

Description

Power-One's high power modular products can be configured to provide up to 21 outputs in over 10 million voltage and current combinations. Eighteen chassis are available from 1000 to 4000 watts; including power factor corrected, three-phase input, and metric mounting hardware models. Over 90 output modules are available to provide voltages from 1 to 48VDC. Output modules have a field demonstrated MTBF of greater than 5 million hours. Other features include a comprehensive array of module and system interface signals, extensive input transient protection, and international regulatory agency approvals. These high-performance products have a proven track record in high reliability communications, semiconductor test, and industrial applications.
Table of Contents
Product Overview 2
Modular System Overview and Selection 4
Configuring a Power System 5
DC Output Module Selection 6
Paralleled Module Configurations 8
DC Module Specifications 9
Chassis Electrical Specifications 11
Exceptional AC Input Transient Immunity 15
DC Output Modules Demonstrated MTBF 17

Modular High Power Mechanical Drawings (These may be downloaded from www.power-one.com by using the AC-DC Configurable Modular Link.)

Changing the Shape of Power

PRODUCT OVERVIEW

RELIABILITY

- Demonstrated DC output module MTBF of greater than 5 million hours.

Ruggedized AC input sections incorporate extensive transient protection.

- Vibration tested at 6 GRMS, 3 axis, 10 to 2000 Hz .
- Two-year warranty.

FLEXIBILITY

- Modular construction; over 10 million configurations available.
- Up to 21 outputs per power supply from 1.0 to 48 VDC.
- Parallelable outputs with current sharing.
- System inhibit and individual module output inhibit capability.
- Metric mounting available on selected models.

PERFORMANCE

- Single outputs fully regulated and isolated.
- Active PFC models meet EN61000-3-2 and EN60555-2.
- EN60950/UL1950 approved. CE Marked to the Low Voltage Directive.
- No minimum loads required on most outputs.

C

Modular High Power Series Product Overview

CHASSIS METRIC MOUNTING	SMF3	HMF3	HMF5	SMIM3	SMM5	HMM5	HMM7	RMF5	RMIM5
CHASSIS STANDARD	SPF3	HPF3	HPF5	SPM3	SPM5	HPM5	HPM7	RPF5	RPM5
OUTPUT POWER AND POWER FACTOR									
. 99 PFC to meet EN60555	YES	YES	YES	N/A	N/A	N/A	N/A	YES	N/A
Max output wattage at high range line input	1350	2000	2000	1000	1500	2000	2500	3000	4000
Max output wattage at low range line input*	1000	1500	1500	1000	1500	N/A	N/A	N/A	N/A
INPUT VOLTAGE SPECIFICATIONS**									
High range VAC input	160-264	160-264	160-264	175-264	175-264	180-264	180-264	160-264	180-264
Low range VAC input	85-159	85-159	85-159	90-132	90-132	N/A	N/A	N/A	N/A
VAC input selection	Wide Range	Wide Range	Wide Range	Manual	Manual	N/A	N/A	N/A	N/A
VAC input phases	Single	Three							
OUTPUT MODULE SPECIFICATIONS									
Max \# of outputs	9	9	15	9	15	15	21	15	15
\# of module slots	3	3	5	3	5	5	7	5	5
MECHANICAL SPECIFICATIONS									
Chassis size $\mathrm{H} \times \mathrm{W} \times \mathrm{L}$, inches	$5 \times 5.5 \times 12.5$	$5 \times 5.5 \times 12.5$	$5 \times 8 \times 11$	$5 \times 5.5 \times 11$	$5 \times 8 \times 11$	$5 \times 8 \times 11$	$5 \times 11 \times 13$	$5 \times 8 \times 12.5$	$5 \times 8 \times 15$
Chassis size $\mathrm{H} \times \mathrm{W}$, millimeters	127×140	127×140	127×203	127×140	127×203	127×203	127×280	127×203	127×203
Chassis size xL , millimeters	$\times 318$	$\times 318$	x 280	× 280	x 280	x 280	$\times 330$	$\times 318$	$\times 381$
INPUT TRANSIENT PROTECTION SPECIFICATIONS									
ESD Immunity EN61000-4-2,	Level 4 $15 \mathrm{kV} / 8 \mathrm{kV}$	Level 4 $15 \mathrm{kV} / 8 \mathrm{kV}$	Level 4 $15 \mathrm{kV} / 8 \mathrm{kV}$	Level 4 15kV/8kV	Level 4 15kV/8kV	Level 4 15kV/8kV	Level 4 15kV/8kV	Level 4 $15 \mathrm{kV} / 8 \mathrm{kV}$	Level 4 $15 \mathrm{kV} / 8 \mathrm{kV}$
RF Susceptibility EN61000-4-3	Level 3 $10 \mathrm{~V} / \mathrm{m}$	Level 3 $10 \mathrm{~V} / \mathrm{m}$	Level 3 10V/m	Level 3 10V/m	Level 3 10V/m	Level 3 10V/m	Level 3 $10 \mathrm{~V} / \mathrm{m}$	Level 3 10V/m	Level 3 $10 \mathrm{~V} / \mathrm{m}$
Fast Transient/Burst EN61000-4-4	Level 3 $\pm 2 \mathrm{kV}$								
Surge Immunity EN61000-4-5 (Line-Line)	Class 4 2kV	$\begin{gathered} \text { Class } 4 \\ 2 \mathrm{kV} \end{gathered}$	Class 4 2kV	$\begin{gathered} \text { Class } 4 \\ 2 \mathrm{kV} \end{gathered}$	Class 4 2kV	$\begin{gathered} \text { Class } 4 \\ 2 \mathrm{kV} \end{gathered}$	$\begin{gathered} \text { Class } 4 \\ 2 \mathrm{kV} \end{gathered}$	Class 4 2kV	Class 4 2kV
Surge Immunity EN61000-4-5 (line-Gnd)	Class 4 4kV	Class 4 4kV	Class 4 4kV	Class 4 4kV	Class 4 4kV	Class 4 4kV	Class 4 4kV	Class 4 4kV	Class 4 4kV

[^0]From 1000 to 4000 Watts

Models with active Power Factor Correction (PFC) are EN61000-3-2 compliant

MODULAR SYSTEM OVERVIEW AND SELECTION

Modular System Overview

Power-One's Modular High Power Series products are configured with separate switch-mode DC output modules to provide the voltage and current ratings required by each specific application.

The system is based on a 300 VDC system power bus derived from either the AC utility line, or a user-supplied 300 VDC source. This 300 VDC bus provides the bulk DC required by each output module for conversion to its specified output voltage and current ratings.

As shown in the block diagram, this independent modular approach provides complete isolation between the outputs, as well as all other system elements. Also, the switching circuitry of each output module is clocked and synchronized by the sync \& bias supply section to reduce electrical interference between the outputs.

Selection

The modularity of these high power products allows the user to specify a power system configured from a wide selection of standard off-the-shelf, plug-in modules. The power system is delivered completely assembled, burned in, and tested. A part number comprised of a series designation, module listing, and options can be configured as follows:

1. Choose a chassis based on required wattage, number of outputs, and power factor.
2. Select modules following the guidelines in the configuration section.
3. Decide on the options. Standard options are listed in the configuration section. Please call the factory for special requirements, such as logic option cards.

CONFIGURATION NOTES AND OPTIONS

Configuration Notes

- Modules are designated left to right in the part number but are installed right to left in the chassis.
- Single and double wide modules occupy one and two chassis slots, respectively. Confirm that the total number of slots required does not exceed the chassis slot capacity.

$$
\begin{array}{lr}
\text { EXAMPLE: OUTPUTS SELECTED } & 5 \mathrm{~V} @ 150 \mathrm{~A} \\
& 12 \mathrm{~V} @ 20 \mathrm{~A} \\
& -12 \mathrm{~V} @ 20 \mathrm{~A}
\end{array}
$$

- Not all modules can be used in all slots. Refer to the compatibility table below.
- Fill blank slots with K or L option.

All chassis slots are numbered in right-to-left sequence

Standard Options

Module and Chassis Compatibility

Confirm that the number listed in the compatibility column of the module selector guide is equal to or less than the lowest number specified for the module slots pictured below. Example: The SPF3 can only use modules with a
slot compatibility of 1 in the slot closest to the input section, but can use any module with a compatibility number of four or less in the other two slots. Bold lines designate adjoining slots that can be used for double wide modules.

Changing the Shape of Power

MODULE SELECTOR GUIDE

SINGLE VOLTAGE OUTPUT MODULES (For Preset Voltage Information, Consult Factory)

NOMINAL VOLTAGE	ADJUSTMENT RANGE	CURRENT (AMPS) @ $50^{\circ} \mathrm{C}$ (NOTE A)	MODULE	$\begin{aligned} & \text { SLOTS } \\ & \text { USED } \end{aligned}$	SLOT COMPATIBILITY	NOISE \& RIPPLE (mV PK-PK) TYPICAL/MAX (NOTE B)	OUTPUT CONNECTION
1.5 V	1.5-1.8V	35	T1	1	1	30/50	Type II
1.5 V	1.5-1.8V	60	T6	1	1	30/50	Type I
1.5 V	1.5-1.8V	250	T4	2	2	30/50	Type III
2 V	1.8-2.2V	80	F8	1	3	25/40	Type I
2V	2-2.2V	35	F1	1	1	20/50	Type II
2V	2-2.2V	60	AG (Note C)	1	1	30/50	Type I
2 V	2-2.2V	60	F6	1	1	30/50	Type I
2V	2-2.2V	150	F2	2	2	30/50	Type III
2V	2-2.2V	180	CS	2	5	30/50	Type III
2 V	2-2.2V	250	F4	2	2	30/50	Type III
2 V	2-2.2V	320	F7	2	5	30/100	Type III
2.3 V	2.07-2.53	35	BJ	1	1	30/50	Type II
3.3 V	2.97-3.63	35	H1	1	1	30/50	Type II
3.3 V	2.97-3.63	60	H6	1	1	30/50	Type I
3.3 V	2.97-3.63	80	H8	1	3	40/50	Type I
3.3 V	2.97-3.63	90	DA	1	5	30/50	Type I
3.3 V	2.97-3.63	150	H2	2	2	30/40	Type III
3.3 V	2.97-3.63	250	H4	2	2	30/50	Type III
3.3 V	2.97-3.63	320	H7	2	5	50/100	Type III
5 V	4.5-5.5	35	A1	1	1	35/50	Type II
5 V	4.5-5.5	60	A6	1	1	15/50	Type I
5 V	4.5-5.5	80	A8	1	3	15/50	Type I
5 V	4.5-5.5	90	DT	1	5	15/50	Type I
5 V	4.5-5.5	150	A2	2	2	30/50	Type III
5 V	4.5-5.5	220/250	A4 (Note D)	2	3/4	30/50	Type III
5 V	4.5-5.5	320	A7	2	5	30/100	Type III
5 V	4.5-5.5	375	QA	2	5	30/50	Type III
6 V	5.4-6.6	35	AU	1	1	65/90	Type II
6V	5.4-6.6	80	FD	1	3	30/60	Type I
6 V	5.4-6.6	100	CT	1	5	40/60	Type I
6 V	5.4-6.6	120	BY	2	2	40/60	Type III
6V	5.4-6.6	250	CU	2	5	40/100	Type III
8V	7.2-8.8	65	AJ	2	2	53/80	Type III
8V	7.2-8.8	160	FA	2	5	40/200	Type III
8V	7.2-8.8	50	GM	1	4	40/60	Type I
8.5V	7.65-9.35	20	CF	1	1	50/75	Type II
10 V	9-11	20	AW	1	1	66/100	Type II
10V	9-11	40	BE	1	3	40/60	Type I
10 V	9-11	50	CV	1	5	66/100	Type I
10 V	9-11	65	AQ	2	2	66/100	Type III
10V	9-11	160	CW	2	5	100/200	Type III
12V	10.8-13.2	20	B1	1	1	80/120	Type II
12V	10.8-13.2	40	B6	1	3	40/60	Type I
12V	10.8-13.2	50	B8	1	4	40/60	Type I
12V	10.8-13.2	65	B2	2	2	80/120	Type III
12V	10.8-13.2	80	BC	2	3	80/120	Type III
12 V	10.8-13.2	135	DE	2	5	120/240	Type III
15 V	13.5-16.5	16	AF (Note E)	1	1	15/35	Type II
15 V	13.5-16.5	16	C1	1	1	100/150	Type II
15 V	13.5-16.5	33	C6	1	3	30/60	Type I
15 V	13.5-16.5	50	C5	1	5	100/150	Type I
15 V	13.5-16.5	52	C2	2	2	100/150	Type III
18 V	16.2-19.8	44	GD	1	4	80/120	Type I
24 V	21.6-26.4	10	D1	1	1	160/240	Type II
24V	21.6-26.4	15	D6	1	2	80/120	Type II
24 V	21.6-26.4	29	D8	1	4	70/110	Type I
24V	21.6-26.4	32	D2	2	2	160/240	Type III
24 V	21.6-26.4	33	D5	1	5	60/100	Type I
24 V	21.6-26.4	42	GH	1	5	50/100	Type I
28 V	25.2-30.8	8.6	E1	1	1	200/280	Type II
28 V	25.2-30.8	16	E7 (Note F)	1	1	50/100	Type I
28 V	25.2-30.8	26	E8	1	4	70/100	Type I

Modules that are highlighted in yellow or shaded are not recommended for new designs.

High Power Modular Products Data Sheet
Changing the Shape of Power
MODULE SELECTOR GUIDE
Single voltage output modules (Continued)

$\begin{aligned} & \text { NOMINAL } \\ & \text { VOLTAGE } \end{aligned}$	ADJUSTMENT RANGE RANGE	CURRENT (AMPS) @ $50^{\circ} \mathrm{C}$ (NOTE A)	MODULE	$\begin{aligned} & \hline \text { SLOTS } \\ & \text { USED } \end{aligned}$	$\begin{gathered} \text { SLOT } \\ \text { COMPATIILITY } \end{gathered}$	$\begin{gathered} \hline \text { NOISE \& RIPPLE (mV PK-PK) } \\ \text { TYPICAL/MAX (NOTE B) } \end{gathered}$	$\begin{aligned} & \text { OUTPUT } \\ & \text { CONNECTION } \end{aligned}$
28 V	25.2-30.8	27	E2	2	2	150/280	Type III
28 V	25.2-30.8	29	E5	1	5	70/100	Type I
30 V	27-33	8	EG	1	1	30/40	Type II
36V	32.4-39.6	20	J8	1	4	100/200	Type I
36V	32.4-39.6	21	J2	2	2	100/200	Type III
36V	32.4-39.6	23	J5	1	5	100/200	Type I
48 V	43.2-52.8	5	G1	1	1	400/480	Type II
48 V	43.2-52.8	12.5	G4 (Note E)	1	3	40/60	Type I
48 V	43.2-52.8	16	G2	2	2	135/200	Type III
48 V	43.2-52.8	16	G8	1	4	60/100	Type I
48 V	43.2-52.8	19	G6	1	5	60/100	Type I

WIDE-RANGE SINGLE OUTPUT, VARIABLE VOLTAGE MODULES

NOMINAL VOLTAGE	ADJUSTMENT RANGE	CURRENT (AMPS) @ $50^{\circ} \mathrm{C}$ (NOTE A)	MODULE	$\begin{aligned} & \text { SLOTS } \\ & \text { USED } \end{aligned}$	$\begin{gathered} \text { SLOT } \\ \text { COMPATIBILITY } \end{gathered}$	NOISE \& RIPPLE (mV PK-PK) TYPICAL/MAX (NOTE B)	OUTPUT CONNECTION
1.0 V	0.7-2.1V	320	ER	2	5	30/100	Type III
2.0 V	1.5-2.8V	375	QF (Note C)	2	5	50/50	Type III
1.9 V to 3 V	1.9 V to 3 V	150	AB	2	2	50/50	Type III
3.3 V	2.5 V to 4V	375	QH	2	5	30/75	Type III
14 V to 24 V	14 V to 24V	10	W1	1	1	80/120	Type II
14 V to 24 V	14 V to 24V	32	BS	2	2	135/200	Type III

DUAL VOLTAGE OUTPUT MODULES

NOMINAL VOLTAGE	CURRENT (AMPS) @ $50^{\circ} \mathrm{C}$ (NOTE A)	MODULE	$\begin{aligned} & \text { SLOTS } \\ & \text { USED } \end{aligned}$	$\begin{gathered} \text { SLOT } \\ \text { COMPATIBILITY } \end{gathered}$	NOISE \& RIPPLE (mV PK-PK) TYPICAL/MAX (NOTE B)	OUTPUT CONNECTION
12/12	10/4	M4 (Note G)	1	1	120/240	Type II
± 12	10/10	B4 (Note H)	1	1	120/240	Type II
± 15	8/8	C4 (Note H)	1	1	150/300	Type II
± 20	5/5	BQ (Note H)	1	1	80/100	Type II
± 24	5/5	D4 (Note H)	1	1	80/120	Type II

TRIPLE OUTPUT VOLTAGE MODULES (Note G)

NOMINAL Voltage	CURRENT (AMPS) @ $50^{\circ} \mathrm{C}$ (NOTE A)	MODULE	$\begin{aligned} & \text { SLOTS } \\ & \text { USED } \end{aligned}$	$\begin{gathered} \text { SLOT } \\ \text { COMPATIBITITY } \end{gathered}$	NOISE \& RIPPLE (mV PK-PK) MAXIMUM (NOTE B)	OUTPUT CONNECTION
5/1.5/3.3	15/10/10	FC	1	1	100/100/100	Type II
5/1.5/12	10/10/10	CA	1	1	100/100/120	Type II
5/2.2/12	10/10/10	W6	1	1	100/100/120	Type II
5/12/12	10/10/10	M6	1	1	50/120/120	Type II
5.2/12/12	15/8/8	BA	1	1	100/180/180	Type II
5.2/12/12	5/16/7	AE	1	1	60/160/120	Type II
5/12/24	10/10/5	U6	1	1	50/120/240	Type II
5/15/15	10/8/8	V6	1	1	50/150/150	Type II
5/24/24	10/5/5	R6	1	1	50/240/240	Type II
12/12/12	10/10/10	N6	1	1	120/120/120	Type II
5/15/12	10/8/10	EC	1	1	50/150/120	Type II
24/12/12	5/10/10	P6	1	1	240/120/120	Type II

NOTES: A) For ambient temperatures above $50^{\circ} \mathrm{C}$, output current must be linearly derated to 50% at the maximum operational ambient temperature, $70^{\circ} \mathrm{C}$.
B) The output noise and ripple measurement is bandwidth limited to 20 MHz .
C) Module is designed to accommodate output cable losses of up to one volt.
D) A4 module provides 220A in chassis with slot compatibility rating of 3, and 250A in chassis with slot compatibility rating of 4 .
E) Module is designed for use in applications demanding low noise and ripple. Consult factory for further specifications.
F) Not to be used with SPM2 and SPM3 chassis.
G) All triple output modules, as well as the M4 dual-output module, have floating outputs. Lke voltages may be shared within the same module. All triple output adjustments and interface signals are for output \#1. Consult factory for more information.
H) The dedicated negative (-) output is quasi-regulated. Both outputs require a small minimum load to perform to specification. Consult factory for more information.

[^1]
PARALLELED MODULE CONFIGURATIONS

Single output, similar-voltage output modules can be configured for parallel operation to provide output currents up to 840 amps . Factory standard paralleling suffixes are shown below. All paralleling suffixes include factory-installed bus bars and internally-connected current sharing. Please consult factory for paralleling configurations not shown.

- Choose appropriate chassis and modules as described in the Selection and Configuration Notes sections.
- Select the required output connection type as shown in the Module Selector Guide.
- Select the paralleling suffix that corresponds to the selected output modules. (The paralleling suffix follows after all other option codes.)

CHASSIS	CHASSIS SLOT						PARALLELING SUFFIX
	7	65	4	3	2	1	
3 SLOT CHASSIS:							
SPM3, SMM3					I	I	YA
SPF3, SMF3				I	I	I	YB
HPF3, HMF3				I	I	I	YC
				I	III		YD
				I	III		YE
5 SLOT CHASSIS:							
SPM5, SMM5					I	I	YF
HPM5, HMM5				I	I	I	YG
HPF5, HMF5			I N	NU	I	I	YJ
RPM5, RMM5 RPF5, RMF5			I	I	I	I	YJ
		II	I	I	I	I	YM
RPF5, RMF5		I	I	I	I	I	YN
				I	III		YP
			III		III		YH
		II	III		III		YR
		I	III		III		YS
7 SLOT CHASSIS: HPM7, HMM7							
					I	I	YF
				I	I	I	YG
			I N	NU	I	I	YJ
			I	1	I	I	YJ
		I	I	1	I	I	YN
				1	III		YP
			III		III		YH
		I	III		III		YS
		III	III		III		YT

EXAMPLE: REQUIREMENT: 5V @ 300A

- Select Chassis: HPF3
- Select Modules: A4 (5V @ 250A), A6 (5V @ 60A)
- Choose Corresponding Paralleling Suffix: YD
- Final Part Number: HPF3A4A6YD

LIMITATIONS FOR STANDARD PARALLELING SYSTEM

- Single output modules only
- Ripple and noise limit will be 20% over the largest value paralleled
- For paralleling modules over 320A, consult factory

OUTPUT CONNECTIONS

Type I = \#10-32 studs
Type II = Barrier Block
Type III = 5/16"-18 studs

DC OUTPUT MODULE SPECIFICATIONS

SINGLE AND DUAL OUTPUT MODULES

PARAMETER	CONDITIONS/DESCRIPTION	MIN	NOM	MAX	UNITS
Output Voltage Adjustment Range	(V2 output is not adjustable)	-10		+10	\%
Output Current	At $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ ambient.	See Module Selector Guide.			
Ambient Temperature Range	100% rated load. Derated linearly to 50\% load.	0		$\begin{aligned} & 50 \\ & 70 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Initial Voltage Setting	Factory set V1 output	-1		+1	\%
Output Voltage Adjustment	V1 output	-10		+10	\%
Margining/Remote Voltage Adjustment	Range (provided for V1 output only). Programming sensitivity from 2.0V (provided for V1 output only).	$\begin{gathered} \hline-10 \\ -4 \end{gathered}$	-5	$\begin{gathered} +10 \\ -6 \end{gathered}$	$\begin{gathered} \hline \% \\ \% \\ \% \end{gathered}$
Remote Voltage Sense	Total cable drop (provided for V1 output only).			0.5	V
Temperature Coefficient	At $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ ambient.		0.01	0.02	$\% /{ }^{\circ} \mathrm{C}$
Long-term Voltage Drift	1000 hours.		0.1\%		
Line Regulation	Over input operating range.		0.05	0.1	\%
Load Regulation Single Output Modules	5 Volt Modules 0% to 100% load with remote sense. 0% to 100% load without remote sense.		$\begin{array}{r} <10 \\ <60 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Consult Factory For Specific Ratings	>5 Volt Modules 0% to 100% load with remote sense. 0% to 100% load without remote sense.		$\begin{aligned} & <30 \\ & <75 \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Cross Regulation Between Single Output Modules in One Chassis	0\% to 100\% load change.			0	\%
Load Regulation, Dual Output Modules	Positive Output 0% to 100% load with remote sense. 0% to 100% load without remote sense.		$\begin{aligned} & <30 \\ & <75 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Load Regulation, Dual Output Modules	Negative Output 0\% to 100\% load.		5		\%
Cross Regulation, Dual Output Modules	Positive Output 0% to 100% load change.		0.1		mV
Cross Regulation, Dual Output Modules	Negative Output 10\% to 100\% load change.			5	\%
Minimum Load Current	Dual output modules only. See factory data sheets.	1			Amp
Current Limit	Factory set. As a \% of full rated Io. Dual output modules use primary power limiting. See module ratings.	110\%	115\%	120\%	Amp
Short Circuit Current	As a \% of full rated Io.		100\%		Amp
Current Sharing	Current sharing accuracy as a \% of full rated Io. (V1 output)			1	\%
Overvoltage Protection (V1 output)	Trip point as a $\%$ of V_{0} for V_{0} equal to or greater than 5 V . Resettable by recycling input.	115\%	120\%	125\%	V
Reverse Polarity Protection	Reverse current as a \% of full rated Io. Reverse voltage externally applied.			100\%	Amp
Inhibit	Logic LO = off Sink current.			$\begin{aligned} & \hline 0.9 \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \end{gathered}$
	Logic $\mathrm{HI}=0$ on Source current.	2		20	$\begin{gathered} \hline \mathrm{V} \\ \mu \mathrm{~A} \end{gathered}$
Output Good Signal (V1 output)	Logic LO (when Vo deviates $\pm 3 \%$ to $\pm 5 \%$ from adjusted set point).			0.9	V
	Sink current.			40	mA
	Logic HI (with internal pull-up to 5V).	1.5			k Ω
Noise and Ripple	20 MHz bandwith.	See module ratings.			mVPP
Transient Response	For Vo equal to or greater than $5 \mathrm{~V}, 75 \%$ to 100% load step. 50% to 100% load step. Recovering to 1% within $400 \mu \mathrm{Sec}$, Slew rate $=1 \mathrm{~A} / \mu$ Sec.			$\begin{aligned} & 2 \% \\ & 4 \% \end{aligned}$	mVPK
Turn-On Delay	After input applied. After inhibit released.			$\begin{gathered} 1 \\ 50 \end{gathered}$	Sec ms
Rise Time	5% to 95% of V .			50	ms
Overshoot	Overshoot as a \% of Vo at turn-on.			0\%	V
Turn-Off Delay	After inhibit or OVP trip.			500	$\mu \mathrm{s}$

Specifications in this section are general and may vary according to specific modules.

DC OUTPUT MODULE SPECIFICATIONS

TRIPLE OUTPUT MODULES

NOTES: 1) 20 mV max below 5\% load.
2) Identical voltages can be paralleled at the factory. Please consult the factory.

CHASSIS SPECIFICATIONS:

SPF3 / SMF3* HPF3 / HMF3* HPF5 / HMF5* RPF5 / RMF5*

PARAMETER	CONDITIONS	MIN.	NOM.	MAX.	UNITS
Input Voltage	AC Input	85		264	VAC
Input Current	$\eta=70 \%$ 115 VAC; 1000W 115 VAC; 1300W 115 VAC; 1500W 230 VAC; 1350W 230 VAC; 1500W 230 VAC; 2000W 230 VAC; 3000W			$\begin{gathered} 12.8 \\ 16.2 \\ 19.2 \\ 8.6 \\ 9.6 \\ 12.8 \\ 19.0 \end{gathered}$	Arms
Power Factor	$\begin{aligned} & \text { 85-264 VAC; >500W (SPF3, HPF3, HPF5) } \\ & \text { 180-264 VAC; >750W (RPF5) } \end{aligned}$	$\begin{aligned} & 0.98 \\ & 0.98 \end{aligned}$			W/VA
Inrush Surge Current	$\begin{aligned} & \text { Vin }=132 \text { VAC (one cycle) } \\ & \text { Vin }=264 \text { VAC (one cycle) } \end{aligned}$			$\begin{aligned} & 20 \\ & 40 \end{aligned}$	APK
Input Frequency	AC Input	47		63	Hz
Start Up Time	From time AC is applied to Vout is in regulation			1.5	Sec
Hold-up Time	85-264 VAC at rated maximum power	23			ms
Input Power Fail Warning	Logic signal time before regulation dropout due to loss of input power	5			ms
Overtemperature Warning	Advance warning before shutdown	10			ms
SAFETY AND EMI					
Agency Approvals	UL1950 CSA 22.2 No. 950 EN60950 (TÜV)				
Line Harmonic Disturbance	$\begin{aligned} & \text { EN60555-2 } \\ & \text { EN61000-3-2 } \end{aligned}$				
Dielectric Withstand Voltage	Input to Output ("Y" capacitors disconnected) Input to Chassis Output to Chassis	$\begin{gathered} 4300 \\ 2300 \\ 500 \\ \hline \end{gathered}$			VDC
Leakage Current	Per UL1950 and CSA 22.2 No. 950 Per EN60950			$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	mA
Electromagnetic Interference	FCC CFR title 47 Part 15, Sub-Part B Conducted EN55022 / CISPR 22, Conducted			Level A	
GENERAL					
Output Power	SPF3 Full Load, 85-100 VAC input SPF3 Full Load, 101-159 VAC input SPF3 Full Load, 160-264 VAC input HPF3/HPF5 Full Load, 85-100 VAC input HPF3/HPF5 Full Load, 101-159 VAC input HPF3/HPF5 Full Load, 160-264 VAC input RPF5 Full Load, 160-264 VAC input			$\begin{gathered} 875 \\ 1000 \\ 1350 \\ 1300 \\ 1500 \\ 2000 \\ 3000 \end{gathered}$	Watts
Efficiency	Full Load, Nominal Line Input		75		\%
Vibration	Random Vibration, 10 Hz to $2 \mathrm{kHz}, 3$ axis			6	GRMS
Shock	Operating, peak acceleration			20	GPK
Operating Temperature	At 100\% Ioad Derate linearly above $50^{\circ} \mathrm{C}$ to 50%	0		$\begin{aligned} & 50 \\ & 70 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature		-40		85	${ }^{\circ} \mathrm{C}$
Altitude	Operating Non-Operating			$\begin{aligned} & 10,000 \\ & 50,000 \end{aligned}$	Feet
Relative Humidity	Non-Condensing			95	\%
Acoustical Noise	"A" Weighted @ 1 meter			50	dB
Cooling	Static pressure through system enclosure			0.05	In of $\mathrm{H}_{2} \mathrm{O}$

*Metric mounting chassis meet all specifications of non-metric models.

CHASSIS SPECIFICATIONS: SPM3 / SMM3*

PARAMETER	CONDITIONS	MIN.	NOM.	MAX.	UNITS
Input Voltage	AC Input Low range High range	$\begin{array}{r} 90 \\ 175 \end{array}$	$\begin{aligned} & 115 \\ & 230 \end{aligned}$	$\begin{aligned} & 132 \\ & 264 \end{aligned}$	$\begin{aligned} & \text { VAC } \\ & \text { VAC } \end{aligned}$
	DC Input	250	300	350	VDC
Input Current	$\begin{gathered} 1000 \text { Watt Load } \\ V \text { in }=90 \mathrm{VAC} \\ V \mathrm{Vin}=175 \mathrm{VAC} \\ \operatorname{Vin}=250 \mathrm{VDC} \end{gathered}$			$\begin{aligned} & 25 \\ & 13 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { ARMS } \\ & \text { ARMS } \\ & \text { ADC } \end{aligned}$
Inrush Surge Current	$\begin{aligned} & \hline \text { SPM3 } \\ & V \text { Vin }=132 \text { VAC } \\ & V i n=264 \text { VAC } \end{aligned}$			$\begin{aligned} & 19 \\ & 38 \end{aligned}$	Apk
Input Frequency	With AC Input	47		440	Hz
Hold-up Time	After last AC line peak with 115/230 VAC Input	23			ms
Input Power Fail Warning	Logic signal before regulation dropout due to loss of input power	5			ms
Overtemperature Shutdown	System shutdown due to excessive internal temperature	75		85	${ }^{\circ} \mathrm{C}$
Thermal Warning	Advanced warning before overtemperature shutdown	10			ms
SAFETY AND EMI					
Agency Approvals	UL1950 CSA22.2 \#950 EN60950 (TÜV)				
Dielectric Withstand Voltage	Input to Output Input to Chassis Output to Chassis	$\begin{aligned} & 4300 \\ & 2300 \\ & 500 \end{aligned}$			VDC
Insulation Resistance	Input to Output Input to Chassis Output to Chassis	$\begin{aligned} & 10 \\ & 10 \\ & 2 \\ & \hline \end{aligned}$			M Ω
Leakage Current	SPM3			1.75/1.25	mA
Safety Spacing	Primary to Secondary Primary to Chassis	$\begin{aligned} & 8 \\ & 4 \end{aligned}$			mm
Electromagnetic Interference	FCC CFR title 47 Part 15, Sub-Part B Conducted EN55022 / CISPR 22, Conducted			Level A	
GENERAL					
Output Power (IMax)	SPIV3			1000	Watts
Efficiency	Full load, typical modules.	75			\%
Power Factor	115/230 VAC input		0.7		W/VA
Vibration	Random vibration from 10Hz to 2 kHz , (3 axis)			6.0	Grms
Shock	Operating: peak acceleration			20	GPK
Operating Temp.	$\begin{aligned} & \text { At 100\% Load } \\ & \text { Derate to } 50 \% \text { at 70PC } \end{aligned}$	0		$\begin{aligned} & 50 \\ & 70 \end{aligned}$	PC
Storage Temp.		-40		85	PC
Altitude	Operating (Consult factory for operation above 10,000 feet)			10,000	Feet
	Non-operating			50,000	Feet
Relative Humidity	Non-condensing			95	\%
Acoustical Noise	" A " weighted, anechoic at 1 meter			50	dB
Cooling	Internal Fan Cooled (At Sea Level)		50		CFM

*Metric mounting chassis meet all specifications of non-metric models.

CHASSIS SPECIFICATIONS: SPM5/SMM5* HPM5/HMM5* HPM7/HMM7*

INPUT					
PARAMETER	CONDITIONS	MIN.	NOM.	MAX.	UNITS
Input Voltage HPM5/HPM7 Operate Only On High Range	AC Input Low range-SPM5 only High range	$\begin{gathered} 90 \\ 175 \end{gathered}$	$\begin{aligned} & 115 \\ & 230 \end{aligned}$	$\begin{aligned} & 132 \\ & 264 \end{aligned}$	$\begin{aligned} & \text { VAC } \\ & \text { VAC } \end{aligned}$
	DC Input DC Input Range	250	300	350	VDC
Input Current	$\begin{aligned} & \text { Vin }=90 \mathrm{VAC} \\ & \mathrm{Vin}=175 \mathrm{VAC} \\ & \text { Vin }=250 \mathrm{VDC} \end{aligned}$			$\begin{gathered} 2 \\ 1 \\ 0.5 \end{gathered}$	Arms/100 Watts Load Arms/100 Watts Load ADC/100 Watts Load
Inrush Surge Current	$\begin{aligned} & \text { Vin }=132 \text { VAC } \\ & \text { Vin }=264 \text { VAC } \end{aligned}$			$\begin{aligned} & 19 \\ & 38 \end{aligned}$	APK
Input Frequency	With AC Input	47		440	Hz
Hold-up Time	After last AC line peak with 115/230 VAC Input	30			ms
Input Power Fail Warning	Logic signal before regulation dropout due to loss of input power	3			ms
Thermal Warning	Warning before overtemperature shutdown	10			ms
SAFETY AND EMI					
Agency Approvals	$\begin{aligned} & \hline \text { UL1950 } \\ & \text { CSA22.2 \#950 } \\ & \text { EN60950 (TÜV) } \end{aligned}$				
Dielectric Withstand Voltage	Input to Output Input to Chassis Output to Chassis	$\begin{aligned} & 4300 \\ & 2300 \\ & 500 \end{aligned}$			VDC
Insulation Resistance	Input to Output Input to Chassis Output to Chassis	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$			M Ω
Leakage Current	$\begin{aligned} & \text { Per UL1950 and CSA } 22.2 \text { No. } 950 \\ & \text { Per EN60950 } \end{aligned}$			$\begin{aligned} & 1.5 \\ & 2.5 \\ & \hline \end{aligned}$	mA
Safety Spacing	Primary to Secondary Primary to Chassis	$\begin{aligned} & \hline 8 \\ & 4 \end{aligned}$			mm
Electromagnetic Interference	FCC CFR Title 47 Part 15, Sub-Part B Conducted EN55022 / CISPR 22, Conducted			Level A	
GENERAL					
Output Power (Max) - SPM5/HPM5/HPM7				1500/2000/2500	0 Watts
Efficiency	Full Load		75		\%
Power Factor	115/230 VAC input, typical modules.		0.7		W/VA
Vibration	$\begin{aligned} & \text { MIL-STD-810D, Method 514.3, } \\ & \text { Category I, Proc I } \\ & \hline \end{aligned}$			6	GrMs
Shock	$\begin{aligned} & \text { MIL-STD-810D, Method 516.3, } \\ & \text { Proc II, IV, VI, } \end{aligned}$			20	Gpk
Operating Temp.	At 100\% Load Derate to 50% at 70PC	0		$\begin{aligned} & 50 \\ & 70 \\ & \hline \end{aligned}$	PC
Storage Temp.		-40		85	PC
Altitude	Operating (Consult factory for operation above 10,000 feet)			10,000	Feet
	Non-operating			50,000	Feet
Relative Humidity	Non-condensing			95	\%
Acoustical Noise	" A " weighted, anechoic at 1 meter			50	dB
Cooling	Internal Fan	80			CFM

*Metric mounting chassis meet all specifications of non-metric models.

CHASSIS SPECIFICATIONS: RPM5 / RMM5*

PARAMETER	CONDITIONS	MIN.	NOM.	MAX.	UNITS
Input Voltage**	AC Input Three Phase with Ground Phase-to-Phase DC Input	$\begin{aligned} & \hline 180 \\ & 250 \end{aligned}$	$\begin{aligned} & 230 \\ & 300 \end{aligned}$	$\begin{aligned} & 264 \\ & 350 \end{aligned}$	$\begin{aligned} & \text { VAC } \\ & \text { VDC } \end{aligned}$
Input Current	$\begin{aligned} & 180 \text { VAC } \\ & 208 \text { VAC } \\ & 220 \text { VAC } \\ & 250 \text { VDC } \end{aligned}$			$\begin{aligned} & 23 \\ & 20 \\ & 19 \\ & 23 \end{aligned}$	ARMS Adc
Inrush Surge Current	Vin = 264 VAC (one cycle)			38	APK
Input Frequency	With AC Input	47		63	Hz
Hold-up Time	$\begin{aligned} & \text { After last AC line peak } \\ & 208 \text { VAC } \\ & 220 \text { VAC } \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$			ms
Input Power Fail Warning	Logic signal before regulation dropout due to loss of input power	5			ms
Overtemperature Shutdown	System shutdown due to excessive internal temperature	70	80		${ }^{\circ} \mathrm{C}$
Thermal Warning	Advanced warning before shutdown	10			ms
SAFETY AND EMI					
Agency Approvals	UL1950 CSA 22.2 No. 950 EN60950 (TÜV)				
Dielectric Withstand Voltage	Input to Output Input to Chassis Output to Chassis	$\begin{gathered} 4300 \\ 2300 \\ 300 \end{gathered}$			VDC
Insulation Resistance	Input to Output Input to Chassis Output to Chassis	$\begin{gathered} 10 \\ 10 \\ 2 \end{gathered}$			$\mathrm{M} \Omega$
Leakage Current	Per UL1950 and CSA 22.2 No. 950 Per EN60950			$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	mA
Electromagnetic Interference with 3-phase input and no external filtering	FCC CFR title 47 Part 15, Sub-Part B Conducted EN55022/CISPR 22, Conducted			Level A	
GENERAL					
Output Power***	Full Load, 230 VAC			4000	Watts
Efficiency	Full Load, 230 VAC		75		\%
Power Factor	> 2000 watts @ $60 \mathrm{~Hz},>3000$ watts @ 50 Hz with 3-phase input	0.9			W/VA
Vibration	Random vibration from 10 Hz to 2 KHz , (3 axis)			6	GRMS
Shock	Operating, peak acceleration			20	GpK
Operating Temp.	At 100\% Load Derate linearly above $50^{\circ} \mathrm{C}$ to 50%	0		$\begin{aligned} & 50 \\ & 70 \end{aligned}$	PC
Storage Temp.		-40		85	PC
Altitude	Operating Non-operating			$\begin{aligned} & 10,000 \\ & 50,000 \end{aligned}$	Feet
Relative Humidity	Non-condensing			95	\%
Acoustical Noise	"A" weighted at 1 meter			60	dB
Cooling	Static pressure through system closure			0.05	In of $\mathrm{H}_{2} \mathrm{O}$

*Metric mounting chassis meet all specifications of non-metric models.
** For single-phase operation, please consult factory.
*** 2800W, MAX with single-phase, 180-264VAC. Consult factory.

EXCEPTIONAL AC INPUT TRANSIENT IMMUNITY

Initial Analysis

Power-One has been working with customers to improve our high power products for over ten years. Because these products are often used in industrial environments, some of our customers were concerned with AC input transient immunity. This prompted us to implement an extensive data collection and analysis project which provided the following information:

1) $A C$ input monitoring data taken at end-users (our customers' customers) sites revealed extreme input transients with differential transients beyond the highest levels, and longest durations, of the new ISO1000/EN61000-4-5 specification.
2) A review of our failure analysis database revealed primary-side component failures which appeared t be caused by excessive input transients. In addition, some customers reported similar failures with high power products manufactured by companies other than Power-One.
3) The AC input monitoring data, mentioned in item \#1, was used as a starting point in engineering lab testing and Spice modeling. Both methodologies confirmed the failure modes mentioned in item \#2.

Other Factors

Given the very high demonstrated MTBF hours of the DC output modules, failures that were thought to be caused by AC input line transients became a significant percentage of overall customer returns. Therefore, the plan to enhance overall reliability included increasing the robustness of the AC input section.

We found that AC input transient immunity is most critical to equipment that is not powered from a standard 115VAC wall socket, and where line impedances (resistive and inductive) are relatively high, and aid in the absorption of transient line conditions. Experience has also shown that the primary cause of damage is differential voltage events (between the lines), not common mode (between line(s) and ground).

EXCEPTIONAL AC INPUT TRANSIENT IMMUNITY

Improvements

Enhancing the input board design was accomplished by specifying oversized input components and adding Metal Oxide Varistors (MOV's) to protect against both common and differential-mode transients. Before putting the enhanced input board into production, an extensive qualification program was performed which confirmed that the following standards were exceeded:

Specification	Description	Classification	Volts
EN61000-4-2	ESD Immunity	Level 4	8 kV
EN61000-4-3	RF Susceptibility	Level 3	$10 \mathrm{~V} / \mathrm{m}$
EN61000-4-4	Fast Transient/Burst Immunity	Level 3	4 kV
EN61000-4-5	Surge Immunity		
Common-mode			
Differential-mode			

It is important to note that these are the most stringent levels of each of these specifications. In the case of the critical differential surge immunity level, Power-One's internal design and test levels for high power products are over twice the maximum specification level shown above.

Field Data Results

The field data results were impressive. After a year, and over 10,000 units shipped with enhanced AC input sections, our customers have not returned any products that were diagnosed to have AC input transient related failures. This clearly shows that we have significantly improved the field reliability of our high power products and have set a new standard in the industry for $A C$ input transient immunity.
To complement the robustness of the AC input chassis, the DC output modules have a demonstrated MTBF of over 5 million hours. The next three pages describe how the exceptional MTBF of the DC output modules also contributes to making Power-One's high power products the most reliable in the industry.

DC OUTPUT MODULES DEMONSTRATED MTBF OF 5 MILLION HOURS

Overview

This report summarizes the methodology, calculations, and results that were used to document the field reliability of standard high power product modules (non-RPM5), and to predict the reliability of the enhanced performance high density modules for the 4,000 Watt RPM5 Series power supply. Based on this data, the typical output module demonstrated MTBF is five million hours with an ambient temperature of $25^{\circ} \mathrm{C}$.

Basis for Prediction

At the beginning of 1996, Power-One initiated the design of the 4,000 Watt RPM5. This design project produced one of the highest power density AC/DC power supplies in the industry. To support this program, Power-One started an extensive effort to update field reliability information for existing (non-RPM5) modules. In addition to quantifying the reliability for these modules, this information was also used as the basis for predicting the reliability of the new high density RPM5 module designs.

Power-One created a 33-page proprietary report analyzing the field history (by power supply, by module), utilizing years of data. The customer's end-product used in this report operated 24 hours per day, 7 days per week, and accumulated over 140 million unit-hours of field data for this analysis. In addition, three years of field failure data were gathered from Power-One's on-line failure analysis database. Power-One believes this actual demonstrated field history is more valuable and provides a more realistic reliability estimation than that represented by the theoretical calculated predictions of MIL-HDBK-217 or Bellcore TR-332.

Methodology

The minimum and maximum MTBF (80% confidence level) was established by applying the Chi-Squared method to the collected data. To improve the usefulness of the results in the original report, this report includes similar modules (same/similar PCB and mechanical structure). In the case of the RPM5 Series modules, the respective base module data was used as a starting point and was then modified to reflect new stress levels, new components, modified cooling, etc.

Results

The data on the following pages present the resulting field reliability of 48 modules. This data includes minimum and maximum FITs (Failures In Time - 10° hours) and MTBF at $25^{\circ} \mathrm{C}$ for each of the modules.

Vibration testing is performed in three orthogonal axis from 10 to 2000 Hz , at 6.15 GRMS as part of STRIFE testing.

Thermal shock testing includes a $15{ }^{\circ} \mathrm{C}$ per minute ramp rate from $-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ while input power is cycled and outputs are driven to fullrated load. This is also a part of STRIFE testing.

Changing the Shape of Power

DC OUTPUT MODULES DEMONSTRATED MTBF OF 5 MILLION HOURS

Details of MTBF Information

Please refer to the table on the following page for MTBF data for specific modules.

Computer Aided Design (CAD) provides thermal modeling, vibration analysis, and circuit simulation data before a prototype is built. Extensive use of computer-based modeling programs contributes to reliability.

Field data included:

- 3 year shipment history
- 19 unique power supply configurations
- 21 types of output modules
- 4 million to 71 million operating hours for individual modules

Data adjustments were objectively made to:

- Eliminate customer induced and other similar failures
- Provide for confidence factors (80\%)
- Eliminate non-operating time prior to installation
- Group similar modules with similar failure rates to improve accuracy of data
- Make minor extrapolations for modules that had minor technical variations from subject modules

Power-One's modular products have been proven in high-reliability communications and semiconductor test equipment applications.

	High WIDTH	Power DC Output Module Rel Based Upon 140,000,000 Unit-Hours of Field Da FITS (Failures/ 10^{9} Hours) $25^{\circ} \mathrm{C}$ AMBIENT			MTBF (millions of Hours) $25^{\circ} \mathrm{C}$ AMBIENT	
			MINIMUM	MAXIMUM	MINIMUM	MAXIMUM
MODULE		TYPE	M117	254	3.94	8.5
A1	Single	Standard	139	205	4.88	7.19
A2	Double	Standard	139	205	4.88	7.19
A4	Double	Standard	117	254	3.94	8.55
A6	Single	Standard	185	273	3.66	5.41
A7	Double	Standard	117	254	3.94	7.19
A8	Single	Standard	139	205	4.88	8.55
AB	Double	Standard	117	254	3.94	8.55
AG	Single	Standard	139	205	4.88	7.19
AJ	Double	Standard	139	205	4.88	7.19
AQ	Double	Standard	117	254	3.94	8.55
AU	Single	Standard	117	254	3.94	7.1
B1	Single	Standard	139	205	4.88	8.55
B2	Double	Standard	117	254	3.94	8.55
B4	Single	Standard	117	254	4.98	7.19
B6	Single	Standard	139	205	3.94	8.55
BC	Souble	Standard	117	254	3.94	8.55
BE	Single	Standard	117	254	3.94	8.55
BQ	Single	Standard	117	254	3.94	8.55
C1	Single	Standard	139	205	4.88	7.19
C2	Double	Standard	117	254	3.94	8.55
C4	Single	Standard	156	338	2.96	6.41
C5	Single	High Density	117	254	3.94	8.55
C6	Single	Standard	139	205	4.88	7.19
CS	Double	Standard	117	254	3.94	8.55
CT	Single	High Density	185	273	3.66	5.41
CU	Double	Standard	117	254	3.94	8.55
CW	Single	High Density	185	273	3.66	5.41
CW	Single	Standard	117	254	3.94	8.55
D1	Single	Standard	117	254	3.94	8.55
D5	Single	High Density	156	338	3.94	8.55
DA	Single	Standard	117	254	3.66	5.41
DE	Double	High Density	185	273	3.94	8.55
E1	Single	Standard	117	254	2.96	6.41
E5	Single	High Density	156	338	3.94	8.55
F1	Single	Standard	117	205	4.88	7.19
F2	Double	Standard	139	205	4.88	7.19
F4	Double	Standard	139	254	3.94	8.55
F6	Single	Standard	117	205	4.88	7.19
F7	Double	High Density	139 117	254	3.94	8.55
G1	Single	Standard	117	254	3.94	8.55
G4	Single	Standard	117	254	3.94	8.55
H1	Single	Standard	139	205	4.88	7.19
H2	Double	Standard	139	205	4.88	7.19
H4	Double	Standard	117	254	3.94	- 8.55
H6	Single	Standard	ty 185	273	3.66	- 5.41
H7	Double	High Densit				

[^0]: *Maximum wattage above 100VAC input for SPF/HPF

[^1]: Modules that are highlighted in yellow or shaded are not recommended for new designs.

