

FTM-5012S-G50

1.25G 1550nm Gigabit Interface Converter

Members Of Flexon[™] Family

Features

- ♦ Up to 50km transmission distance with SMF
- ♦ 1550nm DFB laser transmitter
- ♦ Standard GBIC footprint with SC optical interface
- Optional plastic or metal enclosure
- ♦ Up to 1.25Gbps bi-directional data links
- Hot-pluggable capability
- Low power dissipation
- ♦ Low EMI and excellent ESD protection
- Class 1 laser product
- **♦** Extended power supply +3.3/5.0V compatible
- Detailed product parameters in EEPROM

Applications

FTM-5012S-G50 GBIC is well suited for Metropolitan Area Network (MAN) and Storage Area Network (SAN) where long-haul transmission is needed, typically used in:

- Switch to Switch interface
- Switched backplane applications
- ♦ Router/Server interface
- Other optical transmission systems

Standards

- ♦ Compliant with GBIC specification (SFF-8053), Rev 5.5
- Compliant with IEEE 802.3z
- Compliant with ANSI specifications for Fibre Channel
- Compliant with FCC 47 CFR Part 15, Class B
- ♦ Compliant with FDA 21 CFR 1040.10 and 1040.11, Class I

Product Description

FTM-5012S-G50 is fully compliant with Gigabit Interface Converter (GBIC) specification (SFF-8053), Rev5.5. It can be inserted in or removed from host chassis without shutting power of the host system.

This GBIC transceiver meets the requirements of IEEE 802.3 Gigabit Ethernet standard and is compliant with ANSI Fibre Channel specifications. Its primary application is serving Gigabit Ethernet and Fibre Channel links between optical networking equipments.

FTM-5012S-G50 incorporates a highly reliable 1550nm DFB laser in its transmitter section. It enables cost-effective data transmission over optical fibers at a distance of 50km with $9/125\mu m$ single-mode fiber.

Optional Plastic or Metal Enclosure

FTM-5012S-G50 is available in optional plastic or metal enclosure.

Low Power Dissipation

By utilizing the latest chipset technology, FTM-5012S-G50 realizes low power dissipation. Typical current is 220mA when operating at $3.1V\sim5.5V$, only 73.3% of the maximum current allowed by the GBIC specification (300mA).

Flexibility

FTM-5012S-G50 patent mechanical design can guarantee excellent EMC/EMI performance. The innovative mechanical design allows user to easily install and remove the GBIC transceiver by hand.

Detailed Product Information In EEPROM

FTM-5012S-G50 complies with Module Definition 4. It features an EEPROM that contains the detailed product information stored for retrieval by host equipment. This information is accessed via the 2-wire serial CMOS EEPROM protocol of ATMEL AT24C02. For further information, please refer to GBIC specification, Rev 5.5.

Block Diagram

Figure 1 illustrates the block diagram of this product.

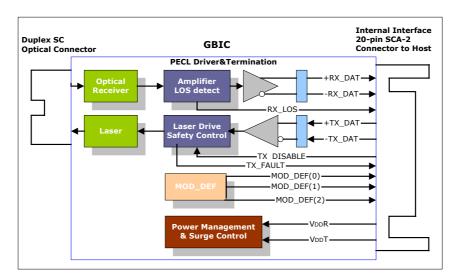


Figure 1, Product Block Diagram

Regulatory Compliance

This product has been tested according to American and European product safety and electromagnetic compatibility regulations (See Table 1). For further information regarding regulatory certification, please refer to FlexonTM regulatory specification and safety guidelines, or contact with Fiberxon, Inc. America sales office listed at the end of documentation.

Table 1 - Regulatory Compliance

Feature	Test Method	Target Performance		
Electrostatic Discharge	MIL-STD-883E	Class 2(>2000 V)		
(ESD) to the Electrical Pins	Method 3015.7	,		
Electrostatic Discharge		Typically withstand at least 15 kV		
(ESD) to the Duplex SC	Variation of IEC 61000-4-2	without damage when port is		
Receptacle	variation of IEC 01000 4 2	contacted by a Human Body Model		
Receptacie		probe.		
Electromagnetic	FCC Part 15 Class B			
Electromagnetic Interference (EMI)	CENELEC EN55022 Class B	Compliant with standards		
Interference (LMI)	(CISPR 22B) VCCI Class B			
		Typically show no measurable		
		effect from a 10 V/m field swept		
Immunity	Variation of IEC 61000-4-3	from 80 MHz to 1000 MHz applied		
		to the transceiver without a chassis		
		enclosure		
	FDA 21CFR 1040.10 and	AEL Class I, FDA/CDRH		
Laser Eye Safety	1040.11	AEL Class 1, TUV Rheinland of		
	EN60950, EN(IEC)60825-1,2	North America		
Component Recognition	UL and CSA			

Mechanical Design Diagram

The mechanical design diagram is shown in Figure 2 and Figure 3.

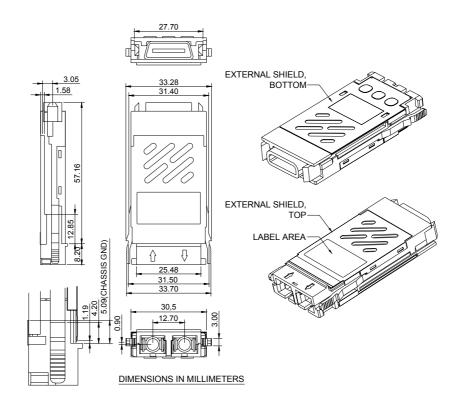


Figure 2, Mechanical Design Diagram for Plastic Enclosure

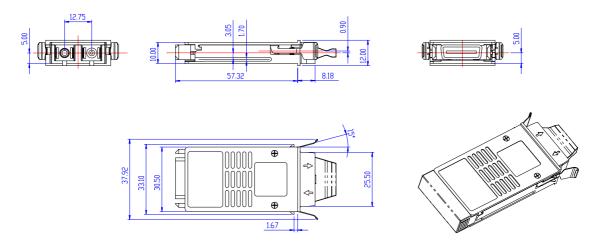
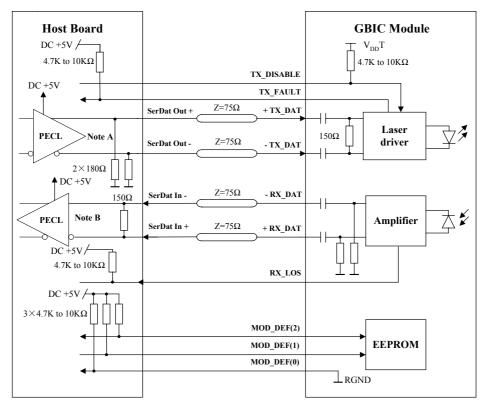



Figure 3, Mechanical Design Diagram for Metal Enclosure (Dimension in mm)

Recommended Interface Circuit

Figure 4 shows the recommended interface circuit for GBIC application.

Note A: Circuit assumes open emitter output

Note B: Circuit assumes high impedance internal bias @Vcc-1.3V

Figure 4, Recommended Interface Circuit

Absolute Maximum Ratings

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Exposure to conditions above the Absolute Maximum Ratings listed in Table 2 may negatively impact the reliability of this product.

Table 2 - Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	T_S	-40	+85	°C
Supply Voltage	V_{CC}	-0.5	6.0	V
Voltage at any Input Pin	-	-0.5	V _{CC} +0.3	V
Operating Humidity	ı	5	95	%

Recommended Operating Conditions

Functional operation of this device is implied at Recommended Operating Conditions (shown in Table 3).

Table 3 - Recommended Operating Conditions

Par	Symbol	Min.	Typical	Max.	Unit		
Ambient Opera	nting Temperature	T _A	0		+70	°C	
Supply Voltage		V_{CC}	3.1		5.5	V	
Data Data	Gigabit Ethernet			1.25		Chna	
Data Rate	Fibre Channel			1.0625		Gbps	

Optical Characteristics

Table 4 lists the optical characteristics of FTM-5012S-G50.

Table 4 - Optical Characteristics (0°C to 70°C, 3.1V to 5.5V)

Parameter		Symbol	Min.	Typical	Max.	Unit	Notes	
Transmitter								
Centre Wavele	ngth	λ_{C}	1530	1550	1570	nm		
Spectral Width	(-20dB)	Δλ			1	nm		
Output Power		P _{OUT}	-5		0	dBm	1	
Rise/Fall Time	(20%~80%)	t_r/t_f			0.26	ns	2	
Extinction Rati	0	ER	9			dB		
Total Jitter	1.25G	ТЈ			0.431	LIT	3	
iotai jittei	1.0625G] 13			0.43	UI	3	
Deterministic	1.25G	D1			0.2	UI	3	
Jitter	1.0625G	- DJ			0.21			
P _{OUT} @TX Disable Asserted					-45	dBm		
Output Optical	Eye	IEEE 802.3z and ANSI Fibre Channel Compliant					4	
			Receiver					
Centre Wavele	ngth	λ_{C}	1200		1660	nm		
Receiver Sensi	tivity				-22	dBm	5	
Receiver Overload			-3			dBm		
Return Loss			12			dB		
LOS Assert			-35			dBm		
LOS De-Assert					-24	dBm		
LOS Hysteresis	5		1		4	dB		
Notes								

Notes:

- 1. Measured average power coupled into SMF.
- 2. Unfiltered, measured with a PRBS 2⁷-1 test pattern @1.25Gbps
- 3. Meet the specified maximum output jitter requirements if the specified maximum input jitter is present.
- 4. Measured with a PRBS 2^7 -1 test pattern @1.25/1.0625Gbps.
- 5. measured with a PRBS 2^7 -1 test pattern @1.25Gbps, BER better than or equal to 1×10^{-12}

Electrical Characteristics

All the signal interfaces are full compliant with GBIC specification Rev. 5.5. The high speed DATA interface uses PECL signal that is AC-coupled. The low speed control and sense input/output signals are level compatible with TTL. Table 5 below shows the detailed electrical characteristics of this product.

Table 5 – Electrical Characteristics (0°C to 70°C, 3.1V to 5.5V)

Parameter		Symbol	Min.	Typical	Max.	Unit	Notes	
Transceiver Power Supply								
Supply Voltage	oply Voltage V _{CC} 3.1 5.5		V					
Supply Curren	it	I_{CC}		220		mA		
Surge Current	•	\mathbf{I}_{surge}			30	mA		
		_	Transmitt	er			_	
Differential Da Input Swing	nta	V_{IN}	650		1860	mV	1	
Differential In Impedance	put	Z_{IN}	140	150	160	Ω		
TX Disable	Disable		2.0		V _{CC} +0.3	V		
IX DISABIE	Enable		0		0.8	V		
TX Fault	Fault		host_V _{CC} -0.5		host_V _{CC} +0.3	V		
1 A Fault	Normal		0		0.5	V		
TX Disable		t_off			10	μs		
Assert Time		t_011			10	μ3		
			Receive	r				
Differential Da Output Swing	Differential Data Output Swing		370		2000	mV	2	
Total Jitter	1.25G	TJ	0.		0.749	UI	3	
iotai Jittei	1.0625G	17			0.61	01	3	
Deterministic	1.25G	TJ			0.462	UI	3	
Jitter	1.0625G	I J			0.36	01	<u> </u>	
LOS Output	High		host_V _{CC} -0.5		$host_V_{CC} + 0.3$	V		
Voltage	Low		0		0.5	V		

Notes:

- 1. Internally AC coupled and terminated (150 Ω differential).
- 2. Internally AC coupled, should be terminated with 150 Ω (differential).
- 3. Meet the specified maximum output jitter requirements if the specified maximum input jitter is present.

Pin Definitions

Figure 5 below shows the pin numbering of GBIC electrical interface. The pin functions are described in Table 6.

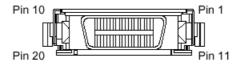
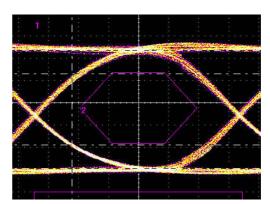


Figure 5, Pin View

It is the responsibility of the system integrator to assure that no thermal, energy, or voltage hazard exists during the hot-plug-unplug sequence. It is also the responsibility of the system integrator and end-user to minimize static electricity and the probability of ESD events by careful design.

Table 6 - Pin Function Definitions

Pin Name	Pin #	Name/Function	Signal Specification		
RECEIVER SIGNALS					
RGND	2, 3, 11, 14	Receiver Ground (may be connected with TGND in GBIC)	Ground, to GBIC		
$V_{DD}R$	15	Receiver $+3.3/5$ volt (may be connected with $V_{DD}T$ in GBIC)	Power, to GBIC		
-RX_DAT	12	Receive Data, Differential PECL	High speed serial, from GBIC		
+RX_DAT	13	Receive Data, Differential PECL	High speed serial, from GBIC		
RX_LOS	Receiver Loss of Signal, logic high, open collector compatible, 4.7k to $10k\Omega$ pull up to $V_{DD}T$ on host		Low speed, from GBIC		
TRANSMITTER S	SIGNALS				
TGND	8, 9, 17, 20	Transmitter Ground (may be connected with RGND internally)	Ground, to GBIC		
$V_{DD}T$	16	Transmitter $+3.3/5$ volt (may be connected with $V_{DD}R$ in GBIC)	Power, to GBIC		
+TX_DAT	18	Transmit Data, Differential PECL	High speed serial, to GBIC		
-TX_DAT	19	Transmit Data, Differential PECL	High speed serial, to GBIC		
TX_DISABLE	7	Transmitter Disable, logic high, open collector compatible, 4.7k to $10k\Omega$ pull up to $V_{DD}T$ on GBIC	Low speed, to GBIC		
TX_FAULT	10	Transmitter Fault, logic high, open collector compatible, 4.7k to $10k\Omega$ pull up to $V_{DD}T$ on host	Low speed, from GBIC		


CONTROL SIGNALS					
MOD_DEF(0)	4	TTL low, output	Please reference GBIC		
MOD_DEF(1)	5	SCL serial clock signal, input	standard, Annex D:		
MOD_DEF(2)	6	SDA serial data signal, input/output	Module definition "4"		

Eye Diagram

Figure 6 shows the typical eye diagrams of this product.

Transmitter @ 1.25Gbps, 2⁷-1 PRBS

Figure 6, Typical Eye Diagrams

Ordering Information

Part No.	Application	Data Rate	Laser Source	Fiber Type	Distance
FTM-5012S-G50	Gigabit Ethernet	1.25G	1550nm DFB	SMF	50km
	Fibre Channel	1.0625G		- · · ·	

Related Documents

For further information of $\mathsf{Flexon}^\mathsf{TM}$ GBIC for Gigabit Ethernet application, please refer to the following documents:

- Flexon[™] GBIC Installation Guide
- Flexon[™] GBIC Application Notes
- SFF-8053, Proposed Specification for GBIC (Gigabit Interface Converter), Rev 5.5

Obtaining Document

You can visit our website:

http://www.fiberxon.com

Or contact with Fiberxon, Inc. America sales office listed at the end of documentation to get the latest documents.

© Copyright Fiberxon Inc. 2003

All Rights Reserved.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons.

The information contained in this document does not affect or change Fiberxon's product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Fiberxon or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environment may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will Fiberxon be liable for damages arising directly from any use of the information contained in this document.

Sales Contact:

VoxTechnologies: 301 S Sherman Suite 117 Richardson Texas 75081 U. S. A.

Tel: 1-972-234-4343 Fax: 1-972-234-4295

Or visit our website: http://fiberxon.industrialpartner.com