6.5 & 2 & 2 & 0.25 & 0.75 & 385 & L15MC940 & LM10A \\
\hline 16 & 1 & 2.9 & 2 & 2 & 2 & 0.25 & 0.75 & 290 & L16MC290 & M6A \\
\hline 16 & 1 & 5.7 & 4 & 2 & 2 & 0.25 & 0.75 & 345 & L16MC570 & LM8A \\
\hline 16 & 1 & 8.8 & 6.2 & 2 & 2 & 0.25 & 0.75 & 385 & L16MC880 & LM10A \\
\hline 18 & 1 & 2.5 & 1.8 & 2 & 2 & 0.25 & 0.75 & 290 & L18MC250 & LM6A \\
\hline 18 & 1 & 5 & 3.5 & 2 & 2 & 0.25 & 0.75 & 345 & L18MC500 & LM8A \\
\hline 18 & 1 & 7.5 & 5.3 & 2 & 2 & 0.25 & 0.75 & 385 & L18MC750 & LM10A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Nomina Output Voltage} & \multirow[t]{2}{*}{Adjust Range \(\pm \mathrm{V}\)} & \multicolumn{2}{|l|}{Output Current Amps. at} & \multicolumn{2}{|l|}{Regulation} & \multicolumn{2}{|l|}{Ripple mV
(@ 25 MHz BW )} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { (\$) } \\
& \text { Price }
\end{aligned}
\]} & \multirow[b]{2}{*}{Model} & \multirow[b]{2}{*}{\[
\begin{array}{|l}
\text { Case } \\
\text { Size }
\end{array}
\]} \\
\hline & & 40 \({ }^{\circ} \mathrm{C}\) & \(71^{\circ} \mathrm{C}\) & \[
\begin{gathered}
\text { Load } \\
\pm m v
\end{gathered}
\] & \[
\begin{aligned}
& \text { Line } \\
& \text { Imv }
\end{aligned}
\] & RMS & P.P & & & \\
\hline 20 & 1 & 2.3 & 1.6 & 2 & 2 & 0.25 & 0.75 & 290 & L20MC230 & LM6A \\
\hline 20 & 1 & 4.4 & 3.1 & 2 & 2 & 0.25 & 0.75 & 345 & L20MC440 & LM8A \\
\hline 20 & 1 & 6.6 & 4.6 & 2 & 2 & 0.25 & 0.75 & 385 & L20MC660 & LM10A \\
\hline 24 & 1 & 2.3 & 1.6 & 3 & 3 & 0.25 & 0.75 & 290 & 24MC230 & LM6A \\
\hline 24 & 1 & 3.9 & 2.7 & 3 & 3 & 0.25 & 0.75 & 345 & L24MC390 & LM8A \\
\hline 24 & 1 & 6.1 & 4.2 & 3 & 3 & 0.25 & 0.75 & 385 & L24MC610 & LM10A \\
\hline 28 & 1 & 2 & 1.4 & 3 & 3 & 0.25 & 0.75 & 290 & L28MC200 & 6A \\
\hline 28 & 1 & 3.3 & 2.3 & 3 & 3 & 0.25 & 0.75 & 345 & L28MC330 & 8A \\
\hline 28 & 1 & 5.5 & 3.9 & 3 & 3 & 0.25 & 0.75 & 385 & L28MC550 & LM10A \\
\hline 30 & 1 & 1.9 & 1.3 & 3 & 3 & 0.25 & 0.75 & 290 & L30MC190 & LM6A \\
\hline 30 & 1 & 3.3 & 2.3 & 3 & 3 & 0.25 & 0.75 & 345 & L30MC330 & LM8A \\
\hline 30 & 1 & 5.2 & 3.6 & 3 & 3 & 0.25 & 0.75 & 385 & L30MC520 & LM10A \\
\hline 36 & 1 & 1.4 & 1 & 3 & 3 & 0.25 & 0.75 & 290 & L36MC140 & LM6A \\
\hline 36 & 1 & 2.5 & 1.8 & 3 & 3 & 0.25 & 0.75 & 345 & L36MC250 & LM8A \\
\hline 36 & 1 & 4.4 & 3.1 & 3 & 3 & 0.25 & 0.75 & 385 & L36MC440 & LM10A \\
\hline 48 & 1 & 1.3 & 0.9 & 3 & 3 & 0.25 & 0.75 & 330 & 8MC130 & 6A \\
\hline 48 & 1 & 2 & 1.4 & 3 & 3 & 0.25 & 0.75 & 370 & L48MC200 & M8A \\
\hline 48 & 1 & 3.3 & 2.3 & 3 & 3 & 0.25 & 0.75 & 405 & L48MC330 & LM10A \\
\hline 60 & 1 & 1 & 0.7 & 3 & 3 & 1 & 3 & 330 & L60MC100 & LM6A \\
\hline 60 & 1 & 1.5 & 1.1 & 3 & 3 & 1 & 3 & 370 & L60MC150 & LM8A \\
\hline 60 & 1 & 2.6 & 1.8 & 3 & 3 & 1 & 3 & 405 & L60MC260 & LM10A \\
\hline 75 & 1 & 0.7 & 0.5 & 5 & 5 & 1 & 3 & 330 & L75MC70 & LM6A \\
\hline 75 & 1 & 1.1 & 0.8 & 5 & 5 & 1 & 3 & 370 & L75MC110 & LM8A \\
\hline 75 & 1 & 2.2 & 1.5 & 5 & 5 & 1 & 3 & 405 & L75MC220 & LM10A \\
\hline 100 & 1 & 0.6 & 0.4 & 5 & 5 & 1 & 3 & 375 & 100MC60 & 6A \\
\hline 100 & 1 & 0.9 & 0.6 & 5 & 5 & 1 & 3 & 405 & L100MC90 & LM8A \\
\hline 100 & 1 & 1.3 & 0.9 & 5 & 5 & 1 & 3 & 435 & L100MC130 & LM10A \\
\hline 120 & 1 & 0.6 & 0.4 & 5 & 5 & 1 & 3 & 375 & L120MC60 & LM6A \\
\hline 120 & 1 & 0.75 & 0.5 & 5 & 5 & 1 & 3 & 405 & L120MC75 & LM8A \\
\hline 120 & 1 & 1.1 & 0.8 & 5 & 5 & 1 & 3 & 435 & L120MC110 & LM10A \\
\hline 125 & 1 & 0.5 & 0.4 & 5 & 5 & 1 & 3 & 375 & L125MC50 & LM6A \\
\hline 125 & 1 & 0.7 & 0.5 & 5 & 5 & 1 & 3 & 405 & L125MC70 & LM8A \\
\hline 125 & 1 & 1.2 & 0.8 & 5 & 5 & 1 & 3 & 435 & L125MC120 & LM10A \\
\hline 150 & 1 & 0.35 & 0.2 & 5 & 5 & 1 & 3 & 375 & L150MC35 & LM6A \\
\hline 150 & 1 & 0.5 & 0.3 & 5 & 5 & 1 & 3 & 405 & L150MC50 & LM8A \\
\hline 150 & 1 & 1 & 0.7 & 5 & 5 & 1 & 3 & 435 & L150MC100 & LM10A \\
\hline
\end{tabular}

\section*{Gold Box "Infinity" \\ WIDE ADJUST OUTPUT MODELS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Output Voltage Range} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Output Current Amps. at}} & \multicolumn{2}{|l|}{Regulation} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Ripple mV } \\
(@ 25 \mathrm{MHz} \mathrm{BW}) \\
\hline
\end{array}
\]}} & \multirow[b]{3}{*}{(\$) Price} & \multirow[b]{3}{*}{Model} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { Case } \\
& \text { Size }
\end{aligned}
\]} \\
\hline & & & \multirow[t]{2}{*}{Load \(\pm m v\)} & \multirow[t]{2}{*}{\[
\begin{array}{|l|l|}
\hline \text { Line } \\
\pm \mathrm{mv}
\end{array}
\]} & & & & & \\
\hline & \(40^{\circ} \mathrm{C}\) & \(71^{\circ} \mathrm{C}\) & & & RMS & P-P & & & \\
\hline 0-5 & 3.3 & 2.3 & 2 & 2 & 0.25 & 0.75 & \$365 & YL05MC330 & LM6A \\
\hline 0-5 & 5.5 & 3.9 & 2 & 2 & 0.25 & 0.75 & \$395 & YL05MC550 & LM8A \\
\hline 0-5 & 8.8 & 6.2 & 2 & 2 & 0.25 & 0.75 & \$455 & YL05MC880 & LM10A \\
\hline 0-6 & 2.7 & 1.9 & 2 & 2 & 0.25 & 0.75 & \$365 & YL06MC270 & LM6A \\
\hline 0-6 & 4.5 & 3.2 & 2 & 2 & 0.25 & 0.75 & \$395 & YL06MC450 & LM8A \\
\hline 0-6 & 8.8 & 6.2 & 2 & 2 & 0.25 & 0.75 & \$455 & YL06MC880 & LM10A \\
\hline 0-10 & 3 & 2.1 & 2 & 2 & 0.25 & 0.75 & \$365 & YL010MC300 & LM6A \\
\hline 0-10 & 4 & 2.8 & 2 & 2 & 0.25 & 0.75 & \$395 & YL010MC400 & LM8A \\
\hline 0-10 & 7 & 4.9 & 2 & 2 & 0.25 & 0.75 & \$455 & YL010MC700 & LM10A \\
\hline 0-12 & 2.5 & 1.8 & 2 & 2 & . 25 & 0.75 & \$365 & 012MC250 & LM6A \\
\hline 0-12 & 3.5 & 2.5 & 2 & 2 & 0.25 & 0.75 & \$395 & YL012MC350 & LM8A \\
\hline 0-12 & 6.8 & 4.8 & 2 & 2 & 0.25 & 0.75 & \$455 & YL012MC680 & LM10A \\
\hline 16 & 2.2 & 1.5 & 2 & 2 & 0.25 & 0.75 & \$365 & YL016MC220 & LM6A \\
\hline 0-16 & 3.3 & 2.3 & 2 & 2 & 0.25 & 0.75 & \$395 & YL016MC330 & LM8A \\
\hline 0-16 & 5.5 & 3.9 & 2 & 2 & 0.25 & 0.75 & \$455 & YL016MC550 & LM10A \\
\hline 0-20 & 1.7 & 1.2 & 2 & 2 & 0.25 & 0.75 & \$365 & YLO20MC170 & LM6A \\
\hline 0-20 & 2.6 & 1.8 & 2 & 2 & 0.25 & 0.75 & \$395 & YLO20MC260 & LM8A \\
\hline 0-20 & 4.2 & 2.9 & 2 & 2 & 0.25 & 0.75 & \$455 & YLO20MC420 & LM10A \\
\hline 0-24 & 1.5 & 1.1 & 3 & 3 & 0.25 & 0.75 & \$365 & YL024MC150 & LM6A \\
\hline 0-24 & 2.3 & 1.6 & 3 & 3 & 0.25 & 0.75 & \$395 & YL024MC230 & LM8A \\
\hline 0-24 & 3.5 & 2.5 & 3 & 3 & 0.25 & 0.75 & \$455 & YL024MC350 & LM10A \\
\hline 0-25 & 1.4 & 1 & 3 & 3 & 25 & 0.75 & 365 & 025MC140 & M6A \\
\hline 0-25 & 2.2 & 1.5 & 3 & 3 & 0.25 & 0.75 & \$395 & YLO25MC220 & LM8A \\
\hline 0-25 & 3.4 & 2.4 & 3 & 3 & 0.25 & 0.75 & \$455 & YL025MC340 & LM10A \\
\hline 0-30 & 1.1 & 0.8 & 3 & 3 & 0.25 & 0.75 & \$365 & YL030MC110 & LM6A \\
\hline 0-30 & 1.8 & 1.2 & 3 & 3 & 0.25 & 0.75 & \$395 & YL030MC180 & LM8A \\
\hline 0-30 & 2.8 & 1.9 & 3 & 3 & 0.25 & 0.75 & \$455 & YL030MC280 & LM10A \\
\hline 0-36 & 1 & 0.7 & 3 & 3 & 0.25 & 0.75 & 405 & YL036MC100 & LM6A \\
\hline 0-36 & 1.5 & 1.1 & 3 & 3 & 0.25 & 0.75 & \$455 & YL036MC150 & LM8A \\
\hline 0-36 & 2.4 & 1.7 & 3 & 3 & 0.25 & 0.75 & \$510 & YL036MC240 & LM10A \\
\hline 0-50 & 0.7 & 0.5 & 3 & 3 & 0.25 & 0.75 & \$405 & YL050MC70 & LM6A \\
\hline 0-50 & 0.9 & 0.7 & 3 & 3 & 0.25 & 0.75 & \$455 & YL050MC90 & LM8A \\
\hline 0-50 & 1.3 & 0.9 & 3 & 3 & 0.25 & 0.75 & \$510 & YL050MC130 & LM10A \\
\hline 0-60 & 0.6 & 0.4 & 3 & 3 & 1 & 3 & 405 & 060MC60 & 6A \\
\hline 0-60 & 0.8 & 0.6 & 3 & 3 & 1 & 3 & \$455 & YL060MC80 & LM8A \\
\hline 0-60 & 1.1 & 0.8 & 3 & 3 & 1 & 3 & \$510 & YL060MC110 & LM10A \\
\hline 0-100 & 0.3 & 0.21 & 5 & 5 & 1 & 3 & 405 & YL0100MC30 & LM6A \\
\hline 0-100 & 0.5 & 0.35 & 5 & 5 & 1 & 3 & \$455 & YL0100MC50 & LM8A \\
\hline 0-100 & 0.7 & 0.49 & 5 & 5 & 1 & 3 & \$510 & YL0100MC70 & LM10A \\
\hline 0-150 & 0.15 & 0.11 & 5 & 5 & 1 & 3 & \$405 & YL0150MC15 & LM6A \\
\hline 0-150 & 0.3 & 0.21 & 5 & 5 & 1 & 3 & \$455 & YL0150MC30 & LM8A \\
\hline 0-150 & 0.4 & 0.28 & 5 & 5 & 1 & 3 & \$510 & YL0150MC40 & LM10A \\
\hline
\end{tabular}

\section*{Gold Box "Infinity" Power Supplies LINEAR REGULATED (to 150 watts)}

AC-DC
single output \& wide adjust output


'Auxiliary' drawing for options:


C1, C8

All dimensions in inches.```

